

Using the Commodore 16

USING THE
COMMODORE 16

Peter Gerrard

=

Duckworth

First published in 1986 by
Gerald Duckworth & Co. Ltd.
The Old Piano Factory
43 Gloucester Crescent, London NW1

© 1986 by Peter Gerrard

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise,

without the prior permission of the publisher.

ISBN O 7156 2003 7

British Library Cataloguing in Publication Data

Gerrard, Peter
Using the Commodore 16
1. Commodore 16 (Computer)
1. Title
001.64'04 QA76.8.C64

ISBN 0-7156-2003-7

Typeset by The Electronic Village, Richmond
Printed in Great Britain by
Redwood Burn Ltd., Trowbridge
and bound by Pegasus Bookbinding, Melksham

10.
1.
12.
13.
14.

Appendixes:

CONDOAWON =

Contents

Preface

Getting Started

Basic Programming

More Basic Programming
New Basic Commands
Using the Monitor

Colour

Graphics

Sound

Writing a Games Program
Building up a Database
Getting Adventurous
Introduction to Machine Code
Relaxation Time
Peripherals

Fundamental memory map
ROM memory map
Hyperbolic functions
Machine code instruction set

P~

Index

22
47
65
77
86
90
122
126
141
164
193
250
266

289
302
312
313
333

Preface

This book is for all C16 owners, whether beginner or expert. It starts
with a refresher course in Basic programming and an introduction to
new Basic commands on the C16. There are details of how to use
the handy monitor built into the machine, and the book also explores
colour, graphics and sound. Three important chapters show you how
to write an arcade game, build up a database and write an adventure.
By the end of the careful explanation of machine code you should be
able to write your own machine-code marvels! Half-a-dozen games
provide some relaxation, and finally there is a chapter on peripherals.

P.G.

1
Getting Started

Okay, you've got yourself a Commodore 16. Perhaps you were per-
suaded by friends, by television advertisements, or by reviews in the
popular computing press. Why you bought the machine isn’t particular-
ly important. What is important is the fact that you've got it home
and are probably beginning to wonder what it is really capable of doing.

The exterior of the machine strongly resembles the Commodore 64.
However, the interior is very different, as we shall see. Try typing in
PRINT PEEK(198) on the 64, and you'll probably get an answer of zero.
The same command on the C16 will probably give you an answer of
64. We'll see why later.

The cassette deck used with the C16 is electronically very similar to
the one used with the Commodore 64, or Vic 20, or indeed any of
the earlier Commodore computers. But for reasons probably known
only to Commodore Business Machines themselves, earlier cassette
decks will not work on the C16. It requires its own little interface, and
consequently the C16 starter pack arrives complete with its own
cassette deck.

It also arrives with the grandly-titled Introduction to Basic, and a User’s
Manual as well. If you only want to learn how to count to ten, or
discover what all the Basic keywords are, then those two publications
are sufficient and you might as well put this book down now. If you
want to make your new computer do something useful, then carry
on reading.

One thing the C16 does have in common with the 64 is its use of disk
drives and printers. Most of the peripherals which can be connected
up to the 64 can also be connected to the C16, and indeed the listings
in this book were produced using an interface for the 64, my old 64
disk drive, and an Epson FX80 printer which the 64 has happily been
driving for a couple of years now. However, all three devices ran quite

9

readily from the C16, so there is a high degree of compatability between
the two on that score.

On the software side, simple programs for the 64 that don't take up
too much memory will run on the C16. Try running any programs of
more than 12K, however, and you'll be in trouble. Also, any programs
using machine code, or any which PEEK and POKE to the screen will
certainly not work. Again, we'll see why later.

Despite all that, the C16 can be a useful computer, and is certainly
an excellent introduction to the fast moving world of microcomputers.
The version of Basic used to program it is a highly advanced one, and
one which is certainly capable of competing with any other home com-
puter currently available. It has a sensible keyboard, one which any
touch-typist should soon feel at home on, and if one or two keys are
not in the ‘right’ place for users of other computers, well, that's only
to be expected. It seems to be the rule that new computers always
move a few keys around, just to maintain individuality.

