ERE ST N B KRR IER RIS ATT BT ARG T R A T S AT A (0 T DGR U T ARSI R w
TS LN L]

ASSEMBLER DEVELOPMENT PROGRAM

ALL YOUR COMMODORE COMPUTER NEEDS..... . i Q N- Nl \ m Q m. NI

EDITOR featuring AUTO line number — RE-NUMBER which
may be used for BASIC as well — PUT and GET for file
management — PUTC and GETC for cassette — DELETE,
FIND and FIND/CHANGE for source files as well as BASIC
programs — plus a super text SCROLL system with
automatic screen rewrite and line insert system.

. Assembler
ASSEMBLER will read source from memory, a disk file or a

series of chained files — output to memory, hex file or
loadable program file - conditional assembly - two pass and
efficient symbolic assembly - beautifully formatted and

paged printed listings — comprehensive error trapping.

MONITOR aids debugging and investigative work —
includes its own mini-assembler and dis-assembler —

MEMORY SAVE and LOAD to disk or cassette — memory FOR

DISPLAY/MODIFY — hunt facility to find strings — fill
C128 Cé4 and PLUS/4 Computers

Program Development System

memory — error/command channel access to disk.

DOS-SUPPORT helps with disk management — directory
display — disk formatting and initialising — LOAD and
LOAD+RUN — binary load with optional off-set.

- nole: delails vary between versions depending upon facilities built into each machine.

A comprehensive package for all levels of |

I6 ™ |64 i28| 120 | | _ o machine language application and BASIC
- programming.
VvV |
g 0 "743467°02870'"s
& WILL RUN ON 1541, 1570, 1571, 1551 .
= ﬁn commociore — ﬁn COMMOodore s

B Y A RO SRS L LRI (e rAL st et O g A o

(L TIPS

TR 5N

KV T

Part 1

RAXAAAARAARARARRARAARAARARAARRNAAARR
JCL SOFTWARE LTD

6500 SERIES ASSEMBLER. V3.00

- -
» "
* -
* "
* FOK THE COMMODOKE 64 COMPUTER #
» *
* By Richard Leman C.Eng MIEKE *
; -
l '

ARAANRARARANANRAAAARRARARARRANRARAR

COPYRICGHT JCL SOFTWARE 1983

All aspects of this product are copyrighted and al! rights reserved by JCL
Software Limited. The distribution and sale of this product are {ntended for
the use of the original purchaser only. Lawful uters of this progrsm are
hereby licenced only to use it in the form supplied by JCL Software Ltd (Jcu),
solely for the purpose of executing the program. Duplicating, copying,
selling or otherwise distributing this product is a violacion of the law.

This manual 18 copyrighted and all rights are reserved. This document may not,
in whole or fn part, be copied, photocopled, reproduced, translated or
reduced to any electronic medium or wmachine readable form without prior
consent, in writing, from JCL Software Ltd.

DISCLAIMER

A considerable amount of care has gone into the development and testing of
this product and it is beleived to be reliable and suitable for wuse. JCL
Software Ltd or any agent acting on their behalf cannot accept responsibilicy
for the direct or indirect consequences of the use of this product.

Rev 25.02.86
Page 1

[P T DTSSS YR RSN L

Part 1

PREFACE

The JCL SOFTWARE ASSEMBLER DEVELOPMENT SYSTEM software package allows you to
program in the native 6500 serles Assembly language code, directly on your
Commodore computer. It provides you with very powerful Assembler, Editor, and
program development alds. Some of the development alds may also be used when
writing BASIC programs. These develupment tools operate like and provide the
same level of direct machine {nterface as the Assemblers on much larger
computers.

This package contains everything that you will need to create, assemble, load
and execute 6500 serlics Assembly language code. You will notice that Cthis
user s manual te directed towards the experienced computer user who already
hae some familiarity with the 6500 werius Awsumbly laugusge and the opuration
of his Commodore computer. 1t le not tntended to provide the knowladge of
“how to” in assembly language, but provides the goftware tools for the
experienced assembly language programmer.

It is slso recommended that the user obtain one or more of the reference

manuals 1lsted below for a more detalled description of 6502 assembly
language and his Commodore computer. (The publisher is listed in vunn=n=n-u-.v

6502 Assembly Language Subroutines , Leventhal and Saville
(0sborne/McGraw=-H1ill)

6502 Software Design , Scanlon (Howard W. Sams & Co.)

6502 Assembly Language Programming , Leventhal AOechzn\:an-tnzwwpv

In addition, the Programmer”s Reference Cuide specific to your computer is a

most valuable reference book.

Rev 25.02.86
Page 2

‘ Part 2

TABLE OF CONTENTS
INSTALLATION
USER CONVENTIONS
INTRODUCTION
ASSEHBLER CONVENTIONS AND CAPABILITIES
1.0 INSTRUCTION FORMAT CONVENTLONS
1.1 Symbolic

1.2 Constants

e

1.3 Relative

1.4 Implted

1.5 Indexed Indirect

1.6 Indirect Indexed

i Nqo ASSEMBLER DIRECTIVES
2.1 Directives

2.2 Conditional Assembly

3.0 HINTS AND TIPS

eyt e g

4.0 OUTPUT FILES GENERATED BY THE ASSEMBLER
CREATING AND EDITING ASSEMBLY SOURCE FILES
5.0 ADDITIONAL BASIC DISK COMMANDS

5.2 Using DOS Support

5.3 DOS Support Commands

6.0 CREATING AND EDITING A SOURCE FILE

d 6.1 Activating the mannonM

: 6.2 Using the Editor

; 6.3 Editor Commands

w. ASSEMBLING AND TESTING A PROCRAM

v 7.0 ASSEMBLING A SOURCE FILE

t 7.1 Activating the Assembler.

m. 7.2 Using the Assembler

. Rev 25.02.86

Page 3

R e e A Y < b ot

ERREE 1 A L R

Part 2

8.0 LOADING A COMPLETED PROGRAM

8.1 Methods of loading machine code programs

8.2 Integrating BASIC and machine code

9.0 TESTING AND DEBUGGING WITH THE MONITOR

9.1 Activating the MONITOR

9.2 Using the MONITOR

9.3 MONITOR Commands

APPENDICES
Appendix I
Appendix Il
Appendix IIIL
Appendix 1V
Appendix V
Appendix VI
Appendix VII
Appendix VIII
Appendix IX

Appendix X

Rev 25.02.86

SYSTEM MEMORY MAPS WITH ASSEMBLER INSTALLED
USING COMMAND FILES

TYPICAL TOP”N TAIL SOURCE LISTING

6500 SERIES INSTRUCTION SET OPCODES

SAMPLE OUTPUT LISTING

EXPLANATION OF ERROR MESSAGES

EDITOR COMMAND SUMMARY

C64 MONITOR COMMAND SUMMARY

C64 DOS SUPPORT COMMAND SUMMARY

USING OTHER 6500 SERIES PROCESSORS

Page 4

Lo tem saeed e

iy e —

s e - — o -

p———— e ——

Part 2

USER CONVENTIONS

Throughout this manual ‘there are certain conventions used to help make
explanations less ambiguous. A list of these conventions {s given below. Ve
recommend that the user become familiar with these.

