[image: image1.png][image: image2.png]B.A.L. SYSTEM for C= Plus/4

by S_/S of [FIRE]

Release 2.5 beta
Send comments / bugs signal / applications / etc. to: svs_fire@inwind.it
Publishing support by: JamesC
Official beta tester: NightBird

Release note: This release is fully compatible with previous public version 2.1; if you want to know only the news here added, please read the Changes.doc file.

SUMMARY:

0
Introduction1sss
0.1 The machine

0.2 Advanced features

1 User utilization

1.1 Getting started

1.2 Keyboard

1.3 Mass storage

1.4 Error management
1.5 Stop a running program

2 Programmer utilization

2.1 System environments

2.2 Keyboard for service

2.3 Program keys

2.4 BAL language

2.5 Data and memory organization

2.6 Addressing modes

2.7 IRQ advanced features

2.8 Massive data commands

2.9 Pseudo commands

2.10 Manual loading of a program file

2.11 Manual run of a program

2.12 Editing a program file

2.13 Comments inside the code

2.14 Saving a program file

2.15 Table of BAL commands (mnemonics)

2.16 Map of nibbles of Condition-Register

2.17 Table of icons for consolle lights

2.18 Table of [Return]-like keys

2.19 Table of console lights

2.20 Programming notes

2.21 Debugging tools

2.22 Labels table

2.23 Tips ‘n tricks

2.24 Example of a BAL program

3 Error messages

0 - Introduction

BAL SYSTEM is a new development system package designed for C= Plus/4 (or expanded C= 16). Based on the B.A.L. (Business Assembler Language), an existing standard for business machines, the environment has been improved with many high-level new commands and features. These improvements can easy manage Plus/4 memory and ports, so that BAL SYSTEM is candidated to become the ideal environment to run any program, expecially external applications and monitoring like devices and electronic cards.

The package is a complete all-in-one tool: Editor/Debugger/Executer. As I’m a coder (I designed inside it some additional tools to better (and easily) perform testing and debugging. I hope you all enjoy it, by executing programs under BALSYS, but also by writing your own code.

[image: image4.png]
0.1 - The machine

Original BAL machines had a memory RAM of 1 Kb, expandable to 4 Kb. Standard machines were sold 2 Kb expanded. With BALSYS you can set any memory amount between 1 to 8192 bytes.

Mass storage was a magnetic-cards system (read/write). The user could insert one or more magnetic cards on the reader, and the data were read from or stored to. Each card could contain till 256 bytes. In this way you could have individual cards (for example one for each customer) or cards holding programs to be loaded and executed. In BALSYS I’ve maintained the “cards” only as an animation during I/O operations. The real mass storage is now modern disk or tape files.

The output monitor was an integrated two-color printer that could print on any of its three sectioned platen. The output of BALSYS is a screen-window with paper simulation (scrolled); but you can also print (on a real printer) the listing of the program in memory.

For monitoring and signalling there is a console with operating/warning lights. Apart the system lights (Magnetic Card request, KEYBoard enable, ERRor) the user is enabled to manage (set/unset) 8 different programmable lights. With BALSYS you can even show icons on them, to better indicate special status’s or warnings.

0.2 - Advanced added features

To have an idea of the powerful of this package, run the sample program “MC-POWER” on the D64 disk-image. It does a math calculation of the power of a number you input (x^y). The elaboration is done without any specific function but only using basic operations (+, -, *, /). All the input requests, controls, calcoulus’s and printing (formatted) result occupy only 76 bytes of code!

But, as told, I added new hi-level commands in BAL-SYS, to easy obtain hi-level special performances. For example, there are 4 lines of IRQ available. This feature allows background works while the program is running, processing something else. Furthermore there are a timer/clock to easily measure times, show it as a watch, or determine timings (stop-watch features can be obtained with only 2 commands). (See paragraph 2.7)
And many other of course… be curious and read on.

0.3 – Automatic settings

Even if BalSys is fully customizable, it has the capability to auto-configure its environment:

· Just after first run, BalSys automatically searches for the file PREFERENCES.BAL inside the current I/O device. If it finds it, then it selfsets the environment with these data. PREFERENCES.BAL can be freely and easy personalized by the menu of pseudo command .SET (see paragraph 2.21). If no valid PREFERENCES.BAL file is found, then system selfsets with default settings.

· Each BAL program can be saved with the settings it needs. This is easy made by .SAV pseudo command (see paragraph 2.14). When that program is reloaded, system will selfconfigure, optimizing the environment for the best run.

1 - USER UTILIZATIONS:

[image: image3.jpg]
1.1 - GET STARTED:

Just as with a real machine, when you run the BALSYS, system resets all the settings and goes into RUN mode (that is: ready to execute a program). If the file “PREFERENCES.BAL” is found on disk, then system will use its data to autoset (see on chapt. 2.21 pseudo .SET for more info).

· Press any Status-key (see chapter 2.1) if you want to change the Mode (C= S for SERVICE; C= T for STEPRUN);

OR

· Press [return] to load a program from I/O device (autodetected Tape or Disk). Enter the program name if you know it, or simply MC-* if you want to load the first program found on the mass storage device. When [KEYB]-light turns on, you can start the program execution by pressing [return] or, once again change Mode (C= S for SERVICE; C= T for STEPRUN, C= X for RESET).
Note: if this program was saved with self-configuring data, a self-configuring of the environment is automatically performed..

1.2 – KEYBOARD
The keyboard is similar to a normal QWERTY keyboard, but instead of the usual [Function-Keys] and [RETURN], BAL machines have 6 different RETURN-like keys named S0 S1 S2 S3 S5 S6. These multiple “RETURNs” are used to express the user’s will (for example: inputing 123 [S0] if datum is to print black; inputing 123 [S1] to print it red; inputing [S6] to cancel). This means that user can easily choose between 6 possibilities on a single key press.

 Since we have a Plus/4 keyboard (or a PC keyboard if we’re using an emulator) the BALSYS Return-like keys are emulated by: [return] (=S0), or [F1] (=S1) , or [F2] (=S2) , or [F3] (=S3) , or [F5] (=S5) , or [F6] (=S6).

Program keys:
There are also 4 special “program-keys”:

C= 1(=p1), C= 2(=p2), C= 3(=p3), C= 4(=p1). (See chapter 2.3)
1.3 - MASS STORAGE

Before the machine is turned off, data should be saved into “Magnetic cards” (maximum 256 bytes each one) simulated by a file. Programs can be stored onto series of cards if larger than 256 bytes. But data also can be saved onto magnetic cards, for example a card for a customer, containing: name, address, balance, etc.

BAL-SYSTEM emulates the cards by USR files named “MC-…” on floppy or on tape. The management of multiple cards is automatic: it is signaled by a flashing icon on the reader. During I/O operations, [M.C.]-light turns on. To see the BAL-files list inside the online disk, type .DIR pseudo from Service-Mode of from StepRun-Mode.

1.4 - ERROR MANAGING

When an error is detected by the system, the condition is signalled by the [ERR]-light on the console and by a beep. Then the proper description is shown on the display (see table at paragraph 3 to obtain more info about each specific error-message). Hit C= E to clear the error condition or switch to another operating mode (C= S, C= T, or C= X). Be informed that you do not lose any memory datum or pointer, by clearing the error status.

Before clearing with C= E, you can hit ? [return] to obtain the following additional info:

· Pointers’ values

· Stack level

· System flags

· Enabled Function-keys and Program-keys

· Alarm/IRQ status

· Mnemonic whose execution caused the error

· The values of PC, SC, and CND (Condition-Register) are shown on display.

If the error condition appears while you are in Run-mode (execution of a program), be informed that after the cleaning operation, system will attempt to execute again the same mnemonic. Then, in order to exit from this situation, you could need to change Mode (entering for example into Service-Mode) instead of cleaning the error: Simply press C= S (for Service-mode) or C= T (for StepRun-Mode).

1.5 – STOP A RUNNING PROGRAM

To stop the program running (but not while it’s waiting for an input), keep pressed [STOP] until you are deviated onto SERVICE mode. Running is stopped too, when any “halt” command is met during code execution (WAIT / HLT / ON), or when an Error is detected.

2 - PROGRAMMER UTILIZATION:

2.1 - SYSTEM ENVIRONMENTS

When BALSYS is running, please wait until the [KEYB]-light on console becomes on: it means that an input is requested. This applies also to choose one of the environments as following:

C= S
SERVICE mode, allows:

· Execute any pseudo command;

· Insert a new program;

· Program listing;

· Edit a program in memory;

· Load/save programs or memory areas.

C= T
STEP RUN mode, allows:

· Execute a program’ mnemonic one at a time, by monitoring values and conditions.

· Execute any pseudo command;

· Program listing;

· Load/save program or memory areas.

C= R
RUN mode, allows:

· Execute a program in memory (just written or loaded), free running (an icon flashes inside the green light on console).

C= E
CLEAR executing, allows:

· Bypass an error condition (program, memory and counters are NOT erased). After a [clear] the machine returns to the mode where the error happened.

C= X
RESET executing, allows:

· Restart the virtual machine. All pointers, settings and values are cleared. After resetting system performs a search for PREFERENCES.BAL file on the online device: if found, it self sets the environment. If not found then default settings are used. System then asks for a program to load, like when it is just turned on.

2.2 – KEYBOARD FOR SERVICE
Besides the C= combinations here above discussed, the keyboard utilization is very similar to standard use. Only the so-called “Return-like” keys (used to end an input) are substituted as below:

[return] (=S0), [F1] (=S1) , [F2] (=S2) , [F3] (=S3) , [F5] (=S5) , [F6] (=S6).
The Condition-code is affected by the pressed [Return]-like key, so that program can test it and decide a different program branching (or printing).

Pattern of [Return]-like keys can be enabled/disabled to guide the user inside legal choices (see table 2.17).

I reserved [F8]/[HELP] key to reset standard characters-font in case of crash/bug causing an unreadable screen (please advise me if/when this happens (). It works only after a system hang.

2.3 – PROGRAM KEYS
They are special P-buttons on a real BAL machine, that are here substituted by the following combinations:

C= 1(=p1), C= 2(=p2), C= 3(=p3), C= 4(=p4).
They are used to directly set flags on BALSYS system memory. When enabled, the user can set up to 4 flags, following program execution requirements. A Program-key hit does not end the current input because it is not a [RETURN]-like key.

For example, if system is waiting for an input (K, KPM, KP, etc.):

Hitting: 1 3 C= 2 5 [return]
you do enter the value 135, but you also set Program-key #2 to inform program of something to remember. Program could take a decision later on the grounds of it.

The nice aspects of Program-keys is that you could press more then one (for example [p1] then [p3]) and that they never affect the input operation. Program keys are normally disabled: only the command KEP inside a BAL program can enable some of them (or all them). When an enabled Program-key is pressed, its bit is stored (set to 1) in a nibble of Condition Register (see below table 2.16), so that it can be tested (by mnemonic TIC), or manipulated (ANDed, ORed, XORed or even forced).

CONDITION REGISTER

Nibble
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

(Content

Programma-

ble 4 bits
Console

white lights status

(1=on)

Program keys set memory
Last Enter-like

key pressed
Near end-of page memory

I/O functions from peripherals unities

Bits (
3
2
1
0

Program key
C= 4
C= 3
C= 2
C= 1

Table of correspondance between Program-keys and the bits of nibble 10 in the Condition Register

2.4 - B.A.L. Language

BAL is a middle level language. It can be put at midway between BASIC and Assembler.

Main features:

· Each command is 2 bytes long, always starting in an even address (0, 2, 128…. and not 1, 3, 127).