Wiring up

Before you start using your new computer it is worthwhile taking a
few minutes to set it up properly. Presumably it is meant to be
something more than a passing fad, and will hopefully become a device
that you will use quite often. You wouldn’t (I hope) get a new stereo
system and then proceed to put both speakers in front of the main
deck, obscuring your view of the television in the process. You will
also want to avoid the almost inevitable collection of spaghetti wires
trailing around all over the place.

Circumstances will obviously dictate how the computer is set up, but
a few rules are worth observing. You'll want to be at a reasonable
distance from the television screen, and to look at it from a sensible
angle. You'll want to be able to use the keyboard in a manner which
makes it easy to touch-type (or at least to type fast with one finger),
and you'll also want to be able to connect up any peripherals without
causing miles of wire and cables to go everywhere. Bear in mind that
you'll be using the machine a lot, so a little bit of time and patience
at the beginning will save an awful lot of time later on.

Assuming you've got everything connected up properly, what hap-
pens next?

In order to make the C16 work to its full potential, we first of all need

10

to know what the various keys on the keyboard do. Without them,
we won'’t be capable of doing anything, and so ...

The keyboard

As you can see from our picture and from the computer that | hope
is in front of you at the moment, the C16 has a standard QWERTY
layout. Pressing a key in normal mode will give you an upper-case let-
ter on the screen, and pressing a key in conjunction with the shift key
(of which there are two) will give you the graphic character that ap-
pears on the right of the key. To get the graphic character on the left
of the key, you must press the CBM logo key (bottom left) in con-
junction with any of the alphabetic keys (and one or two of the other
keys as well: the multiplication symbol, for instance).

To obtain some more figures on the screen, press the CONTROL key
{marked CTRL) and the ‘9’ key simultaneously. This will put us into
what is known as REVERSE FIELD mode, and any key now pressed
will come out as a reverse of itself. To get out of this mode, press
CTRL and the ‘0" key together. To change the colour of any character
to be displayed on the screen, we need to use the CTRL key again.
Pressing this together with one of the numeric keys 1 to 8 will pro-
duce a change in colour. As you are probably aware, though, the C16
is capable of displaying many different colours. In order to get the se-
cond lot of eight major colours we must go back to the CBM logo
key again, and this time press that in conjunction with one of the first
eight numeric keys. Any of the major 16 colours can be achieved in
this way.

11

As well as producing the display that we’ve seen so far, the C16 has
another character set that we haven't yet looked at. All the keys pressed
so far have been either upper-case letters or graphics characters (or
numbers, of course). If you now hold down the shift key and press
the CBM logo key, you will see that the display flips into upper-case
characters and lower-case ones. Pressing the two keys together again
will take us back to the more familiar upper-case and graphics character
set. Holding them both down continuously will result in a slowly
repeating display.

There are a number of ways of achieving this from within a program.
One could type:

10 PRINT CHR$(14)

to get the upper-case and lower-case character set. Normality is achiev-
ed by typing:

10 PRINT CHR$(142)

However, this doesn’t stop anyone who is running your programs from
hitting the CBM logo key in conjunction with the shift key, and upset-
ting the display as a consequence. To protect your programs from
this happening, type:

10 PRINT CHR$(8)

which will inhibit the function of the shift and CBM logo keys. To make
them work again, we need:

10 PRINT CHR$(9)

All these little one-liners can be typed in in what is referred to as ‘im-
mediate’ mode. That is, they can be typed in without a line number
in front of them, followed by pressing the RETURN key. Pressing the
(RETURN) key indicates to the computer that we want something to
happen, and the computer will then trot off to a part of its own memory
and interpret precisely what is going to take place.

Function keys
Over to the right of the keyboard are the four (or eight, using the shift

key) so-called function keys. At power on they all have little functions
assigned to them, although these can be changed quite easily using

12

the KEY command. To make them behave like Commodore 64 func-
tion keys, you need something like:

1 FORI=0TO7
2 KEY I,CHR$(1+133)
3 NEXT

Then they could be detected in a program like this:

5A=1

10 GETAS$:IFA$="[F1]"THEN A=1
20 IFA$="[F3]"THEN A=2

30 IFA$="[F5]"THEN A=3

40 IFA$="[F71"THEN A=4

50 COLOR 0,A,7

60 GOTO 10

where the symbol [F1] represents the control character that is pro-
duced by pressing the first function key when inside quotes, and so on.