()

Parenthenen are used to denote an option. The only exceptions to this rule
are in those mectlons where indirect indexed and indexed 1Indirect addressing
are explained. In these cases the parentheses are required.

label
This 18 used to denote a label reference in an assembler source program. The
actual label used is determined by the programmer.

opcode
This i{s used to denote one of the 6500 series processor {nstructions as
specified in Appendix 1IV.

ovannia
This is used to denote the operand, or argument portion of an instruction.

comments
This is used to specify user comments.

filename

This 18 uscd to specify a filename on disk. The actual name {is specified by
the user.

fllename®

This ia used to denote a wild card filename ({.e., a filename that begins
with the characters preceding the "*"),

variable

Generally, variables apecified in lower case indicate that {t {s up to you to
supply the actual data. .

NAME

Generally, NAMES speciffed in UPPER CASE {ndicate the actual f{input to be
typed.

BASIC key words, program lines, assembler commands and mnemonics are

generally shown in upper case for clarity of presentation. When entering such
material fnto a computer the screen appearance may be different {f the lower
case mode 18 nelected, but the function acheived will not normally be changed.

IMPORTANT

This manual deacribes the Editor, Asaembler and other features of the package
for C128, C6A4 and Plus 4 computers. The facilitles provided by each version
depend on the architecture of each machine and the buflt in facllities. For
example the C128 has an excellent memory monitor &o the program does not
include one. The C64 does not have a monitor 80 the ‘program provides the
needed facilities. Where necessary, machine specific (facllities are
identified by the following symbology :— (*64 ONLY*) or (*NOT 64%)

Rev 25.02.86
Page S

AR

Part 2 Part 3 it

INSTALLATION INTRODUCTION
Mhlm>:H“hw%m nwwqo””n>zwn”mMM”wwM”wn Asscubl . This manual deascribes the Assembly Language and assembly process for i
comcatning pare or a1l of the moft : nﬂ package 1{include a cartridge Commodore computers which use cne of the 6500 series microprocessors. Several ;
Dlugged 1n bef o - ware. In such cases the cartridge must be assemblers are available for 6500 seeries program development, each s 3
ore the package will work. slightly different tn detail of use, yet all are the same In principle. The 2
! 6500 series processors include the 6502 through the 6515 and the processor
1MPORTANT . . used in the C128 (the instruction sets are identical). ¢

* BEFORE INSTALLING OR REMOVING THE CARTRIDGE ##&#

The proceas of translating a mnemonic or symbolic form of a computer program
saasancnds SYITCH THE COMPUTER OFF AAtARARARAARARA d to actual machine code {s called assembly, and a program which performs the
. translation {s an sembler. We refer to the symbolic form of the program as

it th source code and the actual machine form as object code. The symbols used and
t the cartridge with the label side upper-most (or facing forwards for the rules of association for those symbols are the Assembly Language. In general,

8X-64) engaging the wunit fn the socket 1in the cartridge aperture, and one Assembly-Language statement will translate into one machine {nstruction.
carefully pushing until full engagement is acheived. Switch the computer ON This distingulshes an assembler from a compiler which may produce many
{n the normal manner, and when the screen display appears type the SYS call machine instructions from a single statement. An assembler which executes on
that appears on the label. For example, the C-64 requires :- . a computer other than the one for which code s generated, s called a

.cross-assembler. Use of cross-assemblers for program development for .

SYS 32768 and press RETURN

microprocessors is common because often a micro-computer system has fewer ‘ U
resources than are needed for an assembler. However, in the case of a 3
The computer will respond with a li{st of the new words that you will be using Commodore computer operating with the JCL Software Assembler thls is not true. °

to vrite, asseable and run machine code programs. You can see this list at Wwith a floppy disk and printef, the system is very well sufted for software
any time by typing :

: development. When the assembler is supplied tn cartridge form it may be wused
for the development of small programs without the use of floppy disks, a
standard cassette drive providing the minimum facilities needed to save and
load source files and save the finished program.
2, CARTRIDGE EDITOR WITH SOFT LOADED ASSEMBLERS
Packages consisting of a cartridge and a soft loaded a

WORDS .and pressing RETURN

embler should first Normally, digital computers use the binary number system for representation
have their cartridges installed and activated as described above and then the of data and 1instructions. Computers understand only ones and zeroes
sssembler should be loaded from disk. This {s wmost easily done by typing the corresponding to an “ON” or “OFF° state. Users, on the other hand, find 1L
ASM command which will re-prompt with the appropriate command to load the difficult to work with the binary number system and hence, use a more
abler from disk. For exsmple the ASH: couwmand on the C-64 version will convenient representatlion auch as octal (base B8), decimal (base 10), or
mnnvpu with : - hexadecimal (base 16). Two representations of the 6500 serlies operation to
-Joad” information {nto an “accumulator” are:
IHS64.MOD : i
. 10101001 (binary)
"Place the asseambler disk in drive O and press the RETURN key. After the A9

(hexadecimal)
assenbler has been loaded further use of the ASM command will

sesembler to run.

cause the :
An 4{nstruction to move the value of 21 (decimal) to the accumulator is:
3. COMPLETE SOFT LOADED PACKACES

8oft loaded version of the package always includes a loader which 1s placed |

first on the disk so it may be loaded with LOAD “*", 8. RUN the loader and {t Users st1ll find numeric representations of fnstructions tedious to work with,
will locate the rest of the software into the appropriate places 1in your and hence, have developed symbolic representations. For example, the
computer.

preceding lnstruction might be written as:

A9 15 (hexadecimal)

LDA 21

In this example, LDA is the symbol for A9, Load the Accumulator. An assembler e
can translate the symbolic form LDA to the numeric form A9.

Each machine instruction to he executed has a symbolic name referred to as an ;

s operation code (opcode). The apcode for 'store accumulator' s STA. The .
opcode for "transfer accumulator to {ndex x" is TAX. The 56 opcodes for the
: 6500 series processors are listed in Appendix IV. A machine instruction |In
Assembly Language consists of an opcode and perhaps operands, which speclify

the data on which the operation is to be performed. $

Rev 25.02.86 i Rev 25.02.86

Page 6 Page 7

J . e 1 i) S RIS 100 AP BH i Ny,

o e s b
R . e Gy B RO $aionr it s om0t s et PRIy a5

e s e e——

Part)

A label ts a “nsoc” for a line of source code. Tnatructions may be labelled
for reference by other {nstructions, as shown in:

L2 LDA 12

The label fs L2, the opcode {m LDA, and the operand 1s #l12. At least one
blank must separate the three parta (fields) of the ({natruction. Additional
blanks may be {nmerted by the programmer for ease of reading. Instructions
for the 6500 serfes processors have at most one operand and many have none.
In these cases, the operation to be performed 1is totally specified by the
opcode; as in CLC (Clear the Carry Bic).