· Each keyword (named mnemonic) is from 1 to 4 characters long (see below table 2.15).

· Easy math division and multiply commands.

· Registers feature. Like BASIC variables, each register is a group of 8 bytes used for calculation. Registers’ management is automatic by system: programer only has to refer to their numbers. (Memory addresses from 0…to…7 stand for Register #0, memory addresses from 8…to…15 stand for Register #1, and so on). Registers are easily involved in math calculations, transfers and manipulations. Value in a register can be positive or negative. Even if the maximum value stored in a Register could be theorically 999,999,999,999,999 the real accepted value by BAL-SYS is 999,999,999 (se image on next paragraph 2.5)

· No floating point is managed. To use decimals, you can take care of them by considering that the whole values are always stored (123,45 is stored as 12345). Math commands allow to shift (left or right) the results too, so that you can easy obtain the correct sizes of result values.

For example: you have to multiply 12,34 by 56,7. The values stored in registers are 1234 and 567. When you execute MPR (multiply) command you can set its second parameter as 3 (MP 1,3) to shift right the result (699678) of 3 places in a way that it will become the correct size (700) rounded.

· LABels keyword (numbered 0…255) are available. They can be utilized to mark destinations of skips, start of routines or begin of data areas (for example: LAB 1, LAB 120, LAB 255) (Label 255 is special: it sets the entry point of the program to be executed; all previous codes are ignored, being available for registers or data).

· 2 independent Pointers to RAM, other than the PC (program counter), and SC (Service counter). Pointers are used by come mnemonics during run process.
· Pseudo commands (immediate line-commands). They are immediately executed, to easy set or verify the content of Registers/ Data areas /Pointers /Counters /etc. Pseudo commands can be executed in Service-mode, or in StepRun-mode.

· The Condition-Code is a flag/status memory, that is affected by the results of execution of many commands (like an exit-code) . Its legal values (0, 1, 2, 3) can be used to decide skipping, branching, printing, etc. This saves much coding. Furthermore, many mnemonics implicate a value of Condition-code to do their process. (For example: “F2 10” means: skip forward of 10 bytes if Condition-Code is 2).

2.5 - DATA AND MEMORY ORGANIZATION

BALSYS’ memory RAM can be utilized:

· to store data (texts, numbers, values, flags, etc.)

· to store program code
· to be utilized as registers (groups of 8 bytes). See above chapt. 2.4 for more info on Registers features. BAL automatically manages the data to/from registers, so that you only have to specify what registers are involved in operations.

Internal representation of values: All values inside registers are BCD coded ($0…$9 for numbers). For example, the value 123456 is stored inside a register as 000000000123456C, but once again, be informed that this is automatically done by system.
The sign of a value inside a Register is indicated by its righter nibble. If it is $D then the value is negative, if it is different than $D (typically $C) it is considered positive.
As told, possible decimal numbers have to be stored as integer. The decimal point manage is over programmer’ due (For example to store 123,4 you have to store 1234 and remember that the 4 is after the decimal point).
Addresses

of memory (bytes)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Nibbles of the register
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Registers #
Register #0
Register #1

Examples
0
0
0
0
0
0
0
3
5
7
5
2
1
8
9
D
0
0
0
0
0
0
0
0
4
8
9
7
1
0
6
C

Value here stored: 35.752.239-
Value here stored: 4.897.106+

Registers organization in memory

2.6 - ADDRESSING MODES

All Pointers, Registers and Data have to be input as decimal values. Only when specifically necessary you have to input a hexadecimal datum: in this case datum has to be single quoted (See below table of Mnemonics 2.15). Registers can easy be indicated by their number (0 is the first Register, 1 the second Register, and so on). In this way you can directly specify Registers from #0 to #15.

Indirect addressing mode is allowed to aim Registers outside of that range (#16, #17,…#218, and so on). To refer to one of these Registers, you only have to put its number (as index-value) into one of the direct Registers (0…15) and refer to it by placing as prefix a dot “.”

Example: we have to use mnemonic ARI x,nn to add 10 to the content of Register #30:

step 1:

Insert value 30 into one of the direct Register (say #7);

step 2:

Refer to “.7” into statement (it becomes: ARI .7,10)
(the “.7” syntax will cause system to read the content of Register#7, and then use it to aim to Register with that number that is 30)

2.7 – IRQ FEATURES

An advanced feature of BalSys is its ability to supply you with 4 IRQ lines (ALaRM, SHOW, TIMEr, SCRoLling text). This means that you can set till 4 asynchronous works that are continuously performed in background, during normal processing (while foreground is running). Once started one of them, by executing the respective mnemonic, you don’t monitor it anymore: system will do this for you. The pointers/registers needed to pass operands to IRQ mnemonics are immediately free and available for any other use.

· Line 1 (ALaRM), is able to suspend the normal foreground running when the event occours, and to branch to the routine you have planned for that condition. When an AlaRM is set, you’ll see a flashing red icon near top left corner of screen.

· Line 2 (SHOW) is able to show, by the 8 white lights of console, the realtime status of the bits of a Plus/4 memory cell/port, with a continuous updating.

· Line 3 (TIMEr) is able to continuously show on display a digital clock, used as timer, as stop-watch, or as a normal watch.

· Line 4 (SCRoLling-text) is able to continuously show on display a scrolling text (till 229 characters)

The IRQ lines are independent, so that you can set 1, 2, 3 or even all the 4 lines in the same running session. Of course the foreground program speed is slightly affected by how much work is performed in background. You should keep in mind this, if you plan a foreground program with critic timing.

If separate panel is enabled (.SET D) then you can see the background checking operations by flashing messages on the third line of display panel. The messages are “$hhhh(nnn?” (line 1); “SHOW: $hhhh” (line 2); “TIME(hhmmss?” (line 3).
Summary of background possible operations:
IRQ line
Mnemonic
Operands info
Description

1
ALRM 0,0

Clears any alarm

1
ALRM 1,lab
Pointer1 = Aims to a 2 hex bytes specifying the address of the cell/port to observe.

Register #0 = value to compare

lab = start of BAL routine where to branch, when condition is true.
System continuously checks in background the specified Plus/4’ RAM cell/port, without affect the current running of BAL program. If and when the value of the cell/port equals that one searched, normal running is suspended and execution branches to routine starting with LABel lab.

Example: This alarm mode is useful to check when a memory cell assumes a specific value.

1
ALRM 2,lab
Pointer1 = Aims to a 2 hex bytes specifying the address of the cell/port to observe.

Register #0 = Binary mask of the bits to be compare.
lab = start of routine where to branch when condition is true.
System continuously checks in background the specified Plus/4’ RAM cell/port, without affect the current running of BAL program. If and when one or more bits of the cell/port result set (according with those of the mask), normal running is suspended and execution branches to routine starting with LABel lab.

Example: This alarm mode is useful to check up one or more bit changing in a port.

1
ALRM 3,lab
Register #0 = Time value to be compared (pattern: hhmmss)

lab = start of routine where to branch when time is achieved.
System continuously checks in background the timer, without affect the current running of BAL program. When the time is achieved, normal running is suspended and execution branches to routine starting with LABel lab.

Examples: This alarm mode is useful to set timing periods, or simply the wake-up time of a watch-clock.

2
SHOW 0,0

Stops IRQ bit-showing, and clears console lights.

2
SHOW 3,lab
lab = LABel in the BAL program where 2 hex bytes specify the address of the memory cell/port to be visualized.
System continuously shows the bits’s status of the Plus/4’ cell/port by turning on/off the 8 lights of the console. The updating is performed in background without affect the current running of the BAL program.

Examples: This feature is useful to view changing in some bits of a port or the increasing value of a memory cell.

3
TIME 4

System continuously shows on display panel the current value of timer. The updating is performed in background without affect the current running of the BAL program.

3
TIME 5

Stops IRQ time-showing, and clears display

4
DISP 4,lab
 or

DISP 5,lab
DISP 6,lab

DISP 7,lab
First argument must have bit 2 set in order to enable the scrolling of text. But you can also set its color by adding colors-values 1, 2, or 3 to the 4.
lab = LABel in the BAL program where the text is stored (0…15). The string must end with a $00.
System performs a text scrolling visualization on the second line of display. Maximum lenght of string is 229 characters.
Examples: To show a message, red colored, the command could be DISP 6,10 where 6 is 4 (scroll) + 2 (red). Label 10 will set where in the BAL memory the string is stored.

4
DISP 0,0

Stops the text scrolling visualization

Note: mnemonics SHOW, TIME, and DISP have further modes and abilities in addition of IRQ managements: see mnemonics table 2.15 for more info about them.

Example 1 of setting IRQ works:

We want to set a background monitor of cell $00A5 of Plus/4 memory, and execute a specific routine (starting from LABel 220) when the value of that cell is 100:

…

;Room for registers

16 LAB 255
;Start of BAL exec code

18
FD 80

;Register#0 = 80

20
TRD 1,0
;Pointer1 = value of Register#0 (80)

22
FD 100

;Register#0 = 100

24
ALRM 1,220
;Set IRQ line (operands are: Register#0=100; Pointer1=80)
…
…

;BAL program continues, all Registers and Pointers are free and available

80
$00 $A5
;Address of cell to be checked (aimed by Pointer1 when ALRM mnemonic was set)

…

300
LAB 220
;start of routine to be executed when event happens

…
…

;BAL code to be executed only if and when cell $00A5 does contain the value 100

Example 2 of setting IRQ works:

We want to enable a wake-up routine ringing at a specific time:

…

;Room for registers

16
LAB 255
;Start of BAL exec code

18
FD 83

;Register#0 = 83

20
FDS 125
;Register#0 = 83125 (08:31:25)

22
ALRM 3,180
;Set IRQ line (operand is: Register#0=83125)

…
…

;BAL program continues, Registers and Pointers are free and available

412
LAB 180
;start of routine to be executed when event happens (time = 08:31:25)

414 BEEP 1

;Ring

416
R 4

;Loop to 414
2.8 – MASSIVE DATA COMMANDS

Special non standard new commands are DISPlay, GRAFic, SAMPling, STATistic. These mnemonics are able to do multiple operations over a large amount of data. We can think to them as small embedded programs able to do great works. For example you can build a professional graphic chart, or calculate statistics over a large amount of data, or even test and record the values of any Plus4 address or port till 1450 times a second.

A key feature of massive data commands is that outputs of one are ready to be used as input for another one. For example :

· Output of SAMP is good as input parameters for STAT

· Output of STAT is good as input parameters for GRAF

This makes even easier their use inside a BAL program; you have only to care of start parameters, then many data chain automatically, with a fast perfect result.

By massive data commands you can record and see the trend of a signal or a value inside the Plus4, monitor a value of an external device, or what you want.
2.9 - PSEUDO COMMANDS (from Service-mode or StepRun-mode)

They are commands to be executed immediately. Their names always start by a dot “.”

(Warning:
All the pseudos able to modify large memory data (fill/delete/insert, for example: .DST, .DCC, etc.) in memory do not perform any RAM shifting, then they will overwrite possible codes/data existing in the affected locations.
[Color Blue means non-standard BAL commands]

Name
Operand
Description
Range of operands

.B
xxx
Transfers PC (Program Counter) to Label xxx. If operand is

“N” instead of a number, system sets PC to Label 255 but

does not perform any possibile self-configuring.
xxx=0…255 (default=255)

N (optional)

.BP
xxxx
Transfers PC to address xxxx
xxxx=0…8191

.DCC
nnnn…
Writes on memory the alpha-numerical string nnnn….
Length of nnnn: 1…80 chars.