You may have noticed this quote mode before. Pressing the quotes
key (shift and 2) will produce a set of quote marks on the screen. If
you then attempt to press any of the cursor keys, the numeric keys
in conjunction with the CTRL key or the CBM logo key, the function
keys, and a few others, nothing will happen other than a strange
graphic character appearing on the screen. As with seemingly
everything else on the C16, there are various ways of getting out of
this mode, but probably the easiest is to press the shift key and
RETURN key together. This has the effect of moving the cursor (the
little flashing blob that greets you all the time the C16 is waiting for
something to happen) down on to the next line of the screen, without
disturbing anything else.

Other keys

There are plenty of other keys on the C16 keyboard that we haven't
looked at yet, and among these we find the INST/DEL key. Pressing
this on its own has the effect of deleting everything to the left of the
cursor, and dragging anything that happens to be to the right of it
along as well. If we use this key in conjunction with the shift key, almost
the reverse happens, and everything to the right of the cursor is mov-
ed even further to the right (up to a certain maximum point), while
everything to the left stays where it was.

13

The CLEAR/HOME key also has two functions. To move the cursor
to the top left-hand corner (the home position) of the screen, simply
press the CLEAR/HOME key by itself. To do this and clear the screen
at the same time, press the CLEAR/HOME key in conjunction with
the shift key. Since this wipes out anything that happens to be on
the screen at the time, you should use it with caution.

The ESC key (top left) has little function in life, and seems to do nothing
other than provide the program with a means of detecting when it
has been pressed. PEEK(198) returns a 52 when the ESC key is press-
ed, so by including a check in a program to see whether
PEEK(198) =52, you can make the program branch off to an
appropriate point.

The reset switch on the right of the machine can be used if the com-
puter has come across something that it dislikes and has hung up (i.e.
is in a state of temporary distress, where nothing seems to be hap-
pening). It won't actually clear everything out of the computer’s
memory, so you won't lose any machine code program that might
be there.

There is an even more drastic way to achieve a similar effect, and that
is to type in:

10 SYS 62116

which, when run, will simulate the effect of switching the C16 off and
on again. As with pressing the restore switch, it doesn’t remove very
much from the computer’s memory, and most of what is in there can
be retrieved relatively easily.

The RUN/STOP key itself is another dual-purpose key. Pressed by
itself it will do nothing unless a program that hasn’t disabled the key
is running (to disable it, type POKE 806,103 ; to enable, it type POKE
806,101), in which case it will stop execution of the program with a
BREAK IN XXX error, where XXX is the line number that was being
acted on.

If RUN/STOP is pressed in conjunction with the shift key, the com-
puter will attempt to load the first file from disk, and the only way to
get out of that is simply to sit back and wait. It saves you typing
DLOADprog name’’,8 and then RUN, | suppose.

Of the other keys, the shift lock acts like a conventional typewriter

shift lock key, and everything else simply displays something on the
screen: usually a letter, a number, or a graphics character. However,

14

there are exceptions.

Calculations

If we want to make the computer act like an ordinary calculator, there
are four keys that perform mathematical operations. These are the
multiplication key ("*’), the division key ('/’), the addition key (' +')
and the subtraction key (' — '), so if we wanted to know what 27 times
15 plus 4 minus 256 was, we would type something like:

PRINT 27*15+4— 256

followed by RETURN, which would give us our answer of 253. There
are other symbols we could use, the up-arrow key for exponentiation
for instance, as well as mathematical keywords such as SIN, COS and
so on. However, we’ll come to those in later chapters.

What we must beware of when using all these keys is the order in
which we perform these mathematical calculations. The above sum,
for instance, could be expressed in many different ways:

PRINT (27*15) + 4 — 256

PRINT 27*(15+4) — 256

PRINT 27*(15+ 4 — 256)

all of which would give different answers. The important thing here
is the use of brackets, which determine in what order the calculations
will be carried out. As with everything else on the C16, experimenta-
tion is the key, so try doing a few sums and seeing what the answers
are.