Programming In Assembly Language requires learning the 1instruction set

(opcodes), addresssing conventions for referencing data, the data structures
wvithin the processor, as wvell as the structure of Assembly Language programs.
The user will be aided iIn this by reading and studying the 6500 series
hardwvare and programming manuals.

Rev 25.02.86
Page 8

B T RN B T o

Part &

1.0 INSTRUCTION FORMAT CONVENTIONS '

Assembler instructions for the JCL Software Asnembler are of two basic types
according to function:

Machine instructions, and
Asnembler directives

Machine inatructiona correspond to the 56 operations implemented on the 6500
series procesaors, The instruction format {s:

(label) opcode (operand) (comments)
Flelds are bracketed to indicate that they are optional. Lahels .and comments
are always optional and many opcodes such as RTS (Return from Subroutine) do
not require operanda. A line may also contain only a label or only a comment.

A typical instruction shlowing all four fleids is:

Loop LDA BETA,X ;s FETCH BETA INDEXED BY X

A field is defincd as a string of characters scparated by a space.

A label {8 an alphanumeric string of from one to six characters, the first of
wvhich must be alpha. A label may not be any of the 56 opcodes, nor any of the
special asingle characters, f.e. A, S, P, X or Y. These special characters are
used by the assembler to reference the:

Accumulator (A)

Stack pointer (S)
Processor status (P)
Index registers (X and Y)

A label may begin 1In any column provided {1t 1s the first fleld of an
instruction. Labels are used on instructions as branch targets and on data
elements for reference in operands.

The operand portion of an fnstructlion speclfics efther an address or a value.
An address may be computed by expression evaluation and the assembler allows
considerasble flexibility 1in expression formation. An Assembly Language
expression consfsts of ‘a string of names and constants separated by operators
+ and - (add and subtract). Expressions are evaluated by the assembler to
compute operand addresses. Expressions are evaluated left to right with no
operator precedence and no parenthetical grouping. Note that expressions are
evaluated at aanembly time and not execution tlime,

Any string of charncters following the operand fleld i{s considered a. comment
and {a llsted, but not further processed. If the flrwt non-blank character of
any record ia a sem{-colon (;), the vcecord {8 proceased as & comment, On
fnstructions which require no operand, comments may follow the opcode. AL
least onc space must separate the filelds of an fnstruction.

Appendix V presents a sample output 1isting from the assembler. Varfous
examples of instruction format are included.

Rev 25.02.86
Page 9

1.1 Syabolic
Perha the most common operand addressing mode is the symbolic form as in:
LPA BETA ;PUT VALUE FROM BETA IN ACCUMULATOR
In this example, BETA s a label referencing a byte f{n aemory that contains
the value to be loaded fnto the accumulator. BETA is a label for an address

at wvhich the value 1as located. Siatlarly, in the instruction:

LDA ALPHA+BETA

the address ALPHA+BETA (s computed by the assembler, and the value at the
computed address is loaded fnto the accuaulator.
Mesory assoclated with the 6500 series processors fa seguented {nto pages of
256 bytee each. The first Page, page zero, 1is treated differently by the
assembler and processor for optimization of wemory storage space. Many of tha
Instructions have alternate operation codes if the operand {s {n .w-w. zero

memory. In those cases, the address 1s only one byte ther than the normal
two. For example:

LDA BETA

If BETA {s located at byte 4B in page zero memory, then the code

generated {g
A5 B4. This is called Page zero addressing. If

BETA is at 0Ol 3C in memory
page one, the code generated 1s AD 3C 0l. This 18 an example of “absolute”
addressing. Thus, to optimize storage and execution time, a programmer should
design with data areas in Page zero memory whenever possible. (Please avotd
assembling code directly finto page zero, ‘as problems wmay be encountered.)
Remember, the assembler makes decisions on which form to use, based on

operand address computat{ion.

1.2 Constants - .

Constant values in Assembly Language can take several forms. {f a constant is

other than decimal, s prefix character 1s used to specify type:

$ (Dollar sign) specifies hexadecimal

[(Commerctal at) specifies octal

X (Percent) specifles binary

“x (Apostrophes) specifies an ASCII literal
character {n tmnediate instructions

a prefix symbol indicates decimal value. In nrm statement:
LDA BETA+S

the decimal number S {s added to BETA to compute the address.

Similarly;
LDA BETA+$SF

denotes that the hexadecimal value of SF s to be

added t6 BETA for the
address coaputation.

Rev 25.02.86
Page 10

LTI Y A e a4 iy Sh o Ay e 1< ¢

BTN

Parc 4

The immediate mode of addressing is signified by a # (pound sign)
a constant. For example:

followed by
LDA 2

specifies that the decimal value 2 is to be put fnto the accumulator.
Similarly;

LDA F°C~

will load the ASCII value of the character G {nto the accumulator.
accumulator is one byte, the value loaded wust be in the range
decimal.

Since the
of 0 to 255

1.3 Relative

There are efght conditional branch instructions ailable to the u In
this example:

LDA VALI 3CET IST VALUE

CHP VAL2 i COMPARE N

BEQ START i IF EQUAL BRANCH TO START

Pn

1f the values compared are equal, a transfer to the instruction 1labelled
START 18 made. The branch address {s a one byte positive or negative offset

which 18 added to the program counter during exection. At the time the
addicion 18 made, the program counter {8 pointing to the next fnstruction
beyond the branch instruction. The offset s based on the location of the

next Instruction. A branch address must be within 127 bytes forward or 128
bytes backward from the conditional branch Instructfon. An error will be
flagged at assembly time {f a branch targer falls outside the bounds for

relative addressing. Relative addressing 1& not wused for any
other than branch,

{nstructions

1.4 Implied

Twenty-five fInstructfons such as TAX (Transfer Accumulator to
require no operand, and hence, are single byte fnstructions.

Index X)

Four instructions, ASL, LSR, ROL, and ROR, arec
accumulator, A, can be used as an operand. In this special case, these four
instructions are treated as implied mode addressing and only an operation
code {8 generated. Their assembly language formats arc as follows :

spectal {n cthat the

ASL A .
LSR A
ROL A
ROR A
Rev 25.,02.86
Page 11
h ’!\"'@!{;"nram'd). e . PO

=

Part S

1.5 Indexed Indirect

In this mode, the operand address 1s computed by first adding the X registed
(the index) to the argument in the operand (in the example below, BETA). The
resulting value is the indirect page zero address which contains the actual
operand address. In the example: ‘

LDA (BETA,X)

the parentheses around the operand 1indicates 1indirect mode.- In the above
example, the value in index register X s added to BETA. That sum must
reflerence a location tn page zero memory. During executfon, the high order
byte of the address is ignored; thus, forcing a page zero address. The two
bytes starting at that locatfion In page zero memory are taken as the address
of the operand (n low byte, high byte format. PFor purposss of {llustrstion,
assume the following:

BETA contains §12

X contains $4 ‘
Locations $0017 and $0016 contain $01 and $25
Locatfon $0125 contains $37

Then BETA + X is $16, the address at location $16 {8 $0125. The value at
$0125 is $37, and hence, the 1instruction LDA (BETA,X) loads the value §37
into the accumulator. (This addreasing mode 1is often used for accessing a
table of address vectors in page zero.) This form of addressing 1s shown 1in
the following fllustration.