.DCN
xxx…
Stores in the current register the value xxxx…
xxx… max 15 digits (positive)1..

.DCX
hhhh…
Writes in memory the hex string hhhh…
Length of hhhh: 2 …16 hex

.DST
xxx
Clears ($00) following xxx bytes of memory
xxx=1…8192

.LRZ
xx
Clears (=zero) current and following xx registers
xx=0…15 (default=0)

.PAS
xxx
Prints on screen xxx alpha-numerical characters
xxx=1…256 (default=52)

.PR
xx
Prints the contents of xx+1 registers
xx=0..15 (default=0)

.PS
xxx
Disassembles and prints on screen xxx+1 mnemonics of the program in memory, starting from current SC address
xxx=0…255 (default=8)

.PX
xxx
Prints from memory as hex and characters (like Plus/4’

monitor). If requested visualization exceeds memory amount,

then visualization continues from the start of memory. Different

colors are used to warn you, if this case happens.
x=1…256 (default=40)

.RMC
xxx
Loads xxx bytes from an I/O file to memory starting from

current SC address. System prompts current filename, user

can confirm or change it.
xxx=1…256 (default=256)

.TSL
xxx
Transfers SC (Service counter) to the address of label

xxx (SC=Label’ address)
xxx=0…255 (default=255)

.TSP
xxxx
Transfers SC to address xxxx (SC=xxxx)
xxx=0…8191

.WMC
xxx
Saves xxx bytes of memory (starting from SC) onto the
specified file. System prompts current filename, user can

confirm or change it. If filename is existing, then a further

confirm is requested before to overwrite it. Last overwritten file

can always be retrieved being backuped with the name

“MC-OLD”.
xxx=1…256 (default=256)

Non-standard new Pseudo commands:

.CON
xxxx
Converts xxxx value into DEC, HEX, and BIN
xxxx=(dec) or $xxxx=(hex)

.DEL
nnnnn…
Deletes file(s) named nnnnn on the on-line device (wildcards ? and * are accepted). After execution, system shows a message with the total number of scratched files.

.DEV
xx
Sets default I/O device (and initializes it)
xx=1 (tape) or 8…15 (disk)

.DIR

Shows directory: the disk (or partition) name, the list of MC-FILES and subdirectories of the on-line floppy disk drive (1541/1551/1581). Last line displays the amount of free blocks (and Kb.).

.IC

Shows all the allowed icons and their ID numbers

.LTB

Lists on screen all the LABels of the just run program, the total number of them, and the status of the Label-table (valid / not valid). You are allowed to perform an immediate rebuilding of it.

.LIS
xxx
Outputs on a real printer, the formatted listing of xxx mnemonics of the program in memory, starting from current SC address.
1…256

.MEM
xxxx
Sets memory size
xxxx=1…4096 (default=1910)

.MNE

Prints on screen the list of all BAL-language mnemonics, sorted alphabetically (hit ESC to stop it).

.PNT

Shows current pointers’ values and all other system variables and settings

.PAR
nnnn,xx,yyy
(Working only with a 1581 drive online)

Creates a new partition (sub-dir) named nnnn in the current disk, from current level (without any nesting limit).

New partition tracks range can not include system tracks (#40 if in the root; first track of partition range if in any subdir)
nnnn…= max 16 characters name
xx = First track of new partition (1…79 if inside root; proper range if inside a subdir)

yyy = Size (number of sectors) min: 120; max: 1560; must be a multiple of 40.

.PSE

Shows the list of all pseudo commands

.SAV
[N] [A]
Saves current BAL program in memory from address 0 to address where LABel 0 is located, only asking for a filename. Data for self-configuring setting are saved inside the program file. If parameter “N” is found, or if LAB 255 is located on an address lower than 24, selfconfiguring data are not saved. Just after loaded & run a program with self-config data, you can obtain its BalSys version number on Register #2 in the form xy (for example 25 stands for v. 2.5).
N to avoid saving of self-configuring data.

A to save all the memory currently set (then not only from begin to LAB 0)
(Options do not need brackets)

.SP1
xxxx
Sets value of Pointer 1
0…8191

.SP2
xxxx
Sets value of Pointer 2
0…8191

.SET

Sets/unsets debug and other BalSys settings
Please follow the incoming menu (see chapt. 2.21)

.SUB
nnnn…
(Working only with a 1581 drive online)

Moves to a subdirectory (partition) on a 1581 disk. If succeeded, system shows the directory of the new achieved partition.
“/” for root, “partition-name” for any existing subdir.

.SVS

Greetings message :)

.TSR
xxx
Transfers SC to register xxx
xxx=0…255 (default=0)

.?
nnnn
Help to nnnn mnemonic
nnnn=any legal mnemonic name

2.10 – MANUAL LOADING A PROGRAM FROM FILE
After a BALSYS reset (and when just turned it on), you are asked to hit a key to perform an autoloading, from the current device, of a BAL program file. You can enter a filename (wildcards */? enabled) or accept the prompt (see chapt. 1.1), or change mode (see chapt. 2.1) by entering C= S (Service mode), C= T (Step-run mode).

To perform a manual load from Service-mode, you have first to set the Pointer 1 to the memory address (loading address, normally 0) by using .TSP xxxx (where xxxx is the address), then enter .RMC xxx where xxx is the amount of bytes to load from file. You will be requested for a filename (starting by “MC-“; wildcards accepted). If you don’t remember the name of your files, just hit .DIR to list the disk directory filtered by *.USR files.

If the file is larger than 256 bytes, you must repeat the .RMC xxx command as many times as necessary (Pointer advancing is automatic).

2.11 – MANUAL RUN OF A PROGRAM
To run a BAL program in memory, first you have to set the PC (program counter) to the address of first BAL code you want process. This can be made by using pseudo-commands:

.B xxx = set PC to label xxx;

or

.BP yyyy = set PC to address yyyy. If you want to run a program starting from beginning, you must hit .B
255 (because label 255 is always the entry point) or simply .B

Then you can choose between:

· FREE RUNNING: simply press [CBM] R at any moment. This is the way to run a program, like a user can do.

OR

· STEP-RUN: Press [CBM] T. This is a debug mode that allows you to test step by step the execution. (Anyway at any time you could switch to FREE RUNNING mode simply by pressing [CBM] R).

* System will show next statement of the program; then, after a proper message, it will wait for one of the following programmer’ choices:
([Return]: Executes current BAL statement and loop to (*)

OR
([F1]: Skips (does not execute) current BAL statement and loop to (*);

OR

(Any pseudo command entry (to see / set / check memory, registers’s contents, etc,.);

OR

(Mode changing by usual [CBM] R (free run) / [CBM] S (Service – for insert / delete statements) / [CBM] E
 (error clear) / [CBM] X (reset);

OR

(List program by [CRSR]-[UP] / [CRSR]-[DOWN] / [CBM] [=];
As you can see Step-run mode is a powerful way to debug a just written program, by easy following the running’ path, seeing values and flags after any statement execution, and even insert/modify values and settings. Both the display and the panel can be enabled as desired, as well as the realtime Registers’s watching (see .SET pseudo; paragraph 2.21).

2.12 – EDITING A PROGRAM FILE
When a program is in memory (loaded or typed), you can edit it. This can be done only when SERVICE mode (C= S) is on. Main operations are:

a) INSERT new mnemonics: simply type the mnemonic and its operands, then [Return]. The new statement will be inserted in memory at the current address indicated by SC (Service Counter). All the other codes in memory will automatically shifted up, so that no datum was overwritten. SC will be automatically increased by 2, that is: it is ready to insert another statement.

b) ERASE existing statements: allign the SC to the statement to be erased, then press [F2]. All the following code in memory will automatically shift down to fill the gap.

c) MODIFY existing statements: to do modifications, please erase and re-enter the statements.

To navigate inside the program, you can utilize the bi-directional listing: press [CRSR]-[DOWN] to view next statement(s); press [CRSR]-[UP] to view previous one(s). Service Counter follows the movements. System attempts to list each code as a mnemonic statement; if it is not a legal command, then message M_ERR is output using a special font for that line, then listing continues. Labels statments are shown in reverse to be better acknowledged.

To view what mnemonic is currently pointed by the PC, hit [SHIFT]+[=] (that is the left-arrow key). For example this is necessary when you want to see which mnemonic is “under” the PC, after you’ve inserted a new statement, because in this case the PC is always aiming next address (anyway that mnemonic should not be erased, but shifted up in memory by inserting operation).

To skip to a specific location, please use one of the following pseudos:

· .TSP xxxx (Transfer Service Counter in order to Point to address xxxx)

· .TSL xxx (Trasnfer Service Counter to Label xxx)

· .TSR xxx (Transfer Service Counter to Register #xxx)

EDITING KEYS are normal alphabetical/numerical keys, the [DEL] key to backspace, the [ESC] key to erase current line. There is no cursor.

2.13 – COMMENTS INSIDE THE CODE
Even if B.A.L. is not a hi-level language considering that each mnemonic always occupies 2 bytes only, I made it able to accept comments inside the (machine) code. How is this possible? (Well: to insert a comment, till 253 characters long, you only have to hit in a separate line, a semicolon “;” then a space, and your comment. For example:

LAB 255
32

; This is a comment inside the code.

TL 1,1

70

PA 1,36

72
Comments will be saved with the program and then it will be automatically present inside the listing, wthout affecting the runcode processing.
· You only have to be warned if you use separate display during running. In this case long comments could corrupt the screen (but do not affect the program execution). To solve this, write shorter comments, or disable separate display during running.
2.14 – SAVING A PROGRAM FILE
You can perform the saving by two ways:

1) If you used to place a LAB 0 at the end of your program, simply type .SAV. All the BAL memory from address 0 to address of LAB 0 is saved onto a BAL file (you are asked for a name, “MC-…”). If before LAB 255 there are at least 24 bytes, current settings are saved too. Of course any constant or datum have to be passed to the program in that area. After self-configuring process, executed just after the run, program running can freely use that area: (in fact the important Register #0 is here!).

To force saving of a program without self-configurating data, hit “.SAV N” instead of “.SAV” alone.
Another parameter is possible to pass to .SAV; it is an “A” that stands for All. By it you can save the whole memory from 0 to current extend.
Examples:
.SAV N A will save all the memory with no self-configuring data.

.SAV A will save all the memory and (if succifient room) the self-configuring data

.SAV N will save current program without self-configuring data
2) The second way is to manually save an area of data as a program file. First you have to set the Service Counter to the start of memory to be saved (by using .TSP), then you only have to hit .WMC xxx (where xxx is the number of bytes to save). When prompted enter the filename starting by prefix “MC-“.

If you want to save further bytes appending them to previous ones, you can do it simply by typing further .WMC
 xxx how many times you want (SC automatically advances). Please observe the “multiple cards” icon on the I/O

device-card, flashing on the screen (bottom-right). If there is, then you can continue the appending operations. If

it disappears, then the file has been closed and you can not append anymore. Be sure to avoid to execute any
command between a .WMC and another one, in order to not break the appending chain operation.

If you wish to use a different drive or tape device (see icon at top left corner of screen), please utilize the pseudo .DEV x (where x is the device number; 1 for tape, 8…15 for disk drivers), before the saving operations.

If an already existing file with the same name is found, you are asked to confirm its overwriting: if yes, the previous file is backed up with the name “MC-OLD.USR” and your saved program acquires the name you entered (“USR” type) if you are using diskette. No backup will be made on cassette.