Before we introduce you to some of the features of the machine, type
in the following short program and see what happens.

1 A$="[CU,CD,CL,CRI":PRINTMID$(A$,INT(RND(.5)*4 + 1),1)"
+ [CL]";:FORI=1TOB50:NEXT:PRINT"[RVS,SP,CL]";:GOTO1

By using ? as shorthand for PRINT, N shifted E as shorthand for NEXT,
and F shifted O as shorthand for FOR, you will be able to get all this
on one line.

Please note that CU, CL, CD and CR are just notations used to ex-

16

press the result of typing the cursor up, cursor left, cursor down and
cursor right keys respectively when in quotes mode (don’t type in the
commas!), RVS means type CTRL and ‘9’ simultaneously, and SP
means leave a space. Again, don’t enter the commas.

Some golden rules

Try modifying as many programs as you can, learning from the original
along the way, because this will teach you more about programming
than anything else ever can. Buy some computer magazines and type
in the listings from them, get some of the tape-based magazines that
are on the market, get hold of as much public domain software as
possible, and see how it all works.

And don’t just restrict yourself to programs written specifically for the
C16. Many other interesting programs are printed for other computers
which, with a little time, effort and patience on your part, can be made
into working programs for your computer. Most of the better
magazines give program conversion hints anyway, although it will not
be possible to convert every program that you come across.

Before long you'll be building up a useful set of program subroutines.
Of program what? We'll get to that one in a moment.

Running programs

When you finally set about writing your own programs for your own
use, you must first of all decide what area of program writing you are
going to concentrate on during any one particular writing session. You
can’t start out with the idea of writing a game of Space Invaders and
then half way through suddenly decide that your time could be better
spent by writing an integrated accounts package, for instance! Well,
perhaps some of you could, but if so | very much doubt that you’ll
be spending time and money on this book.

So, settle on the area and decide that for the next hour, three hours,
or however long you can spare at the keyboard, that is what you are
going to write. Having done that, there are a number of other points
that must be settled before you actually start typing in the code.

Most important, you must have a good idea in your head, and

preferably a written idea on paper, of precisely what you are going
to do, and how you are going to structure the program. Some people

16

may sit down at the keyboard and just type, modifying the program
as they go along, with no pre-conceived idea of how the program is
going to develop. People like that probably do produce reasonable pro-
grams that work, but inevitably they could be far better structured,
could work faster and could achieve more. But, for the majority of
us, it is impossible to work in this way, and we must resort to primitive
aids like paper and pens to help us out.

In order to do this, you must map out precisely what you want the
program to do, and not be deterred when a particular section of it stub-
bornly refuses to work in quite the way you want it, as will almost
always happen. No doubt you're doing something wrong, tackling the
problem in the wrong way, and should perhaps be approaching it in
a different manner. With luck, the computer itself may be able to give
you a hint about where you’re going wrong, but then again ...

By mapping out beforehand everything that you want to do, the risk
of this sort of problem occurring is lessened.

Sorting out programs

And you must write down rather more than just ‘I think I’ll write an
Asteroids program, there’ll be forty aliens and one spaceship’. This
“tells you nothing about the program, nor how it will ultimately be put
together. Each section of the program should be thoroughly written
out before sitting down at the computer. For instance, in our Asteroids
example, you would need a routine to move the ship around, which
takes into account the fact that you don’t want the ship to move off
either the left, right, top or bottom sides of the screen. How would
you write that routine, how would you make the ship move, how wiill
you check whether you're at the edge of the screen?

Think about it, rather than just ploughing in and hoping that, by chang-
ing a few numbers in the program every now and again, it will even-
tually work. Not only will this probably not work, but it will also teach
you absolutely nothing about programming. By some fluke you might
get it right, but you’ll have no idea how or why it works.

When you get used to writing everything down beforehand, you'll soon
realise that there is a lot more involved in writing a program than you
might at first think. All sorts of problems will occur that you hadn’t
thought about, and five minutes’ pencil work sorting it out will save
much more time than that at the keyboard. Look at some commercial
programs such as databases and word processors, and then you’ll

17

realise that they can’t possibly have been written by just sitting down
at the keyboard and thinking ‘I'll write a word processor today’.