LDA (BETA,X)

BETA —=——=-3 12 +4 ——-—q
!
“ $124$4=516
s16 Low BYTE R—
, 25
=== .
) Ay

HIGH BYTE
01

Rev 25.02.86
Page 12

craa

Part 5

1.6 Indirect Indexed

Another mode of {ndirect addressing uses index register Y and {s {llustrated
by:
LDA (GAMMA),Y

In this case, GAMMA references a page zero location at which an address 1is to
be found., The value in index Y i{s added to that address to compute the actual
address of the operand. Suppose for example that:

CAMMA contasins $38

Y contains §7

Locations $0039 and $0038 contain $00 and $54
Location $0058 contatns §$12

The address at $38 ia $0054; seven is then added to this, giving an effeccive

address $005B. The value at $005B 1is $12 which {s loaded ({nto the
accumulator.

In indexed indirect, the {index X 1{s added to the operand prior to the
indirection. In indfrect indexed, the indirection is done and then the {ndex
Y is added to compute the effective address. Indlirect mode 1{s always findexed
except for a JMP instruction which allows an absolute 1{indirect address, as
exemplified by JMP (DELTA) which causes a branch to the address contained 1n
locations DELTA and DELTA+l. The indirect indexed mode of addressing 1s shown
in the following illuscracion.

LDA (GAMMA),Y

GAMMA -~~~
)
1
]

]
$38 beeeee,

:

$39

||| 'Iil
1
J
.

! $§0054+37=~$5b
1

Rev 25.02.86
Page 1]

P e -

Part 6

2,0 ASSEMBLER DIRECTIVES AND CONDITIONAL ASSEMBLY

2.1 Directives
.

There are ten assembler directives used to reserve setorage and direct
informstion to the assembler. Eight have symbolic names with a period as the
first character. The ninth, a symbolic equate, uses an equals sign (=) to
establish a value for a symbol. The tenth, asterisk, (*) mcans the value of
the current location counter. This corresponds to the ORG directive in some
assemblers. It is sometimes read as "here' or "this location"”. Some equate
exanples are "RED=5, BLUE=SFF, and #=$200. A liet of the directtves {s given
below and their use 18 explained fn this section.

«BYTE <HWORD «PACE «SKIP
.0PT . END +FILE .LIB
- a

Labels and symbols other than directives may not begin with a period.

Examples of assembler directives can be seen in the sample Assembler program
1a Appendix V.

If desired, all directives which are preceded by the period may be
abbreviated to the pertod and three characters, e.g: “.BYT .

.BYTE is used to reserve one byte of memory and load ft with a value. The
directive may contain multiple operands which will store values {n
consecutive bytes. ASCII strings may be generated by encloaing the string
vith quotes. (All quotes are "slngle" quotes, {.e: SHIFT 7.)

HERE .BYTE 2,{TABLE|,<TABLE2
THERE .BYTE 1,$0F,003,2101,7
ASCIl . BYTE “ABCDEFH” -

Note that numbers may be represented in the most convenient form. In general,
any valid 6500 serles expression which can be resolved to eight bits, may ba
used in this directive.

Arithmetic operations in the .BYTE directive are supported 1n this package
provided that they conform to the rules that apply to the solution of
arithmetic operations Ln the operand fleld.

.WORD is used to reserve and load two bytea of data at a time. Any valid
expression, except for ASCIl strings, may be used in the operand fleld. For
example:

HERE .WORD 2
THERE .WORD 1,$FF03,@)
WHERE .WORD HERE,THERE

The most common use for .WORD {s to generate addresses as shown 1in the
previous example labelled “WHERE", which scores the 16 bit sddresses of
“HERE" and “THERE". Addresses in the 6500 series are fetched from memory In
the order low~byte, then high-byte. Therefore, .WORD generates the values In
this order. :

The hexadecimal portion of the example ($FF03) would be stored 03,FF.

Rev 25.02.86
Page 14

e sena e s e e - R AL

i Y SR

Part 6

Equal (=) 1s the EQUATE directive and is wused to reserve memory locations,
‘reset the program counter (*), or sign a value to a symbol.

HERE km#4] regerve one byte
WHERE #aty? reserve two bytes
*=$200 set program counter
NB=~8 assign value
MB=NB+X101 assign value

The “=" directive is very powerful and can be wused for a wide variety of
purposes.

Asterisk (*) directive 1s used to refer to, or change the program counter. To
create an object code program that starts assembly at any address greater
than zero, the “*° directive must be used. For example, “*e$200°, arcs
assembling at address $200.

Expressions must not contaln forward references or they will be flagged as an
error. For example:

& = C+D-E+F

would be legal 1f G, D, E and F are all defined, but would be {llegal {1f any
of the variables were *defined later on in the program. Note slso that
expressions are evaluated in strict left to right order.

.PAGE 18 used to cauge an immediate jump to top of page on the output listing
and may also be used to gencrate or reset the title printed at the top of the
output listing.

. PACE THIS IS A TITLE
« PACE NEW TITLE

1€ a title is defined, it will be printed at the top of each page unttil {t (s
tedefined or cleared. A title may be cleared with:

+PAGE

.SKIP {s used to generate blank lines in a listing. The directive will not
appear, but its position may be found in a listing. The directive s treated
as a valld tnput "11at" and the list number printed on the left side of the
1isting will jump bty two when the next line s printed.

«SKIP 2
SKL1P 5

skip two blank lines
skip five lines

.OPT {a used to control the generation of output flelds and 11stings. The
optiona available ere:
LIST, NOLIST;

SYMBOL, NOSYMBOL; WIDE, NARROW :

Default settings are:
JOPT LIST

.oPT SYMBOLS
.OPT WIDE

Rev 25.02.86
Page 15

Part 7

Here are descriptions for each of the options:

LIST/NOLIST:

Used to congrol the generation of the 1isting file which contains source
input, errors/warnings, code generation, and symbol table 1f enabled.

SYMBOL/NOSYMBOL:)
Controls the printing of the eymbol table on completion of assembly. The

table 18 only printed Lf the *,p” (print) option 18 exercised when replying
to the assembler prompt line.

WIDE/NARROW:

The sssembler will limit the number of characters to each printed 1line to 80
1f the NARrow option {s selected, else the full line length will be output.
This factlity can be useful when 80 column printers are used.

.END should be the last directtve f{n a file and 18 used to signal the

physical end of the file. Its use {s optional, bpt highly recommended for
program documentation.

.LIB allows the wuser to Insert source code from another file {nto the
assembly. When the assembler encounters this directive, it temporarily ceases
resding source code from the current file and starts reading from the file
named in the .LIB statement. Processing of the original source file resunmes

- when end-of-file (EOF) or .END is encountered 1in the library file. The

control file containing the .LIB can contain other assembler directives to
turn the listing function on and off, etc.