2.15 - TABLE OF COMMANDS (MNEMONICS)

(* stands for one of the possible condition-code values: 0, 1, 2, or 3)

(this color means non-standard B.A.L. mnemonics)

Mnemonics summary by class:
Pointers

API, SPI, TCP, TL, TRD

Registers

FD, FDS, LAX, LCR, LI, LPD, LR, LZ

Math

AR, ARI, DIV, MP, MPR, SR, SRI, RAND, STAT
Input

K, KAC, KC, KCS, KP, KPM, KS

Print

DFP, DRD, FFE, FFP, FFS, NL, NLF, P, PA, PD, PE, PEU, PI, PU, VT

Memory transf

MVC, MVI, PK, UPK

I/O

DISP, NAME, READ, RMC, SAMP, SHOW, TIME, WMC, WRIT
Branch

B, BN, BRA, BS, F, FN, LAB, POP, R, RN

Bit/nibbles

FI, FIC, NI, NIC, OI, OIC, SHL, SHR, TI, TIC,

Compare

CBC, CBI, CI, CIC, CR, CRI, TEST

Editing

DE1, DE2, DE3, ED, EDD, EDE

Background/IRQ

ALRM, SHOW, TIME, DISP
Various

HLT, KEP, KES, MDD, ON, WAIT, BEEP, ICON, IDEF, ;

LIST OF MNEMONICS (in alphabetical order):

Name
Ope-rands
Description
Range

Oper. 1
Range

Oper. 2
Di

0
Resulting

1
Condition

2
code

3

API
x,nnn
Pointer x = Pointer x + nnn
1…2
1…256
-
-
-
-

ALRM
x,nnn
During running of program, it

does perform a branch to LAB nnn if and when an event happens.

x=0 Cancel Alarm;

x=1 Event: Plus/4 RAM addressed by Pointer1 (2 bytes packed) equals to a value (specified by Register#0);

x=2 Event: Plus/4 RAM addressed by Pointer1 (2 bytes packed) has one or more set

bits as specified by a specified mask (specified by Register#0);

x=3 Event: timer achieves or exceeds a value (specified by Register #0)
0…3

0…255
-
-
Value specified

by Regi-

ster #0

was <0

and then was normalized
Value specified

by Regi-

ster #0

was >255 and then was normalized

AR
x,y
Register x = Register x + Register y
0…15
0…15
Res.=0
Res.<0
Res.>0
-

ARI
x,nn
Register x = Register x + nn
0…15
0…15
Res.=0
Res.<0
Res.>0
-

B
nnn
Branch to label nnn
0…255
-
-
-
-
-

B*
nnn
Branch to label nnn if Condition=*
0…255
-
-
-
-
-

BEEP
x
Signal sound

x=1 Low frequency long beep; x=2 High frequency short beep
1…2
-
-
-
-
-

BN*
nnn
Branch to label nnn if Condition<>*
0…255
-
-
-
-
-

BRA
nn
End a subroutine and return to call location skippping following nn bytes (0= no skip)
0…62
-
-
-
-
-

BS
nnn
Branch to subroutines starting from Lab nnn
0…255
-
-
-
-
-

CBC
nnn
Compare nnn bytes addressed by Pointer1 and Pointer2
1…256
-
Field on Pointer1 = Field on Pointer2
Field on Pointer1< Field on Pointer2
Field on Pointer1 > Field on Pointer2
-

CBI
x,’hh’
Compare the byte addressed by Pointer x with hex value ‘hh’
1…2
00…FF
Mem=’hh’
Mem<‘hh’
Mem>‘hh’
-

CI
nn,’h’
Compare the nibble nn of Register #0 with the hex value
‘h’
0…15
0…F
Nibble=‘h’
Nibble<‘h’
Nibble>‘h’
-

CIC
nn,’h’
Compare the nibble nn of Condition-Register with the hex value ‘h’ (see table 2.15 below)
0…15
0…F
Nibble=‘h’
Nibble<‘h’
Nibble>‘h’
-

CR
x,y
Compare Register x with Register y
0…15
0…15
Rx=Ry
Rx<Ry
Rx>Ry
-

CRI
x,nn
Compare Register x with value nn
0…15
0…15
Rx=nn
Rx<nn
Rx>nn
-

DE1
-
Define the European editing format (#.##0,00)
-
-
-
-
-
-

DE2
-
Define the English editing

format (#,##0.00)
-
-
-
-
-
-

DE3
-
Define the American editing format (#,###.00)
-
-
-
-
-
-

DFC
‘hh’
Define the filling (hex) character for editing format
20…FF
-
-
-
-
-

DFP
‘h’,y
Set printer’ page parameter ‘h’ with content of Register y
0…3
0…15
-
-
-
-

DISP
xx,yy
Show a message over the display.
Parameter xx:
(non zero values can be summed)
0 = Clears the display and turn off the scrolling (see below parameter 4)

1, 2, 3 = set background

 colors (green, red,
 gray)
4 = start text scrolling by background IRQ (only the lower line)
8 = message will be horizontal centered.
Values can be combinated (ORed). For example 10 means color red (2) + centering (8).
Parameter yy: set the LABel after that the text is stored in memory (max 229 characters; $00 means end of text)
System automatically splits the words of the text into the two lines (with exception of the scrolled text). Possible characters beyond the 26th are cut off from the lower line.
0…15
0…15

DIV
x,nn
Divide Register #0 by Register x, and Shift left the result of nn positions. The shifting is useful to preserve the fractioned part of result.
0…15
0…15
-
-
-
-

DRD
-
Invert print color (red/black) for next print operation (then it resets to standard color)
-
-
-

-

-

-

ED
nn,k
Print onto memory addressed
by Pointer 1, nn characters from Register #0 (k cyphers will be after comma)
0…15
0…3
Register

#0 = 0

Register

#0 < 0

Register

#0 > 0

-

EDD
nn
Print onto memory addressed
by Pointer 1, nn characters from Register #0 in date-using format (##.##.##)
0…15

Register

#0 = 0

Register

#0 < 0

Register

#0 > 0

-

EDE
nn,k
Print onto memory addressed
by Pointer 1, nn characters from Register #0 in default-using format (k cyphers will be after comma) -> [see mnemonics
DE1 DE2 DE3]
0…15

0…3
Register

#0 = 0
Register

#0 < 0
Register

#0 > 0

F
nn
Skip forward of nn bytes

0…62

(an even value)

-
-
-
-
-

F*
nn
Skip forward of nn bytes if

Condition=*

0…62

(an even value)
-
-
-
-
-

FD
nnn
Insert value nnn onto Register
#0
0…999
-
-

-
-
-

FDS
nnn
Insert value nnn onto Register #0 with shift left of previous content (3 positions)
0…999
-
Any

cypher

cut-off
-
-
Cut-off cypher(s)

FFE
1
Expel the paper sheet
1
-
-
-
-
-

FFP
1
Bore the allignment notch
1
-
-
-
-
-

FFS
1
Open the sheet inserting tub
1
-
-
-
-
-

FI
nn,’x’
Put the hex value x into nibble
nn onto Register #0
0…15
0…F
-
-
-
-

FIC
nn,’x’
Put the hex value x into nibble nn onto Condition-Register (see table 2.15 below)

0…15

0…F
-
-
-
-

FN*
nn
Skip forward of nn bytes if

Condition<>*
0…62

(an even value)
-
-
-
-
-

GRAF
x,y
Draw a graphic showing the content of 21 values in memory..

Pointer2 must be set with start address where these values are.

Flag x (for scaling graphic)

1 = Calculate the min/max values of data (only inside the 21 values range)

0 = Max and Min values are supplied with contents of Register# 2; and Register #3.

Flag y (graphic type):
0 = Vertical bars

1 = Line (simulation)
Note: Keep in mind that x flag does not perform the same calculation STAT 1,y does.
STAT command works over all the data and is addressed by Pointer1; GRAF works only on the 21 elements and is addressed by Pointer2.
Outputs of STAT execution are ready values for input to GRAF regarding: Register#0, Pointer2.

Register#2, Register#3 could be ready values for input if you run GRAF with Flag x = 0.
0…1
0…1
-
-
-
-

HLT
-
Stop execution (and enter onto ERROR condition)
This command is used too in order to insert a coupe of bytes inside a BAL program ($00 $00)
-
-
-
-
-
-

HT
nnn
Horizontal tabulation of printing on screen

0…179
-
-
-
-
-

ICON
xx,y
Set icon #xx to be shown on console light y (see tables

2.17 and 2.19 below).

y= 0 means all icons off

1…16
0…8
-
-
-
-

IDEF
xx,nn
Set a new pattern for an icon.

xx= Icon number (see table

2.17 below)

nn= Label addressing the bitmap definition area (8 bytes)
1…16
0…15
-
-
-
-

K
nn,k
Input a positive value and store it onto Register#0 (nn=max number of cyphers of which k are decimal)
0…15
0…3
Key S0 (Enter)
Key S1
Key S2
Key S3,

S5, or S6

KAC
n
Input an alphanumerical character and store it onto memory addressed by Pointer
#n (without echo on screen)
1…2
-
-
-
-
-

KC
nn,k
Input a positive value and store it onto Register#0 (nn=exact number of cyphers to enter, of which k must be after decimal point)
Example: KC 5,3 accepts 67,345
0…15
0…3
Key S0 (Enter)
Key S1
Key S2
Key S3,

S5, or S6

KCS
nn,k
Input a positive or negative value and store it onto Register#0 (nn=exact number of cyphers to enter, of which k must be after decimal point)

Example: KC 5,3 accepts -67,345

0…15
0…3
Key S0 (Enter)
Key S1
Key S2
Key S3,

S5, or S6

KEP
‘hh’
Enable program keys (see ta–

ble 2.3)

00…0F
-
-
-
-
-

KES
‘hh’
Enable [Return]-like keys (see ta

ble 2.18 below)
01…6F
-
-
-
-
-

KP
nnn
Input an alphanumerical string with printing (echo), without storing in memory.
1…256
-
Key S0 (Enter)
Key S1
Key S6
Key S2,

S3, or S5

KPM
x,nnn
Input of nnn characters with echo and storing in memory addressed by Pointer x
1…2
1…256
Key S0 (Enter)
Key S1
Key S6
Key S2,

S3, or S5

KS
nn,k
Input a positive/negative value and store it onto Register#0 (nn=max number of cyphers of which k are after decimal point)
0…15
0…3
Key S0 (Enter)
Key S1
Key S2
Key S3,

S5, or S6

LAB
nnn
Set a Label point inside a program (Lab 255 sets the entry point of program execution)
0…255
-
-
-
-
-

LAX
x
Retrieve value from auxiliary register to Register x (see mnemonic DIV)
0…15
-
-
-
-
-

LCR
x,y
Cross exchange values between Register x and Register y
0…15
0…15
-
-
-
-

LI
x,nn
Insert value nn onto Register x
0…15
0…15
-
-
-
-

LPD
k,y
Set Pointer k with content of Register y
1…2
0…15
-
-
-
-

LR
x,y
Register x = Register y
0…15
0…15
-
-
-
-

LZ
x,nn
Clear (set to zero) content of Register x and nn following Registers
0…15
0…15
-
-
-
-

MDD
x
Modify the second byte (operand[s]) of the following mnemonic with content of Register x
(if next mnemonic is a Label, then system perform an automatic rebuilt of Label-table)
0…15

Operand x OK
-
-
Operand x was >255

or <0 and was nor- malized

MP
x,nn
Multiply Register #0 with Register x (result goes on Register #0); result will be truncated of nn cyphers
0…15
0…15
-
-
-
-

MPR
x,nn
Multiply Register #0 with Register x (result goes on Register #0); result will be rounded and then truncated of nn cyphers
0…15
0…15
-
-
-
-