Again, when you're firmly in the habit of writing everything out
beforehand, so that the program organises itself into various well-
defined blocks - move ship left, move aliens towards the centre of the
screen, etc. - you'll soon realise that various parts of the program are
familiar from other programs that you may have written earlier.

Rather than re-inventing the wheel, why not use the routine that you
wrote in that other program? Answer: because you can’t find it.

Some programming lessons

This should teach you another lesson about program writing. Always
make sure that you write your programs so that, when you come back
to them in six months, you know precisely which part of the program
is doing what.

To make this easier, the C16 has a statement called REMARK, usual-
ly shortened to REM, that allows you to insert comments into your
program listings. In other words, at the start of our ‘move ship left’
routine, you could have a couple of program lines something like:

1000 REM THIS PART OF THE PROGRAM
1010 REM MOVES THE SHIP TO THE LEFT

Thus you’ll never be in any doubt as to what that section of the pro-
gram does. Inserting comments like this throughout your listings, you'll
soon be able to find your way through them again and spot useful
routines that could be used under a similar set of circumstances in
a different program.

This habit of putting comments in your programs will not only help
you, but also anyone else who might be looking at them. You might
submit a program to a magazine for possible publication: it will cer-
tainly help your chances of acceptance if the people at the magazine
can read your program and see how it works without having to spend
hours ploughing through an unintelligible maze of line numbers.

As we said earlier, you'll soon realise that the same sort of routines
crop up again and again, and an extremely important program-writing
“trick’ is to save all these common routines on a separate tape or disk
from your more usual program-writing one. In other words, build

18

yourself up a collection of useful routines, or, as they’re more com-
monly called, subroutines. And don’t forget to label the tape or disk.
This is something that | personally don’t do as often as | should, and
| know from bitter experience that the time spent wading through 30
disks, loading up the directory of each one while trying to find a par-
ticular program, is wasted time indeed.

So what, precisely, is a subroutine ?

Subroutines

A subroutine is essentially a small program in its own right, which per-
forms a specific function. For instance, it might be a routine to format
numbers to 2 decimal points. You have a numeric variable, say A, equal
to 12.6785434, which you want to look a little neater than that when
you print it out on the screen, and so your routine truncates A so that
it becomes equal to 12.68 (rounding the last number up or down as
appropriate).

In a lengthy program you’ll probably want to use this sort of routine
time and again, and it would be rather tedious to type it out again and
again. This is the purpose of a subroutine: a short program that per-
forms a useful function, and which performs that function many times
within a major program. The Basic statement used to call up one of
these subroutines is the word GOSUB (hence SUBroutine), which
transfers control of the program to the short sub-set in order to per-
form whatever function is required. To return to the main flow of the
program, we use the word RETURN. We'll be coming to these in more
detail later.

By building up a set of routines such as this your program writing time
can be cut down quite effectively, and by writing everything out
beforehand you can also make considerable savings on development
time.

Where do all these routines come from? Obviously most of them wiill
be written by you, but there are many publications available that detail
programs for all manner of uses.

Magazines, books (Five Billion Subroutines for the C16, that type of
thing), and what is referred to as public domain software, are all
available to help you in your own program writing. With magazines
and books, you're going to have to enter the code yourself, and
perhaps modify the program along the way, but if you want the lazy

19

way of building up a good set of programming subroutines, perhaps
public domain software is your answer.

This kind of software is usually made available through some kind of
user group, a collection of individuals dedicated to the use (usually)
of one type of computer in particular, but occasionally encompassing
a much wider range of microcomputers. By their own efforts they write,
collate and gather as much programming material together as possi-
ble, and, for a small fee, this is usually presented to anyone who cares
to join their group.

Examination of this software will almost certainly repay the effort (and
small amount of finance) involved. Programming ideas, tips and hints
will all be there, and they can all be accommodated into your own
programs.

As | said earlier, why re-invent the wheel? If someone else has written
a routine for performing XYZ, why should you bother to write one?
It may be lazy, but it will save you time and money, and time and money
are important in a fast-growing industry like this.