.FIL can be used to link another file to a current one during assembly. A
library file called by a .LIB may not contain another reference to a library
file or contain a FIL. A “.FIL” terminates asaembly of the file containtng
it and transfers source reading to the file named on the OPERAND. These are
no restrictions on the number of files which may be linked by .FIL directives.
Caution should be exercised when wusing this directive to ensure that no

circular linkages are created. An assembler pass can only be terminated by
(EOF) or .END directive.

Rev 25.02.86
Page 16

. (PEVIIPTR Y ¢ D FRP LYUPRIT S UR I WP)

Ve o1t S30ber

{ MAS oo n IO

Part condas

2.2 Conditional A

embly

Conditional assembly is means of exercising control over the assembly process
to determine which parts of a source code are to be assembled.

Conditional assembly involves the testing of a value or expression and
assembling the next section of source code depending on the vcesult of
test.

Two options are provided. The firat evaluates an expression and assembles the
following code Lf the result is zero :

.umm.noxvumum—osv <

Code here (s assembled 1f the
result of the expression is
equal to zero

>
Un-conditional assembly re-commences here

The second option assembles the following code 1€ the result of evaluating
the expressfon is NOT zero :

.1IFN (expression) <

Code here is assembled {f the
result of the expression s
NOT equal to zero

>
Un-conditlonal assembly recommences here.

These impartant rules MUST be followed :

1.The dot of .the .IFE or .IFN condittonal assembly directives must be the
first non-blank character on the source line.

2.The expression must contain numeric values or labels that have already been
defined, and must not include spaces within the expression. The expression
should terminate with a space and a < symbol.

3.The > symbol which marks the end of the conditionally assembled code wmust
be the flrat character on the lina,

4,Conditional directives cannot be nested.

Examples :

Consider the development of an assembler. Several versions are to be produced
from the same source code. One for the Commodore 64 and another for the
Commodore B Series, or 700 Scries machines. Obviously it (s necessary to wmake
various declarations about the memory map of each machine, and throughout the
program various machlne speclflc pleces of code need to be written, although
the majority of the code 18 common to both versions. It ls too time consumlng
to keep two sets of source flles on separate disks, one for each machine, and

Rev 25.02.86
Page 17

LRPBAINARAL =S 26 m0 1r 04 0 & W . .-

!
i

Part condss

this would 80 mean that vhen a change {e made on one version san equivalent
change would need to be made on the other - twice the chance of making an
error !}

L}
Using the conditfonal assembly facilities the problenm
short files are prepared called HS64 and WS?700. These set a flag called
COMPUT to 64 in one case, and 700 i{n the other. Both chain {nto the first

source flle uning .FIL. Thus assembling HS64 produces the C-64 program and
assembling HS700 produces the B Series equivalent.

becomes aimpler. Two

Throughout the many files that comprised the entire source code the

value of
COMPUT {s tested and sections of code assembled or disregarded as

appropriate.

This {llustration shows how one or other of two definitions files were read.

sREAD DEPINITIONS FILE
+1PE COMPUT-700 <

.L18 DEFINET0O

>

« 1FE COMPUT-64 <

«LIB DEFINE64

>

By setting a flag called DEBUC various values may be shown on the screen.
Once the program was working correctly DEBUGC is set to zero and the next
assembly pass ommitted the debugging code.

«IFN DEBUG <

JSR BSOUT ;PUT RESULT ON SCREEN
>

Cond{tional expressions can include more than one refer®nce :

«1FE COMPUT+DEBUG-65 <

JSR OUTDSP ;SHOW CONTENT OF BUFFER
>

This last case only called OUTDSP when the C-64 version was belng aasembled
and DEBUC was true. The B Serles verston never assembled the call.

Rev 25.02.86
Page 18

Part 8

3.0 UINTS AND TIPS

The following suggestions are offered with the caveate that rules are for
guldance, and sometimes for breaking! They are a distillation of a nuaber of
years experlence programming on Commodore Computers, for better or worsel

I. Design each program on paper first, unless it Is a trivial {tem. Consider
memory mapplng, 1/0 devices and key functions carefully.

2. Try to use a top~down approach. Design your software ta call major
operations as subroutines s0 you can write elmple dummy routines, or stubs,
to stand In for undeveloped areas of code. The averall structure may then be
tested before the whol¢ program 18 completed.

3. Ten minutes thinking before trylang to fix s problem'is better than several
hours of debugging a bad patch.

4, Tt the going gets tough, take a br In my exporience a probles that 1
not solved by nine p.m 18 unlikely to be fixed by mldnight - and gives (Lteall
up in ten minutes the next morning.

5., Croup all definftions for a project 1into a file. Similarly, make a
definition file for each machine you work with definlng zero page, porting,
kernal etc. “ N

6. Try not to re-invent the wheel. Group popular subroutines together f{n a
single file and call them with .LIB for each new project.
7. Be expansive with epace for varlable storage. Re-use of flag locations etc
18 a good ldeca when memory 1s tight but can lead to clashes {f the program
starts to expand. Croup all variables together and laftialise them all with a
block fill routine before setting up special values etc.

8. The bug is most likely to be in the last thing you changed.

9. Document - document - document. A modification or extension needed in a
hurry six months after the program was Finished (7) goes through a lot wore
easily Lf you can read about each bit of the program betore changing fit,
Weitiag it down clears the mind wonderfully.

10, Describe each procedure in words and then in a real or pseudo high level
form before writing the machine code. Keep the line by 1line level comments
simple and short.

11. Stare at a plece of malfunctioning source code for only as long as it
takes you to be sure that it {s correct - twice. Then say to yourself - the
bug is somewhere else, probably in a subroutine which corrupts a common
variable or which destroys a flag.

12. Talking a problem through with another programmer can be a useful way of
homing in on a problem area. Nine times out of ten he will not need to wsay
anything!

13. Backup - backup - backup. Use the DO facility In the editor to keep your
files under thalr propar namas. Copy all files to snother disk and keep Cthen
in another bullding. Yf ever you suspect a disk corruption make & duplicate
before trying any recovery actions.

Rev 25.02.86
Page 19

Part 9

4.0 OUTPUT FILES GENERATED BY THE ASSEMBLER

There are four output flles generated by the assembler. Each flle s optional
and can bg created through the use of assembler directives or by exercising
one or more of the available options when responding to the assembler prompt.
The LISTING file contains the program list with errors and the symbol table.
By suitable cholce of assembly option and directive the 1listing €ille can be
reduced to a list of errors only, the full 1listing being produced when »sll
errors have been eliminated. The INTERFACE file contains the object code for
the loader programs usced by the earlier CBM assemblers and also by the JCL
Software EPROM programmers. The PROGRAM file 1a a dlrectly loadable file
vhich may be executed after being loaded 1into memory. Finally, the SYMBOL
file {e a list of the labels and their asigned values produced in a form that
uay be loaded by the editor.

Listing File and Error File

The listing file will only be produced 1f the “,8” or “,p” (screen or printer)
option is specified when the source filename is given. This file 1is made wup
of two sections: Program and Error List, and Symbol Table.