MVC
nnn
Transfer nnn bytes in memory from address set by pointer 2 to address set by Pointer 1
1…256
-
-
-
-
-

MVI
x,’hh’
Store the hex value ‘hh’ on memory addressed by Pointer
x

1…2
00…FF
-
-
-
-

FILE
x,nnn
Set filename for next I/O operation (prefix “MC-“ is added by system). String must finish with a $00.

x=0: Invisible filename. Value of nnn is ignored;

x=1 (or 2): String of filename is aimed by Pointer# 1 (or 2). Value of nnn is ignored;

x=3: String of filename is stored just after LABel nnn.
0…255
-
-
-

-
-

NI
nn,’h’
AND between hex value ‘h’ and nibble nn of Register #0
0…15
0…F
Result = 0
Result

<> 0

-
-

NIC
nn,’h’
AND between hex value ‘h’ and nibble nn of Condition Register (see table 2.16 below)
0…15
0…F
Result = 0
Result

<> 0
-
-

NL
‘h’,nn
Perform nn linefeed on printer device ‘h’
1…7
0…15
Near endpage achieved
Near endpage
not achieved
-
-

NLF
1,nnn
Perform nnn linefeeds on AFF device (printer)
1
0…255
-
-

-
-

OI
nn,’h’
OR between hex value ‘h’ and nibble nn of Register #0
0…15
0…F
Result = 0
Result

<> 0

-
-

OIC
nn,’h’
OR between hex value ‘h’ and nibble nn of Condition Register (see table 2.16)

0…15
0…F
Result = 0
Result

<> 0
-
-

ON
‘hh’
hh=00: Error red light on, and enter into Error status.
hh=01: Green light on

hh=02: Green light off
00…02
-
-
-
-
-

P
nn,k
Print nn cyphers of Register #0, of which k after the decimal

point

0…15
0…3
Reg.#0=0
Reg.#0<0
Reg.#0>0
-

PA
k,nnn
k=0: Reserved for future (now the same as x=1)

k=1 or k=2: Print nnn+1 characters from memory addressed by Pointer k

k=3: Print a string located at LABEL nnn, of any lenght, until a $00 value is met
0…3
1…255
-
-
-
-

PD
nn
Print nn cyphers of Register #0, using date-format (##.##.##)
0…15
0…3
Reg.#0=0
Reg.#0<0
Reg.#0>0
-

PE
nn,k
Print nn cyphers of Register #0, of which k after decimal point, using extended-format (#.###,## or #,###.##)
0…15
0…3
Reg.#0=0
Reg.#0<0
Reg.#0>0
-

PEU
nn,k
Print nn cyphers of Register #0, of which k after decimal point decimal, using extended-format (#.###,## or #,###.##) and coloring negative values red.
0…15
0…3
Reg.#0=0
Reg.#0<0
Reg.#0>0
-

PI
‘hh’
Print the hex character ‘hh’

00…FF
-
-
-
-
-

PI*
‘hh’
Print hex character ‘hh’ if

Condition=*
00…FF
-
-

-

-

-

PK
x,nn
Move nn ASCII characters from memory addressed by Pointer
2, and store them packed into Register x (BCD packing mode).

Example: ASCII string $383234 will be inserted as 824C inside Register
(C stands for + sign)
1…15
1…15
All characters were

numeric
At least

one cha-racter was unknown

(skipped)
At least

one cha-racter was hex (pack done)
-

POP
-
Pop-up one level of subroutine return-addresses stack
-
-
-
-
-
-

PU
nn,k
Print nn cyphers of Register #0, of which k after decimal point, and coloring negative values as red.
0…15

0…3
Reg.#0=0
Reg.#0<0
Reg.#0>0
-

R
nn
Skip back of nn bytes. Keep in mind that you have to count the 2 bytes of R mnemonic too.

0…62

(an even value)

-
-
-
-
-

R*
nn
Skip back of nn bytes if Condition=*
Keep in mind that you have to count the 2 bytes of R mnemonic too.
0…62

(an even value)
-
-
-
-
-

nnn
Generate a random value, between 0 and nnn, on Register# 0

0…255
-
Result=0

Result<>0
-

-

READ
nnn
Move to Register#0 the content of the Plus/4 memory RAM cell, which address is specified after LABEL nnn (packed into 2 hex bytes)

0…255
-
Value is

= 0

-
Value is

> 0
-

RMC
nnn
Read nnn bytes from current file) and store them on memory addressed by Pointer # 1. Filename can be specified by mnemonic FILE.
1…256

-
Nnn=total bytes on MC
Nnn>total bytes on MC
-
-

RN*
Nn
Skip back of nn bytes if Condition<>*
0…62

(an even value)
-
-
-
-
-

SAMP
xx,yy
Perform fast samplings and recording the values of a Plus4’ memory RAM cell or port.
Input:
xx = Register containing the frequency of sampling (how many samplings a second – Max is 700);
0 = means max sampling speed (about 1450/sec). It does not affect the Reg.#0
yy = Label after that is specified the address packed in 2 hex bytes of the cell/port to test;

Register#0 = number of samplings to perform;

Pointer#1 = Address of area in BAL memory where to store the values of the samplings.
Output:

Register#0 and Pointer#1 are
set as found in input.

In order to obtain better results system will blank the screen during the process.
0…15 (1…15 are Registers’ numbers)
0 is a flag for max speed
1…15
Last sampling result=0

Last sampling result<>0
-
-

SHL
x,nn
Shift left of nn cyphers inside

Register x

0…15
0…15
Any

cypher

cut-off
-
-
Cut-off cypher(s)

SHOW
x,nnn
Show by the 8 cursor lights the bits’ status of a specific Plus/4 location (which address is indicated by LAB nnn)

x=0: Clear all lights (and possible IRQ)

x=1: Set

x=2: Show by “Visa” icons the previous status, and by turning on the lights of current status;

x=3: Continuous updated show (IRQ). See paragraph 2.7

0…3
0…255
All the bits are zero (any light on)

-
One or more bits are 1
(when x = 2): Previous pattern had one or more bits on, while current pattern has not any bit on

SHR
x,nn
Shift right of nn cyphers inside

Register x
0…15
0…15
Any

cypher

cut-off
-
-
Cut-off cypher(s)

SPI
x,nnn
Move backward the pointer x of nnn bytes
1…2
1…256
-
-
-
-

SR
x,y
Register x = Register x – Register y
0…15
0…15
Result=0
Result<0
Result>0
-

SRI
x,nn
Register x = Register x – nn
0…15
0…15
Result=0
Result<0
Result>0
-

STAT
x,y
Process data in memory (1 byte sized each) and output statistics.

Input:

Reg.#0 = number of data

Pointer1 = Begin of data area

Pointer2 = Begin of reduced data area (if set)

x = Flag: 0= No operation
 1= calculate Sum,
 min, max;
 2= perform a Data
 reduction to nnn
 coherent values. The number of wanted reduced values (nnn) must be set inside
Register y (y = 4…15)

 3= Both

Output:

Reg.#0 = Number of data
 (same of input)
Reg.#1 = Sum

Reg.#2 = Max value

Reg.#3 = Min value
Reg.#y = Number of reduced

 Data (same of input)
Pointer2 = Begin address of reduced data area (same of input).
0…3
4…15
One or more values were found empty (=0)
Updated only when Flag x=1
No value was found null (=0)
Updated only when Flag x=1

TCP
-
Cross exchange between pointers values (Pointer1 = Pointer2; Pointer2 = Pointer1)
-
-
-
-
-
-

TEST
x,‘hh’
Compare value of Plus/4 RAM cell/port addressed by Pointer x (packed in 2 bytes) with hex value hh
1…2
00…FF

Memory = hh

Some set bits in hh result set

in Memory

too
All the set bits in hh are set in Memory

too
Any of previous cases

TI
nn,’h’
Test nibble nn of Register #0
with bitmask h (4 bits hex)
0…15
0…F
Any tested bit is set (=1)
Some tested bits are set (=1)
-
All the tested bits are set (=1)

TIME
x
Manage timer / clock:

x= 0 Reset timer to 0 and starts counting;
x= 1 Set timer (start value is taken from Register #0) and

starts timer;
x= 2 Current timer value is moved onto Register #0

x= 3 Show on display current time (upper line)
x= 4 Timer is continuously shown on display (IRQ) See par. 2.7
x= 5 Stop IRQ and clears timer showing on display (after choice 4)
0…5

Clock

value is

 = 0

(any

modification by IRQ mode)
-
Clock

value is

> 0

(any

modification by IRQ mode)
-

TIC
nn,’h’
Test nibble nn of Condition-Register with bitmask h (4 bits hex) (see table 2.16 below)
8…15
0…F
Any tested bit is set (=1)
Some tested bits are set (=1)
-
All the tested bits are set (=1)

TL
x,nnn
Pointer x = Label nnn
1…2
0…255
-
-
-
-

TRD
x,y
Pointer x = content of Register
y
1…2
0…15
-
-
-
-

UPK
nn,x
Unpack and move nn cyphers from Register x, to memory addressed by Pointer1 (converting BCD nibbles to
ASCII bytes). Sign is never transferred.
Example: Register#7 value +256
will be ASCII string $323536 in
memory by processing UPK 3,7
1…16
0…15
-
-
-
-

VT
1,nnn
Vertical tabulation on paper
1
0…255
Near endpage achieved
Near endpage not achieved
-
-

WAIT
-
Suspend programm running

and wait for [Return] (to continue) or a [C=key] to change mode.
-
-
-
-
-
-

WRIT
nnn
Poke the value of Register #0 into Plus/4 memory RAM cell or port, which address is specified after LAB nnn (2 bytes packed)
0…255
-
Value to

be poked

is = 0
-
Value to

be poked

is > 0

Value to

be poked was >255

or <0 and was norma-lized

WMC
nnn
Write nnn bytes to current file by reading from memory addressed by Pointer #2. Filename can be specified by mnemonic NAME.

If filename is existing, then a
confirm is requested by user

before to overwrite it. Last overwritten file can always be retrieved being backuped with the name “MC-OLD”.
1…256
-
Nnn=total bytes on MC
Nnn>total bytes on MC
-
-

XI
nn,’h’
XOR between hex value ‘h’ and nibble nn of Register #0
0…15
0…F
Result = 0
Result

<> 0
-
-

XIC
nn,’h’
XOR between hex value ‘h’ and nibble nn of Condition Register (see table 2.16)
0…15
0…F
Result = 0
Result

<> 0
-
-

;
kkkk

Insert the comment “kkkk….” inside the code
any ASCII string (lenght cannot be freater than 252)
-
-
-
-
-

2.16 – Map of nibbles of Condition-Register:

CONDITION REGISTER

Nibble
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Content

Programma-

ble 4 bits
Console

white lights status
(1=on) see table 2.19

Program keys set memory
Last Enter-like

key pressed
Near end-of page memory

I/O functions from peripherals unities

For utilizations with mnemonics CIC, FIC, KEP, NIC, OIC, TIC, XIC

2.17 -
Table of icons for the 8 programmable console lights:

(lamps status is mapped at nibbles 12, 13 of Condition-Register – see table 2.15)

Number
Icon draw
ASCII codee

1
Space (any icon)
32

2
Filled box
160

3
Visa sign
162

4
Exclamation mark
33

5
Question mark
63

6
Commodore mark
64

7
Up arrow
30

8
Electric lamp
69

9
Factory
102

10
Denied signal
125

11
Ball
119

12
House
176

13
Flash
174

14
Danger signal
165

15
Hammer
173

16
Documents
126

Icons can be managed by mnemonics ICON, IDEF or pseudo .IC

2.18 - Table of [RETURN]-like keys (to finish an input):

(To enable a pattern use KES mnemonic)

Keys (
 --
F6
F5
--
F3
F2
F1
Returnr

Bits (
7
6
5
4
3
2
1
0

First nibble
Second nibble

Examples:

Result: $01 (KES ‘01’)

X
Only [Return] key is enabled

Result: $02 (KES ‘02’)

X

Only [F1] key is enabled

Result: $21 (KES ‘21’)

X

X
Enabled keys: [Return], [F5]

Result: $0C (KES ‘0C’)

X
X

Enabled keys: [F2], [F3]

Last [RETURN]-like pressed key is stored in nibble 9 of Condition-Register (see table 2.15).