As time goes by and your programming efforts produce better and
better results, you will ultimately develop routines for use in many areas
of software development. A whole collection of financial routines,
screen movement routines, and so on, will be there to be included
in programs as and when you require them.

This does not mean that you will be able to write a program in five
seconds flat. Routines may have to be altered slightly, maybe chang-
ed around to fit the requirements of a particular area, and you will still
have to come up with the ideas in the first place. No one else is going
to do that for you. None the less, you will find programming becom-
ing significantly easier.

Many of the routines you come across will not be written for your own
particular computer. They can (usually) be easily adapted for your own
machine, and are always worth examining.

Having all these routines at your disposal, you might think that you
know all about your machine. But the story, as usual, goes much fur-
ther than that.

By building up a collection of useful program subroutines, we lessen

the length of time taken to produce a working program, and also cut
down extensively on program development time.

20

All these subroutines are, ideally, stored away on tape or disk for later
recall whenever appropriate. Something that you will learn almost as
soon as you start developing, or simply coming across, these programs
is the need for an organised filing system of some sort, which makes
it easy to retrieve the right program at the right time.

In an ideal world, we would all have access to exactly the right kind
of computer equipment for every job, but in the real world we must
recognise that most people will not be able to afford all the equipment
that they would like, and so sacrifices have to be made.

Program tidiness

You might have a set of programs for use in financial programming,
all stored on the same disk or tape. If disk, wouldn't it be nice to have
a printed list of all the programs on it (disks have something called
a Directory, which is a fancy name for - yes, a list of all the programs
on the disk) stored with the disk?

Or, if you're using tape, you might want a list of everything on that
tape, together with, if your cassette deck is up to it, a record of the
place on the tape where each program starts. It is always useful to
note what number the tape counter has reached whenever you get
to the end of a program.

If you can't afford a printer, all this work will have to be done longhand,
which can, of course, soon become a tedious process. However, as
with many things in the computer world, the time that you ultimately
save will be ample compensation for the initial drudgery involved.

Inevitably, there will come a time when the routine you need to per-
form a particular function just will not fit into another program without
some drastic operations being performed on it. This will probably oc-
cur a good many times in the course of program development, and
it will probably be a darn sight quicker to write a new routine from
scratch rather than trying to bend another routine to fit.

But enough of theory. Let’s get down to practice and start writing

some simple programs, introducing new commands gradually as we
do so.

21

2
Basic Programming

When first starting to program, there are some important lessons to
be learnt, and chief among these at first are the concepts of line
numbers and program editing. Fortunately the C16 has got one of the
finest program editors of all home computers, so the time taken to
learn how to alter a program is minimal.

Type in the following, exactly as shown:

10 PRINT “I AM A COMPUTER”
20 PRINT “AND I’'M ONE TOO!"”
30 PINT "BUT I’'M NOT”
40 PRINT:PRINT:GOTO10

When you run this program, the result will be that the first two
sentences ('l AM A COMPUTER' and ‘AND I’'M ONE TOO!’) will be
printed, and then the program will halt with the words SYNTAX ER-
ROR IN 30.

Using the cursor keys, move back so that the cursor is over the letter
lin PINT in line 30. Press the shift key and the INST/DEL key once,
to move everything one character to the right, insert the missing let-
ter R, and hit RETURN. Voila, a new line is entered, and if we run
the program now everything will be printed out properly.

To repeat a line, for example have a line 35 the same as line 10, move
the cursor until it's flashing over the 1 of 10, type 35 and hit RETURN.
Again, if we now LIST the program we’'ll see that our new line is now
in place.

To remove a line, simply type the line number by itself and hit RETURN.
Try it now, by deleting line 35, and then type LIST just to prove it.

And line numbers? They're just there to tell the computer in what order

22

you want things to be executed. They should also serve to remind
you as well!

Variables

Variables are a way of retaining information in the computer, so that
it can be used again and again. As with all other aspects of program-
ming, there are some important rules to be observed when dealing
with variables. The first of these is that although a variable name can
be as long as you like, always remember that the C16 is only going
to recognise the first two letters of that name. Secondly, a variable
name cannot contain one of the so-called reserved words (words that
the computer itself uses), so that names like AND1, OR3, NOTALOT,
are not acceptable, since they contain the reserved words AND, OR
and NOT respectively.