This listing contains the source statements of the program along with the
assembled code, Errors and warnings appear after erroneous statements. (An
explanation of error codes {s presented 1in Appendix VI.) A count of the
errors and warnings found during the assembly ts presented at the end of the
program. If a NOLIST directive Is placed {n the source code only the error

lines and warnings will be produced. Error lines and warnings are always
displayed on the screen,

The symbol table will be produced {f the “,p° option 1s exercised when the
source file name 1s given unless the NOSYM option is used. It coantaina a list
of all symbols used - in the program sorted {into label order, and thelr
addresnses or values,

Interface File

This file does not contain true object code, but data which can he 1loaded and
converted to machine code by a loader, or read by an EPROM programmer. The
format for the first and all succeeding records, except for the last record,
is as follows:

; nln0 ala2ala0 (d1d40)1 (d1d0)2...(d1d0)23 x3x2x1x0

Where the following statements apply:

1. All characters (n,a,d,x) are the ASCII characters zero through F, each
representing a hexadeciaal digit.

2. The semicolon is a record mark indicating the start of a record.

3. nln0 The number of bytes of data {n this record (in hexadecimal).
ELach pair of hexadeclual characters (d1d0) reprasents a single byte.

4. a3a2ala0 The hexsdecimal starting address for the record. The al
represents address bits 15 thru 12, etc. The 8-bit byte represented by (d140)
| 1s stored in sddress a3a2ala0; (d1d0)2 is stored in (ala2ala0)+!, etc.

S. (d140) Two hexadecimal digits representing an 8-bit byte of data. (dl -

Rev 25.02.86
Page 20

Part 9

high-order 4 binary bits and d0 = low-order &4-bits). A maximum of 18 (Hex) or
24 (decimal) bytes of data per record is permitted.

6. x3x2x1x0 Record check sum. This 18 the hexadecimal sum of all characters
in the record, including the nln0 and ala2ala0, but excluding the record mark
and the check sum of characters. To generate the check sum, each byte of data
(represented by two ASCIT characters) 1s treated ss 8 binary bits. The binary
sum of these 8-bit bytes Is truncated to 16 binary blts (4 hexadecimal diglits)
and is then represented in the record as four ASCII characters (xIx2x1x0).

The format for the last record in a file is as follows:
;7 00 clc2clcO x3x2x1x0

1. ; 00 Zero bytes of data are {n this record. The zeros identify this
as the final record in a fille.

2. cdc2clcOd This represents the total number of records (in hexadecimal) in
this file, NOT includlng the last record.

3. x3Ix2x1x0 Check sum for this record.
Program File

The program file 18 generally produced when all assembly errors have been
corrected by one or more assembly cycles and the program is ready for testing.
It is produced during assembly (f the °,m” option is chosen and {3 written to
the project disk using a fllename consisting of up to twelve characters (or
less) of the source file name plus the sufflx .MOD. The program file may be
loaded Into memory by varlous mecans, and carrics a load address spectfted by
the first byte of asscmbled code.

Symbol flle

The nsscmbler creates a n=e_c.n::n=—=—=w cach label used (n the source code
together with the value or address asigned to {t. On completion of a
the table ta mocted tnto label order and uscd to print the symhol table, or
written to dlsk as the symbol flle under a name conststing of the [flrst
twelve characters (or less) of the source file name plus the suffix .SYM. The
symbol file will be created Lf the directive .SAVesymbols s placed {n the
source listing at any polint. The symbol file may be wused to determine the
position of a label for debugging purposes, or for declaring the position of
all labels to another program module under deveclopment.

Rev 25.02.86
Page 21

Part 10
Part 10

S.0 ADDITIONAL BASIC COMMANDS.(DOS SUPPORT) #* C64 ONLY **

@N(drive):diskname,id
The C64 version of the Assembler includes the popular DOS Support system

vhich will ald you fin performing disk housekeeping functlons (copying, This command will format a disk using the name and {d specifted.
scratching, renaming), reading the directory, initfalizing the disk drive,
checking the disk status, and loading (and running) programs from disk. The @R(drive):newfile-oldfile
commands that this r ovid hort 1 ful.
program provides are short snd simple and are very useful This command will rename the file specified by oldflle to the name specified *
5.1 ACTIVATING THE DOS SUPPORT SYSTEM by newfile. v
The DOS Support system {s automatically turned on when the assembler systea) @C(drive):newfile=(drive):oldfile
is ficrst activated. No further action is required by the wuser. Most of the
coumands way be used by programmers writing BASIC as well as machine language. This command will copy the file specified by oldfile to the name specified by
newfile.
$.2 USING DOS SUPPORT
@s(drive):filename(*)
DOS Support provides all of the same commands that are included in BASIC) . fled 1
(copy, scratch, rename, nev & disk), a command to rgad the directory (without This commsnd scratches the file specified by iilename. If * is wvan»s M y 8
overwriting memory), commands to load and run programs and the capability to files beginning with the letters specified by fllename will be scratched. .
perfora operstions using a wild card filename (any file whose name begins
with certaln characters). euJ .
Each command begins with a single character. (See sectifon 5.3) The Ccharacter This command will reset the DOS. Note that nnwnnnﬂaucaMn omu nﬂpu -Mﬂsausn may
used depends on the command., The @ (commercial at sign) and > (greater than "hang" a 1541 disk drive requiring Lt to be swltched off and on again.
sign) are used Interchangeably to begin any of the disk housckeeping commands
or to read the directory. They are also used to reset or initlallza the drive. @l(drive)
The * (up acrow) {s used to begin the command to load (at BASIC"s Start of
Text address) and automatically runs a progrsm. The / (backslash) 18 wused to This command will inttialize the disk drive.
begin the command to load a program at BASIC”s Start of Text address. The X
(percent sign) Is used to begin the command to load a program at 1ts load /Ellename
addres

This command will load the file specified by filename. For example:

$.3 DOS SUPPORT COMMANDS /CALC-10

A description of each command is given in the following pages. © will cause the program named “CALC-10" to be loaded into memory. This conmsand

Appendix IX provides a brief summary of the commands. does the same thing as the BASIC command :

e LOAD "CALC-10",8

Typlng this character alone will provide the user with the current disk Please note that this command can only be Jaun wnnun_waﬂr—w>wum uﬂMMM“”“. nﬂ”

status. This performs the same function as the following BASIC code: machine code programs that are booted from ASIC. 8 N

computer will ignore the flles own load address and will instead load at the
10 OPEN 15,8,15 current "Start of BASIC Text' area.

20 INPUT#15,A,B$,C,D
-t 30 PRINT A;B§;C;D .] Xfilename
- 40 CLOSEL i
“ . °c ’ ' ! . This command will load the file specified by filename at {ts own load address. !
2 @s(drive):(filename)(*) ' ; It does the same thing as the BASIC command: ;
- , }
S This comamand will read the directory from the disk drive specified and print LOAD “"filename",8,1
w.. {t to the screen. If fllename is specified, only that file, 1f present, will ¢ th cogram to load. "
AN be displayed. 1f * s specified, all files whose names begin with the letters . where filename is the name o e prog .

o specified by filename will be printed.