2.19 - Table of programmable console lights:

CONDITION REGISTER

Nibble
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

(Content

Programma-

ble 4 bits
Console

white lights status

(1=on)

Program keys set memory
Last Enter-like

key pressed
Near end-of page memory

I/O functions from peripherals unities

Bits (
7
6
5
4
3
2
1
0

Lamp No. (location)
1
2
3
4
5
6
7
8

Use bit value with mnemonics FIC, NIC, OIC, TIC, XIC.

Use location value with mnemonic ICON (for example: ICON 14,2 = sets icon 14 (danger signal) on 2nd light from left [bit 6])
2.20 - PROGRAMMING NOTES:

How to write a program:

· Enter into SERVICE-mode (C= S);

· Locate the Service Counter (SC) to the starting point you wish (.TSP xxxx). If you plan to use Registers (as it is possible), you must reserve memory room, avoiding ro write code over the memory used by them. This is done simply by starting code inserting from an upper address. Remember that each register employs 8 bytes. For example, if you plan to use Registers #0, #1, #2 you have to skip 8 x 3 = 24 bytes and start inputing code from address 24, as here shown:

Register #:
locations:
0 0…7

1 8…15

2 16…23

· Insert as first mnemonic “LAB 255”. This tells the O.S. where the code starts, being the entry address. All data before it are identified as non-executable code (registers or data). When the user loads the program and runs it, the first code to be executed is that one just after LAB 255.

· Remember that each mnemonic and its operands are always stored into 2 bytes of memory. All the mnemonics do this, even the ones that have no operand (i.e. DRD, HLT, DE2).

· Mnemonics have to be stored in memory starting from even-address numbers, that is:

TL 1,1

34
is OK, because 34 is an even-number

TL 1,1

35
is wrong, because 35 is an odd-number
An automatic ajustment will correct any attempt to insert statements from odd-numbers addresses, with the lone exception of HLT mnemonic. Program listing (with .PS pseudo for example) can anyway be requested from odd-numbers addresses, but the system could give you unpredictable outputs (but anyway it does not crash).

· Input Mnemonics or Data. When inputing mnemonics (being in SERVICE-mode), the SC is automatically increased so that you have not to care of it. Inserting mode is always enabled, so that if you input a new mnemonic over existing code, the existing codes are shifted up in merory, and your new mnemonic is inserted there, i.e.:

If you have this segment already in memory:

LAB 255
32

TL 1,1

34

PA 1,36

36

and you want to insert a new mnemonic (say API 1,10) between LAB 255 and TL 1,1 you just have to plot to address 34 (.TSP 34) and input API 1,10. Result will be:

LAB 255
32

API 1,10
34

TL 1,1

36

PA 1,36

38

Be warned that only mnemonic inputing causes memory shifting. If you insert data by pseudo commands (i.e. .DCC or .DCX) existing data under the affected locations are overwritten.

Pay attention when insert new statements that possible skip-references are not updated, then if the area where you insert a new mnemonic is to be skip over by a skip-mnemonic (i.e. F or RN) you have to manually adjust it. See example:

LAB 255
32

F 4

34

;skips next 4 bytes

TL 1,1

36

LAB 10

38

PA 1,36

40

Now figure you insert a new menmonic (say DE1) before PA 1,36; result will be:

LAB 255
32

F 4

34

;skips next 4 bytes

TL 1,1

36

LAB 10

38

DE1

40

PA 1,36

42

That is wrong because we wanted to aim the PA 1,36 mnemonic with the skip from address 34. Well: you must adjust F 4 to F 6: result will be:

LAB 255
32

F 6

34

;skips next 6 bytes

TL 1,1

36

LAB 10

38

DE1

40

PA 1,36

42

· Deleting of a statement is done by [F2]-key pressing. All the remaining code is automatically shift down in memory to fill the gap i.e.

LAB 255
32

TL 1,1

34

PA 1,36

36

If you want to delete menmonic “TL 1,1”, just locate the SC to address 34 (.TSP 34) and press [F2]. Result will be:

LAB 255
32

PA 1,36

34

Notice that mnemonic PA 1,36 has assumed the address 34 instead of 36.

Shifting down could need manual adjustmensts of possible skips references, as discussed above for shifting-up.

· Inserting LABels inside the program is often a good way to not care about skips, or in order to mark the begins of data areas. Excepting LAB 255, any other number can be used as label number (0…254). When you insert a new label, system automatically checks for a possible already existing label with the same number in memory, warning you if found (anyway you can ignore it and continue).This helps to avoid duplications (anyway debug tools allows further ways to detect double labels, see following paragraph .SET pseudo info).

Remember that if you want to use .SAV pseudo, to automatically save the program onto a file (and its config settings), you have to put LAB 0 to signal the end point of code area to be saved.

2.21 - DEBUGGING TOOLS

When not in RUN-mode, system is on a debug-like status, and you could use all the tools at disposal, in particular the pseudo commands, to test memory, insert data, change pointers, etc. All these pseudo commands (starting by a dot “.”, see pseudo table 2.9) are available in STEPRUN-mode too, so that you can test (and modify) the values even during any step of processing.

Furthermore there are the following tools:

.SET pseudo command. When you hit .SET [Return], system replies showing a menu of settings with these meanings:

L
Enable/Disable duplicated-labels warning on diplay, while building labels table. See chapt. 2.22 to learn how to operate and which choices you have at disposal (default = disabled)

M
Shows debugging messages during inputing and running (default = disabled)

R
Enable/Disables RAM shifting after insert/delete a statement (default = enabled)

A
RAM size = 100 bytes only (from 0 to 99) (default = off)

R
Realtime watch Registers’ contents (from #0 to #7) and pointers. If on, this feature allows you to watch during run-time, the modifications of values of first 8 Registers and both the pointers. Note that if a Register-block does contain non-BCD codes, its content is shown as final 3 hex pairs (by using different colors). Run speed results slowed. (default = off)

E
Flag to allow if in case of Error-status entering, system has to automatically do a [CLEAR] without user hitting of [CBM]-[E]. If this feature is on, you can not view the error messages. (default = off), but only hear the beep.

C
When an I/O error is detected during an I/O (MC-CARD file) operation, system attempts again to redo it. This feature is useful if you are using 64HDD, but could cause a neverending loop. (default = on)

D
Enables a separate display with many self-updating programming info. This frees the normal display to show only error and system messages. The separate display is able to show in realtime, the current executable mnemonic (or comment), the Stack level [S], and Alarm status, in addition of the normal info (Program counter [PC], Service Counter [SC], Condition code [C]). (default = on but notice that the visualization is subdued to [N] flag [see next option]).

N
Disables all the displays. This speeds up the execution of BAL program. (Error messages still remain enabled). (default = on)

ESC
Exits from menu and updates file PREFERENCES.BAL (see following note).

Press the key(s) (one or more) you want to set/reset any of the above features. Each time you set/reset a flag, you are informed of current global updated status of all settings.

If you press any key, different than previous listed ones, a new additional menu is shown, titled “ADVANCED SETTINGS”. These are the further chances:

 *
Stops or Restarts the running of ALARM routine working in background (IRQ). Be awared that this switch is able only to stop or restart an already launched service. If you start the IRQ routine without a previous execution of mnemonic ALRM, system will attempt to process it without parameters, with unpredictable results. Be informed that a run from LAB 255 (.B 255 or automatic run just after load) will clear any IRQ line.
H
Stops or Restarts the running of SHOW routine working in background (IRQ). If you start the IRQ routine without a previous execution of mnemonic SHOW 3, system will process it with address $0000 because it was not supplied with any address. Be informed that a run from LAB 255 (.B 255 or automatic run just after load) will clear any IRQ line.

T
Stops or Restarts the running of TIMER routine working in background (IRQ). Be awared that this switch is able only to stop or restart an already launched service. If you start the IRQ routine without a previous execution of mnemonic TIME 4, system will attempt to process it without parameters then displaying the current timer value. Be informed that a run from LAB 255 (.B 255 or automatic run just after load) will clear any IRQ line.
K
Stops or Restarts the running of SCROLLING TEXT routine working in background (IRQ). Be awared that this switch is able only to stop or restart an already launched service. If you start the IRQ routine without a previous execution of mnemonic DISP 4,x system will attempt to process it without parameters then displaying unpredictable results. Be informed that a run from LAB 255 (.B 255 or automatic run just after load) will clear any IRQ line.

X
Exits from .SET menu without updating the PREFERENCES.BAL file.

Pay attention that when you see the Advanced Setting menu, you have to press any key in order to return to standard menu, before you choose one of its operating keys. In other hand, only while standard menu is shown system does accept the commands.

An important feature of .SET pseudo is its ability to update the PREFERENCES.BAL file (when exit hitting ESC). The file stores: current settings, current memory amount, current I/O device, and last filename used. Next time you run BalSys (or even if you reset it, by a [CBM]-[X]) system will use these data to self configurate.

[?]-key while in Error-status. When [ERR]-light is turned on in the console, system is in Errror Status. The display shows the description of the error. Before clearing it with [CBM]-[E], you may press [?] + [Return] to view more info, like values of pointers, stack’ deep, enabled keys, IRQs status’, and the mnemonic whose execution caused the error. The error status still remains, until you clear it by [CBM]-[E], or change mode.

.PSE pseudo command Lists all the pseudos supported by BAL-SYSTEM

.MNE pseudo command Lists all the mnemonics of BAL-SYS language (including non standard ones), sorted alphabetically. You can stop the listing by pressing [ESC].

.? pseudo command. This is the help to any mnemonic (hit .? xxxx where xxxx is the mnemonic name). By typing it you can easy know:

a) if that mnemonic exists (;
b) what is its binary code in memory;

c) format of operands/data requested by it.

d) if the data (operands and/or values) fits only the second byte of code, or a part of the first byte too;

Furthermore if the mnemonic has two forms (absolute and conditioned), you are informed about the 2 forms with their separate values. For example: F mnemonic are shown as F* (conditioned skip – F0, F1, F2, F3 according to Condition-Register value), and then as F alone (unconditioned skip).
WAIT mnemonic. It is a breakpoint-like instruction. When RUN process meets this mnemonic, execution is paused and on display you’ll see a message telling you “WAIT AT: xxxx” where xxxx is the address in memory where processing is arrived. You can press [Return] to continue running by executing next mnemonic, or press C=+key to switch to another mode (SERVICE / STEPRUN / CLEAR / RESET).

.LIS pseudo command Allows you to have a list of your program, on a real serial printer (device #4).