There are three types of variables allowed on the C16: numeric, string,
and integer. The following program uses all three, and the point to
note here is the way we differentiate between them.

10 A=27.12345
20 A$="HELLO MA BOY"
30 A% =27

40 PRINTA:PRINTAS$:PRINTA%

If we now RUN this program, the values 27.12345, HELLO MA BOY,
and 27 will be printed out on the screen. These are the values contain-
ed in the numeric variable A, the string variable A$, and the integer
variable A%. It should, from this example, be obvious that string
variables are suffixed by a dollar sign, integer variables by a percent
sign, and numeric variables have no suffix whatsoever.

One could equally have had something like:
10 A1=27.12345

20 A2$="HELLO MA BOY"”

30 A3% =27

40 PRINTA1:PRINTA2$:PRINTA3%

and the result would have been exactly the same. Just remember the
rules about recognising two letters only, and not using reserved words.

23

Getting information in

There are a number of ways of getting information into the C16, and
one of these involves using the INPUT statement, which works in the
following way:

10 INPUTAS$
20 PRINTAS$

Here the computer would print a question mark up on the screen, and
wait until you type something and hit the RETURN key. Whatever you
type in will be stored in the variable A$, and printed out in line 20.
If you typed nothing, but just hit the return key straight away, A$ would
hold nothing, and would be called a ‘null’ string. If you altered the
program to read:

10 INPUTA
20 PRINTA

the computer would be expecting you to type in a number, since the
variable A is a numeric one. If you typed in a string instead (such as
‘HELLO’) the message ‘BAD DATA ERROR IN 10’ would appear, and
you’d have to try again. If it's a numeric variable that you're declar-
ing, then it's a numeric variable that you must type in, and the com-
puter won'’t let you type in anything else.

There are other methods of getting information into the computer,
but we'll come to them later.

STOP, END and CONTinue

Although most commercial programs are designed so that you can’t
break into them, when writing and developing your own programs
you will often find it necessary to break into them to examine and have
a look at any active variables, i.e. ones that have been defined in the
program. Unless you decide to change anything, or the program has
halted because of some error in it (which means, of course, that you'll
have to change something), itis possible to start the program running
again from the point at which it left off. Three commands exist on
the C16 to enable you to stop and start programs in this way: STOP,

24

END and CONT.
STOP can be used as in the following example:

10 PRINT "[CLR]”

20 X=5:Y =15:Z$ = ""LAUREL"”

30 STOP

40 X=X+1:Y=Y+10:Z$=2Z%+" AND HARDY"
50 END

When you run this program, the screen will clear, and almost im-
mediately the program will stop with the message ?BREAK IN 30: this
is the line with the word STOP in it. If you now PRINT X,Y,Z$, you
will see that they have the values as listed in the program, namely 5,
15 and ‘LAUREL’. If you now type CONT (Return), the program will
start running again, and stop almost immediately when it reaches the
end. This time it won't tell you where it stopped, the computer will
just return to READY mode and the flashing cursor will be sitting there
waiting for you to type something in.

If we now print out the three variables again, we'll see that X is now
equal to 6, B is equal to 25, and Z$ is now equal to "LAUREL AND
HARDY"'. Strings can be added just like anything else, but instead
of producing greater numbers they just get longer. This process of
adding strings together is termed string concatenation. If you keep
adding strings together, you will eventually get the error message
STRING TOO LONG ERROR IN xxxx where xxxx is the line number
where the string expired. The upper limit is 255 characters for any
string, so don't create a string with any more characters than that.

In this simple example it wasn't really worth stopping the program,
but in a much longer one you’ll soon get to realise the value of STOP,
because it tells you where the program halted execution, and CONT
to get you going again. If you do change anything after a stop, and
then try to continue, the error message CAN'T CONTINUE ERROR
will appear on the screen. The poor old computer is confused, and
can't carry on: you'll just have to start again from the beginning. Some
computers, like the Spectrum, do allow you to change things in this
way and continue with a program afterwards, but alas the C16 isn't
one of them.

Stops can also be used in a longer program that isn’t working quite
as it should do. It allows you to examine all the ‘working part<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>