. Rev 25.02.86
Page 22 Rev 25.02.86
Page 23

S ewmearae e e e e e Bl skt s
_

Part 11

It {s sowet{mes useful to be able to load a binary file 1into memory at an

address other the address specified in the file header. This may be achetived
vith the form :

LY
Xfilename,(addr)

The load address must be specified as a decimal value in the range 0 to 65535.
Variables may not be used and will result in a SYNTAX ERROR.

“fllenace

This comaand allows the user to load and run the program specified by
filename and does the same thing as entering:

LOAD "filename",8
followed by the BASIC command RUN.

Again, please note that this command can only be used to 1load and run BASIC
programs, or machine code programs that are booted from BASIC.

Rev 23.02.86

.The editor 1is used to enter and modify source files for the

Part 11

6.0 CREATING AND EDITING A SOURCE FILE

senbler. The
editor retains all of the features of the BASIC screen editor and allows
AUTOmatic line numbering, FIND, CHANGE, DELETE within a range, and RENumber.
Other commands include CET, PUT, DO, ASCII, CBM, TYPE and SCROLL. All of the
commands are detailed {n this section.

The editor commands operate in a similar fashion to the commands already
existing in the computer”s BASIC. For practice, we suggest that you ¢try to
create short example files using the editor commands.

The data files on which the assembler operates are wmade up of CBM ASCII
characters with each line terminated by a carriage return. The only
restriction on data flles 18 {n naming. Due .to the method in which the
assembler parses, spaces are not allowed in filenames. The files are
sequential and when listing a directory will show as file type SEQ.

6.1 Activating the Editor.

The EDIT mode of operation is selected by typing the word "EDIT" and pressing
RETURN. Edit mode s sutomatically selected If a GET "filename" command (s
used to load a source file. Note that edit mode s cancelled by typing the
command "BASIC" or when a BASIC program is loaded with the / or ~ DOS Support
commands. .

6.2 Using the Editor
When the Fditor is in operation, any BASIC statement typed auch as:
10 FOR 1=1 TO 10

will not be tokenized (converted into BASIC keyword tokens). Thus, you cannot
type a BASIC line with the editor turned on.

Source files are loaded with the “GET” command. As the file 1{s loaded, the
editor generates the line numbers asutomautically starting at 1000. After

editing the file, {nsure that the last line in the fi{le is a .FILE or a .END
asnemhler dicective, Then, aave the file on the disk with the “PUT” command,

Refer to Appendix VII for an Editor Command Summary.
6.3 Editor Commands
AUTO Line Numbering * C64 ONLY * (Cl128 and Plus4 - standard feature.)

The AUTO command generates ncw line numbers while entering a new source code
file. To enahle the AUTO command, type the following:

AUTO nl

where nl 18 the increment between line numbers printed. To disable the AUTO
function press RETURN when the cursor is immediatly against a new line number
and on a line which {8 otherwise empty or type the AUTO command without an
increment.

Rev 25.02.86
Page 25

L T L N

B, Part 12

1 FIND string 3
: . The FIND command (s :unaAna search for and locate specific character strings
in text. Each occurrence of the string is displayed on the screen. The format
. of the FIND command {s:
i FIND/strl/ (,nl-n2)
N
/ Delimiter (use a character not in the string)
) serl Search string
. ,nl=-n2 Range parameter. Ssme as the LIST command
i in BASIC (Optlonal)
.
The FIND function may be used when programming in BASIC. In this mode the
‘ delimiter character may be chosen to be a quote mark 1in which case only
strings will be inspected for a match.
CHANGE String
The CHANCE command automatically locates and replaces one string with another
(sultiple occurrences). This command is entered in the following format:
) CHANCE/str1/str2/ (,nl-n2)
‘ / Delimits the strl and str2
(use any character not in eithar string)
strl Search string
str2 Replacement string
,nl-n2 Range parameters. (Optional) The format is
the same as the LIST command in BASIC. If
omitted, the whole text is searched. = -
: The CHANGE function may be used in BASIC mode and handles tokenised material
correctly.
i DEL (Delete) * C64 Only # (C128 and Plusé - standard feature.)
The DEL function allows the user to delete several 1lines at a time. Simply

tnput the range of lines to be deleted (nl through
same as the LIST command in BASIC.)

n2). (The format s the

DEL nl-n2
To delete a single line, enter a line number slone on a blank 1line and preas
RETURN.
TYPE

The TYPE command will print source code held in memory or in a file, either

to the screen or to a printer. This is a convenient way to {nspect a file
vithout loading it {nto memory or of producing a printed copy of a file. A
TYPE operation may be terminated with the RUN/STOP key or slowed down with
the CTRL key in the same manner as LIST.
Printed output produced by TYPE will normally conform to CBM ASCIT code but
.

Rev 25.02.86

Page 26

. e N 0 et 8 Pase C Vet o

B e T

e

output to the 'screen or printer. The order of specification is

Part 12

may be switched to standard ASCII code by typing the command *ASCI1" and
presaing RETURN. (Reset to CHM style of output wicth "CBM".)

Page length, margin ufze and head+foot space default to 68 lines per page, an
indent of zero characters and a head+foot totailng 8 lines vrespectively but

may be changed to other values by adding additional parameters to the "TYPE"
command .

Exanmples :

TYPE Display current text on screen,
TYPE "filename" Display a source file on the screen.
TYPE ud

Print current text held in memory.
TYPE "filaname",u4 Print a source file. (NB Device 4 only.)

Adding eny, or all of the following parameters will adjust the form of the

not important.

,m XX use a margin of xx spaces.
1 yy print “yy” lines per page.
yh zz print “zz” blank lines for .
“head+foot”.
L
GET Flles *

This command {s used to load assembler source text files into the editor
disk. It can also be used to append text to files alrcady in meaory.

{rom

CET "filename" ,(nl)

nl Begins inputting source at this line in the file
currently in memory (Optional)

CET C “filename" ,(ni)

This special form of GET will load a file from a cassette drive.

Note: GET starts numbering lines at 1000 and increments the line numbe by
10. If ni 1s greater than any line number in memory, the fitle baing loa is
appended to the end of.the current text in memory.
PUT Command
The PUT command outputs source files to the disk for later agssembly. PUT has
the ability to output all or part of the memory resident file.
PUT "filename" A.allzuv
nl Starting line number (Optional)
n2 Ending line number (Optional)
If nl-n2 are left out, the whole file 18 written to the disk.
PUT C "filename"
This spectial form of PUT will save the current source text on a cassette

drive.

Rev 25.02.86
Page 27

Partl)

bo

This command executes the first line of a source file or a BASIC prograa as
if {t had peen typed from the keyboard, provided that {t atarts with a
semi-colon (;) or a REM statement. It is good practice to include the correct
name of s file as the first line. The following examples show how this can be
turned to better account by providing a convenient way of replacing a file

! on
disk :

BASIC 10 REM SAVE"(@O:filename",8 : VERIFY"O:filename",8

SOURCE

FILE 1000 ; PUT"@O:filename"

LIST Coemand

The editor LIST command works i{n the same manner as the LIST command in Basic.