.LTB pseudo command Allows you to list on screen all the LABels used by last program run. You are allowed to know if a label was defined, and in which address it resides. Furthermore if the Labels-list is valid or not. At last system will ask you if you want to rebuild it: hit Y and labels-table will be immediately recalculated. (See next paragraph).
2.22 – LABELS’ TABLE
In order to speed up the running of a BAL program, the system compiles a table of the labels that are used by the program in memory. This is performed automatically before first run, and each time a later modification affects the code.
The user may not even notice it, being automatic and fast, he may only see a blinking system message during this processing.

The programmer could make a good use of it too, in order to check if there are Labels that are defined twice. To do this, please set the warning-option by .SET L. When a duplicate label is found (while labels-table is going to build), a proper message is shown on the display, waiting for:

· [Return]
to continue Labels-table compiling (label will maintain, as address value, its previous value). In most cases this is the right way, if a new program was loaded overlaying a previous one which was longer than the current one.

· [Shift]-[Return]
to continue Label-table compiling (but with updating the address value with that one just found);

· [S]

to stop the processing and enter into Service mode (in order to edit the program);

· [?]

to view what is the Label affected by the duplication, and at which addresses are

the double occurences (after seen, you are sent back to input your choice).

Be informed that at anytime the pseudo .LTB can be invoked to view on screen a list of all the Labels used by last run program. In this way, programmer can know what labels are free, where an used label resides, etc.

System knows when any operation affects the content of Labels-table, and consequentially resets the validity flag (without to perform the recalculation, in order to avoid slowling down). But as soon as a pseudo-command or a run-launch needs a LAB value, an immediate rebuilding is automatically performed.

You can even force a Labels-table rebuilding by pseudo command .LTB (see paragraph 2.22): after listing output, if validity flag is set as “not valid”, system will ask you for an immediate rebuilding. Answering Y will perform the recal–culation process, after it the updated Labels-table is relisted.

When warning option for duplicate labels is off (.SET L), system will not warn in case of a double label is found: in this case it simply defaults to keep valid the first occourence of it.

2.23 – TIPS AND TRICKS (for expert users ()

a) Pseudo commands with a 3 characters name length, can be typed with their whole name (For example .DIR can be typed .DIRECTORY; .MEM 1000 can be typed .MEMORY 1000)

b) Many pseudo commands have a default value, then often it is not necessary to write it. See Pseudo commands table to know the default for any pseudo.

c) When you do a reset by C= X, the previous content of memory is not erased, then you easy could re-manage it (but the memory size could have been resized by PREFERENCES.BAL file)

d) When you save a BAL file (program or data), with replacing of a previous version of it (with the same filename), the previous version is automatically backed up with the name MC-OLD. This allows you to restore it, with an easy rename operation.

e) If .DIR pseudo meets a non-closed file during directory’ scan, system will prompt you with message “Disk needs a validating, perform now?” if you reply Y [Return] then the disk validating is processed.

f) When you resize the memory amount (by .MEM), possible data or codes in memory are not modified by the operation. Even if you reduce the memory amount, the previous content could be resumed simply by enlarging it again by another .MEM pseudo execution. In this case you only have to pay attention to possible RAM-shiftings performed after the reducing, (as effect of inserting/deleting mnemonics). In fact if system made a RAM-shifting after the memory reduction, it did not apply it to the external amount of memory. In this case, if resumed, a program could be not valid.

g) Even if it is not allowed to insert mnemonics on odd-number addresses, you do can (for curiosity) perform a listing starting from an odd-number address (.TSP xxx, then .PS yyy). In this way you can see an interesting listing with various combinations of mnemonics and operands. System will not crash if an unknown code is found: simply it will show “M_ERR” message in a special font, then listing continues.

ADVANCED FAQ:

h) How to clear memory areas: simply use the .DST pseudo, (max 256 bytes a time). Area will be erased and no RAM-shifting is performed.
i) How to speed up processing: to reduce time of RAM shifting while insert/delete mnemonics, you simply can reduce the BAL RAM extent by .MEM pseudo command. Using a proper memory size is appreciated by inserting comments, that is the longer operation during editing.

Another way could be to set emulator speed to higher timing. Under Yape for example, you can well run BalSys at 200% speed.

Third way is to write inside BAL program the statements for screen blanking. You only have to set/clear the bit 4 of $FF06. It can easy made by .WRIT mnemonic.
j) How to insert new data inside an area of memory: use the automatic INSERT mode of mnemonics: first set the SC in the exact address (by .TSP xxx) , then enter HLT [Return] as many times you need (each HLT will insert 2 bytes: $00 $00). The RAM-shifting is performed, then no datum is overwritten. You could even do this from an odd-number address (HLT is an exception to automatic address correction).

k) How to re-align the SC to an even number address. Typically after entered data or a string (by .DCC or .DCX), you could finish in an odd-number address. Hit .TSP xxxx (where xxxx is next even-number address). Anyway, when inserting new statements, system performs automatic address correction if needed, for any mnemonic but HLT.

l) Why system detected many duplicated LAB 32, while I inserted only one? This is a special case that occours only to “LAB 32”, a statement that is binary coded as $3F $20. Since inside BalSys memory, all is coded as hexadecimal numbers, if you stored strings containing the characters “? “ (question mark and space), they are coded as $3F $20. The codes are equals to the LAB 32 packed codes and then could be acknowledged as a label too. Don’t use 32 as a LAB number to avoid the problem.

m) How can I pack a characters’ string to be used out a Register? The case occurs when you have to pack an ASCII string (coming from keyboard input, for example) in order to use it with one of new non standard mnemonics (for example READ, WRIT or SHOW). Since these mnemonics need a packed address of Plus4’ memory, you will perform PK x,yy mnemonic; then your string is packed into hexedecimal couples inside Register# “x” and all goes as well.
A problem appears when you want to extract the packed data (hex bytes) from register# “x” in order to move them (by MOV nnn mnemonic) onto a specific memory area. As you remember, the last nibble of a Register does always contain the sign ($D for negative; $C for positive); if you take away the last byte (2 nibbles) of a register you should take the sign nibble too. (For example: “FFD2” is packed inside a Register as $0F FD 2C, [C is the sign]). To solve this problem you simply have to add one dummy character to the string to be packed (for example: “FFD2” could become “FFD2A”) and pack the string with it (thus in the example 5 characters, like PK x,5). When you move the packed bytes from register, simply ignore the last one, because it contains only the dummy character and the sign. (In the example: if register contains: $FF $D2 $AC; MOV 2 that is $FF $D2).

n) How can I modify the self-configuring data of a program? Load the program in memory. To change the environment settings, change the settings (by .DEV, .MEM, .NAME), then enter .SET pseudo (where you can change other settings). When done, press X. Then hit .SAV and when prompted if overwrite existing filename, reply Y [Return]
o) How can I to stop a program while it’s running? Keep pressed the [STOP] key until the mode indicator on bottom line highlights SERVICE. The way does not work if BalSys is waiting for a keyboard input (with [KEYB] console light on. If this is the case, first press [Return] to overcome the input, then press the [STOP] key.

p) Is it allowed to accept an user input without to echo it on screen? Yes you can use KAC mnemonic that accepts one character a time, without echo. Remember that this type of input does not need a [Return] to finish inputing. Other more hi-level feature is use the Program-Keys (see paragraphs 1.2 and 2.3).
q) For my application, I need more than 6 Return-like keys, how can solve this? You can take advantage from the Program-keys. In this way you have further 4 choises. Use KEP mnemonic to enable them and then TIC to test whose was pressed (see paragraphs 1.2 and 2.3).
r) How could I modify the default settings of BalSys environment? The settings of BalSys environment could be personalized by file PREFERENCES.BAL. To do this simply modify the desired values (me–mory amount, I/O device, etc.) then enter .SET pseudo command. Here you can set many further parameters and flags. When finished, hit [ESC] and preference file will be created/updated (on the contrary hit X to apply the settings only to current session).

s) I have to pack an hex string onto Register #0, but mnemonic PK does not accept 0 as first operand. Insert in your program PK 1,x (x is the number of bytes you want to pack), then set SC to address where PK was entered, by a TSP xxx. Type now .PX 2 to view hex codes, the first 4 values are the machine code of PK 1,x. Set once again by TSP xxx the SC to address where PK is. Now you only have to reenter by .DCX the same 4 hex values but changing on 3rd nibble the value 1 with a 0.

t) I want to insert a dummy code for future expansion: is existing a NOP-like mnemonic? There is no BAL mnemonic able to do no-operation, but you can use for example F 0 (that means skip 0 bytes) to occupy 2 bytes that will not process.

u) My program has constant values on Registers #0 and 1 that I want to save, but when I save the program, these registers are overwritten by self-configuring data. You can disable selfconfig saving option by typing .SAV N when you save your program.

v) How can I debug my program, running it without perform its self-configuring? After loaded, do not run it by [Enter]. On the contrary type [CBM] S. When in Service mode, hit “.B N” [Return]: system will align to Label 255 and set PC to next mnemonic. Then start free running by [CBM] R or step-running by [CBM] T.

w) I set a memory amount, but memory icon shows a byte less than what I entered The icon shows the higher memory address. If you set 1000 bytes of memory, fist byte is address 0, last byte is address 999 (as shown).
x) I want to save more memory than BAL program, beyond the LAB 0 signal, could I use .SAV pseudo? Yes, you can. Simply type “.SAV A”. The “A” flag stands for ALL then the whole memory amount you are using, is saved on file together. Be warned that 8K of BAL memory will create a 33 blocks lenght file (that is 32 animated cards). If furthermore you want to save the first 3 Registers contents, add “N” flag to the command (N = NoSelfConfig).
y) I’ve faced a system crash but I cannot supply SVS with more info because screen is not readable Ach! (Please press [F4] and screen texts should redo readable, then report the problem, thank you.
2.24 - EXAMPLE OF A BAL PROGRAMM

POWER CALCULATOR (by S_/S 2003)

We plan:
Register#0 for calcolus’s and result

Register#1 number to be powered

Register#2 power

Register#3 (future expansions :-)

Address

Mnemonic

Comments

…..

Room for 4 Registers 0, 1, 2, 3 (4 x 8 = 32 bytes; addresses: 0…31)

32

LAB 255

-------------------- Entry point (start of executing)
34

TL 1,1

Pointer1 aims Label 1 (Messages area)

36

PA 1,36

Print 36 characters from address pointed by Pointer1 (clear, home and title)

38

LAB 100

------------------------ Main cycle

40

TL 1,2

Pointer1 aims Label2

42

PA 1,13

Print 13 characters from address pointed by Pointer1 (request message for number)

44

K 5,0

Accepts input of max 5 number-characters (any decimal, any negative). They are stored as value

into Register #0.

46

LR 1,0

Copy value of Register #0 onto Register #1 (Number to be powered)

48

API 1,13

Advances Pointer1 by 13 bytes (P1=P1+13)

50

PA 1,13

Print 13 characters from address pointed by Pointer1 (request for power - message)

52

K 3,0

Accept input of max 3 number-characters (any decimal, any negative). They are stored as

value into Register #0.

54

LR 2,0

Copy value of Register #0 into Register #2 (Power)

56

CRI 2,0

Compare Register #2 with “0” (this affects the “Condition-code”)

58

FN0 4

If Condition-code is not zero (power<>0) then skip forward next 4 bytes

60

FD 1

Let Register #0 = 1 (set result as 1)

62

B 102

Goto LAB 102 (Print result)

64

CRI 2,1

Compare Register #2 with “1” (power is 1?)

66

FN0 4

If not, then skip forward next 4 bytes (Condition-code is 0 when values are equals, after CRI)

68

LR 0,1

If yes, Register #0 (result) will be loaded by Register #1 (number)

70

B 102

Goto LAB 102 (Print result)

72 LAB 103

------------------------ Processing

74

LR 0,1

Let Register #0 = Register #1

76

MP 1,0

Multiply Register #0 for Register #1, with no (,0) shifting of result. Result goes into Register

#0 (Register #0 = Register #0 * Register #1)

78

SRI 2,1

Subtract “1” from Register #2 (power)

80

CRI 2,1

Compare Register #2 with “1” (power = 1?)

82

RN0 8

If not then skip backward 8 bytes ((address 76)

84 LAB 102

------------------------- Print result

86

API 1,13

Advance Pointer1 by 13 bytes (P1=P1+13)

88

PA 1,12

Print 12 characters from address aimed by Pointer1

90

DE1

Enable European using for numbers (#.##0,00)
92

PE 9,0

Print using of value of Register #0 (9 total cyphers, 0 decimal)

94

API 1,12

Advance Pointer1 by 12 bytes (P1=P1+12)

96

PA 1,20

Print 20 characters from address pointed by Pointer1

98

KAC 2

Accept 1 character from keyboard without to print it and storing it on address aimed by

Pointer2
(0 in this case)

100

CBI 2,’59’

Was it “Y”? (ASCII code 56) Compares byte aimed by Pointer2 with $59 (“Y”)

102

API 1,20

Advances Pointer1 by 20 bytes (P1=P1+20)

104

B0 100

If Condition–code is 0 then branch to LAB 100 (Condition-code was affected by CBI2,’59’

execution; any modification is never done by API)

106

PA 1,6

Else print 6 characters from address aimed by Pointer1 (bye message)

108

WAIT

End of program

110

LAB 1

--------------------------- Titles messages area

(you can see them by .PAS or .PX)

148

LAB 2

--------------------------- Other messages area

(you can see them by .PAS or .PX)

214

LAB 0

--------------------------- End of code

(only useful for automatic saving by .SAV mnemonic)

3 – ERROR MESSAGES
 Number
Error message on display
Description

0
MNEMONIC [HLT] OR [ON]
Running has met one of the halting mnemonics. Press [?] to know where on memory it

stays.

1
MISSING LABEL 255
Label 255 is not present inside the program in memory. Since it determines the entry point of the running, the program cannot be executed.

2
LABEL nnn NOT FOUND
The mnemonic or pseudo command refers to a Label that does not exist inside the program (nnn is shown as LABel’ number). Check Labels-table by .LTB pseudo.

3
OUT-RANGE VALUE
The value you’ve supplied with the mnemonic or with the pseudo command is outer the allowed range. Press [?] to know what mnemonic caused this error and other settings.

4
UNKNOWN PSEUDO
The name of the pseudo command you’ve just typed is wrong. (Do not insert space between the dot and the pseudo-name. On the contrary do insert a space between pseudo-name and the possible operand). Hit .PSE to show a list of all legal pseudo commands.

5
MISSING DATUM
The mnemonic or the pseudo needs a datum (or operand) that you have not supplied (insert a space between pseudo/mnemonic and the operand).

6
DISABLED FUNCT.KEY
The function key you’ve pressed is not enabled on BalSys. Remember that only F1, F2, F3, F5, F6 are enabled (to accomplish BAL machines emulation.). F8/Help key is programmed to re-enable the screen in case of a crash causing garbage; it works only when system hangs (crash).

7
ODD NUMBER OF DATA
The number of data must be even (typically when requested couples of hex values) For example: pesudo .DCX hhhh (number of “h” must be even)

8
NO REGISTER POINTED
Before to execute the pseudo you’ve just entered, you must aim the SC to one register in memory. Registers use areas of 8 bytes of memory (for example 0…7 is belonging to Register#0, 16…23 is belonging to Register#2). If you want to execute a pseudo affecting registers, please set Service Counter to the begin of one of them (by .TSR, or .TSP or using bidir listing)

9
NOT HEX CHAR(S)
One (or more) character is not a valid hexadecimal cipher (0…9 or A…F) then it can not be managed for that mnemonic/pseudo (typically involving pack operations: show as hex the Register’ memory bytes by .PX pseudo)

10
MC-FILE NOT READY
A problem happens by opening the USR file you specified as file-name for the requested I/O operation. Try .DIR pseudo to view the list of existing BAL files on your disk. Check also the device number, as shown in the icon at top left of screen. (Device number can be changed by .DEV pseudo; every time you set/reset it, system initializes the device).

11
NOT ENOUGH DATA ON MC
“.RMC xxx” pseudo or “RMC xxx” mnemonic have requested to load xxx bytes from MC-FILE, but the file contains less data than xxx.

12
WRITE ERROR
The saving operation on I/O device went into error. Possible causes can be: device not ready, disk not ready, disk protect on, etc. Check the device number, as shown in the icon at top left of screen. (Device number can be changed by .DEV pseudo; every time you set/reset it, system initializes the device).

In case you’re using 64HDD connection, this problem could often happen: please use pseudo .SET choice E, to obtain an automatic redo when error.

13
POINTER OUT OF MEMORY
Pointer 1 or Pointer 2 attempted to be set beyond the top memory border. Type [?] to see current PC and current values of pointers.

14
UNKNOWN DEVICE
As standard I/O device, you can set: 1 for tape, or 8, 9, …15 for disk drives.

15
NO DRIVE CONNECTED
You attempted to do a disk operation while no disk-drive is logical connected (devices no. 8, 9, …15). Be informed that .DIR pseudo only works with disk drives.

16
NON-NUMERIC CHAR
System was requested to perform a math operation or a numerical convertion, in a memory area where there is a non-numerical character. For example you cannot pack an ASCII string if in its area was stored an alphabetic letter different than A…F

17
READ ERROR
The reading operation from MC-FILE went into error. Possible causes can be: device not ready, file corruption, device fault. Check the device number, as shown in the icon at top left of screen. (Device number can be changed by .DEV pseudo; every time you set/reset it, system initializes the device).

In case you’re using 64HDD connection, this problem could often happen: please use pseudo .SET E to obtain an automatic redo when error.

18
NOT A MNEMONIC
The typed word is not a legal mnemonic name. Retype “.?” pseudo, inserting a space betwen “?” and the name.

19
VALUE MUST BE EVEN
The requested operand cannot be an odd number. (For example to set a different size of memory you must supply it with an even value).

20
UNKNOWN STATEMENT
The code aimed by PC is not acknowledged as a valid BAL command code then it cannot process it. Since during program writing both syntax and range of operands are always checked, this error appears when PC is wrongly attemping to execute an area of memory not containing run codes (for example strings, tables, etc.), or if running is restarted from an odd-number address, or when code was corrupted.

21
END OF MEMORY
You cannot continue the current operation because you’ve already achieved the top of BAL memory. Be informed that you can set a greater amount of memory, by .MEM pseudo (maximum is 8192). The possible program in memory is not affected by the enlargement.

22
OUT OF MEMORY
The mnemonic or the pseudo caused a pointer, or PC, or SC to go beyond the top memory border. If this error appears, then system was not able to link the start of memory (for example if you have memory size of 300, and you hit “.PX 30” from address 290, system will show the 10 bytes till the end of memory, then it will continue from 0 to 19 and the error does not happen)

23
WRONG ADDRESSING
The mnemonic does not support that addressing mode. Type in the pseudo “.? XXXX” (where XXXX stands for the mnemonic name) to obtain help about the supported addressing mode by that mnemonic. This error appears also when you set an indirect register, if the mnemonic only supports direct registers (see chapt. 2.6).

24
UNKNOWN STEP-RUN COM.
When in Step-run mode you are not allowed to insert / deleting mnemonics. Switch to Service-mode by hitting [C=] [S].

25
DIVISION BY ZERO
The register specified by the operand of mnemonic DIV contains a null value.

26
INVALID INDIRECT VALUE
When use indirect addressing mode, the value of the indirect register must specify an existing register. For example if you have a memory size of 800, then you can not refer to a register number greater than 99 because it can not be mapped inside the memory map (Register# 99 is the last one, being located from 792 to 799).

27
OVERFLW VALUE >999.999.999
The maximum value to be processed, stored or load is that one (a billion less one)

28
INCOHERENT DATA
The two operands you set are incoherent between themselves (for example “KC 3,5”: you can not set 5 ciphers after decimal point while you ask for a max of total 3 ciphers to be printed out).

29
DATA VALUE MUST BE POSITIVE
No value lower than 0 is allowed here

30
STACK OVERFLOW
The maximum level of nesting is 4. You did attempt to achieve a further level. Maybe you’ve forgotten to return from subroutine thru mnemonic BRA (or cancel a level step by mnemonic POP). Current stack level is runtime shown on separate display (S: x) if this is enabled.

31
ANY DATUM IN STACK
System is requested to return from a subroutine, while it is not inside a subroutine. This error can happen when you write more BRA mnemonics (end of subroutine and return) than BS (go subroutine). It could also appear running POP mnemonic (cancel subroutine level).

32
RET.-LIKE KEY DISABLED
You did finish the input with one Return-like key (that are: [Return], [F1], [F2], [F3], [F5] or [F6]), but that one was disabled. Before this, program has processed a KES mnemonic by which the key was deliberately disabled.

33
PRINTER NOT READY
You’ve requested to print (on a real serial printer) the listing of the BAL program in memory, but the printer does not reply. It could be turned off, not connected, or fault.

34
PROGRAM-KEY DISABLED
You’ve hit one of the so-called Program-keys (that are: [CTRL-1], [CTRL-2], [CTRL-3], [CTRL-4]), but that one was disabled. Before this, program has processed a KEP mnemonic by which the key was deliberately disabled.

35
PARTITION NOT AVAILABLE
Partitions features are available only if a 1581 drive is connected and a valid 3.5” disk is online.

After a .SUB pseudo hit: The partition/subdirectory name you entered is not achieving from the current disk/partition. Type .DIR to view which partitions are available from here. Hit “/” as partition name if you want to directly return to the root.

After a .PAR pseudo hit: an operation of the procedure to create a new partition did not succeeded. (Possible causes: no room, disk protect, wrong parameters, disk error, etc.)

36
ILLEGAL FILENAME
By mnemonic FILE you can set a string with a maximum of 13 characters, and a $00 at tail. Prefix “MC-“ has not to be written.

37
OUTPUT OVER INPUT AREA
The result of a reducing process on data (by menmonic STAT) is wrongly set to overwrite the input area. Be informed that the overwrite is possible only at condition the output does not corrupt the second input data block to be read. By setting the same start-addresses for both input and output, the process is always possible.

Different start-addresses for output inside the input area are acceptable only if they overwrite the first block of input data. The lengh of a data block depends by the reducing ratio (thta is : Global number of data / Wanted reduced number of data).

For example: P1=200 (input data address) and P2=205 (output data address) are acceptable only if compress ratio (block lenght) is not lower than 6. In fact if compress ratio is 6, the first block to be compressed is at: (P1) 200, 201, 202, 203, 204, 205 and its average will be stored at (P2) 205, then without to corrupt the second block of data not processed yet (206…)

38
(reserved)
(for programmable message of mnemonic DISP)

39
(reserved)
(for strings >253 characters long)

40
HELP RECORD FAULT
That help record was not found, not existing, or went into error.

41
WRONG HELP REQUEST
The argument you’ve supplied with pseudocommand .? (help) was not understood by system.

You can ask for this 4 types of helpscreens:

a) Mnemonics (for example: .? API or .? SAMP)

b) Pseudo commands (for example: .? DIRECTORY or .? DIR)

c) Error messages (for example: .? E21) – Error numbers go from 0 to 41
d) See any helpfile record (for example: .? 134)

_1122988246.bin