LIST (nl)-(n2)
where nl-n2 specifies a range of lines. Valid parameters also {Include “anl-~
(which will ltet all lines from nl to the end) and “-n2" (which will 1list all
lines from the beginning up toc and including a2).

RENumber Lines (Commodore 64)

The RENumber function sllows the user to renumber all or part of the file 1in
memory.

REN (n1),(n2),(nl)
nl New start line number (Optional)
n2 Step size for resequence (Optional)
nl Old start line number (Optional) .

RENuaber may be used in BASIC programming as well. GOSUBxx, GCOTOxx, ONxx,yy
and RUNxx statements are correctly adjusted.

1{ the parsmeters nl, n2 and n) are not specified then default values are
tnserted. BASIC programs will be venumbered {n steps of 10, with the flrst
Itne baing set to line 10. Assenbler source matarial will be rconumberad In
steps of 10, with the firat line being set to 1000.

NUM #C128 and Plusé*

The C128 and Plus4 have the RENUMBER function as standard for BASIC. The NUM
cosmand is used solely to gencrate new line numbers for ASCII source files.
The parameters should be specified in the same manner as the C64 REN, and
defaults are selected in the same manner.

Rev 25.02.86
Page 128

Partl3

6.4 Ceneral purpose Editor functions

JOIN "(drive:)filename"

JOIN provides a means of concatenating a BASIC program file to the end of a
BASIC program held in memory. The source device 1s assumed to be the disk
drive (device 8) unless the special form JOIN C s used, 1in which case the
program will be read from cassette.

When using JOIN {t 1s important that line numbers of “joined” modules are fin
correct order. If & module with low line numbers is joined to the end of a

program with higher line numbers there is no simple way of correcting the
situation.

SCROLL

This command activates several invaluable screen listing alds.

First, whenever the cursor reaches the top or bottom of the screen further
text lines are “scrolled” on to the screen. If the cucsor direction s
reversed so that it moves away from the acreen limits normal operation occurs
and text on the screcn may be modified with the normal screen editor.

The next three comsands relate to clearing the screen and listing a nonm»on
of text., (Functlion key numbers in brackets refer to the Plusé.)

Press Fl to re-list the screen from the first line number found by
from the top of the screen downwards.

anning

‘Press F3 (F2) to re-list the screen from the line on which the cursor is

located. This provision 18 very helpful after FIND has located several
occurences of a wanted expression, The cursor is run up to the 1isting of the

occurence most probably wanted and f3 will show this line and several
following lines.

Press FS5S (F3) to see the next “screen” of the program. The last 1line number
on the acreen 1s located, and the screen filled with li{sting from this point.

The F7 key (*C-64 only*) provides access to scveral functlons, only when
edltting a BASIC or assembler source line. Prowa F7 and then a further key
from the following list

F7 E Clear from cursor to END of line.

F7 S Clear from cursor to START of line.

F7 T Clear screea to TOP, starting at the cursor line.

F7 F Clear screen to FOOT, starting at the cursor line.
F7 I INSERT a blank line by scrolling the screen down.

(Lf the line above the cursor starta with a line number
then a line number one greater {8 automatically wrlitten;
provided that a line with this number does not exist.
Use SHIFT 1 {f the llne number is not wanted.)

F7 X Return to normal cursor; no action.

Rev 25.02.86
Page 29

e s e A S i - 0= A 5

Partl]d

CBM

Selects
by TYPE.<

andard CBM code for vﬂn=nma output generated by the assembler and

ASCIL

Selects ASCII code for printed output generated by the sssembler and by TYPE
for users with ASCII printers interfaced to their computers.

RBAS (*C64 Only*)

The Reset BASic function resets the pointers that identify the start of the
BASIC text space and execute a CLR. It is provided to simplify the proceas of
saving hybrid programs (BASIC and machine code) on the C-64, made wusing the
method described in Section 8.2.

SIZE filename

A progras file has a natural load address which is specified by the
bytes of the file. To determine the load address and also the
last byte of the program once loaded use the SIZE function.

first two
address of the

SIZE “filename"
$start-$end

-

The start and end addres

shown are in hexadecima

SETBRK and CLRBRK (*C64 Only*)

Th two commands are used to insert and remove break points from a progrum
belng tested in RAM, The SETBRK command wmust be folToved by a FOUR digit
address in hexadecimal, (Por example 1. SKETBRK 3CBO) A BHRK dnstruction He
{nserted into RAM at the address specified, and the original conteat and

address preserved in memory. The byte preserved is also echoed on the asacreen
for information.

I1f SETBRK is called when a breakpoint has already been set then a call to
CLRBRKX is made ficst.

CLRBRK reads the address and byte value saved by SETBRK and
program to its original form.

restores the

HD and DH

These coumands convert a value from hexadecimal to decimal,
hexadecinmal respectively. HD umust always be
hexadecimal string. .

DH will accept values in the range 0 - 65535 ($0 to $FFFF), but does not
include over range testing.

and decimal to
followed by a FOUR digic

BOOH

Calls the machine cold start vector.

Rev 25.02.86
Page 230

-

——

-

expand+4

EXPAND (#C128 Only*) .

It is good practice to enhance the readability of source files by indenting
mnemonic, operand and comment flelds. This practice results in & lot of

wasted space in each file and slower operstion of the ausembler.
this, the author finds a tidy layout makes changes and subsequent
much easier that the wasted space 1s a small penalty to payl)

(Despite
updates so

When the EXPAND function is switched ON source lines up to & comment are
compressed as they are entered to remove un-necessary spaces. The SCROLL
functions, FIND and the screen re-write functions expand Bsource lines to a
tabular form for veadabilicy.

Spaces within comments and .BYT “xxx~ expressions are not compressed.

Expand is switched ON and OFF by typing EXPAND and pressing RETURN.

When SCROLL is selected and EXPAND is ON, source lines typed in an un-tidy

manner may be instantly displayed 1in tidy form by pressing Fl, which
re-writes the screen.

& .

Rev 25.02.86
Page 31

[y

o

7.0 ASSEMBLING A SOURCE FILE

Once a sourge file is ready to assemble, you should first seave It by using
the PUT command.

The assembler keeps the symbol table in RAM, and the 2000 (C128 -4000) entry
l1taft requires the reservation of 16K (32K) of memory.

The maximum amount of source material that may be kept in memory when the
assenbler is used {s 14K for the C-64 and 26K for the Plusi. If the assembler
1s called and the pointer to the top of text is above the symbol table start
then the assembler will return to command level with a warning message :

444 SQURCE TEXT AT RISK #4#

If this occurs it is essentlial that the source 1is saved first, and a NEW
command issued before attempting to use the assembler again.

Source code may be assembled directly from memory, dispensing with the need
to assemble from a disk file. The speed of operation in this mode 18 very
high. Cassette users will find this feature {nvaluable because text errors
can be eliminated before it becomes necessary to save the source to tape.

(sLowLyl)
Source text assembled from memory may include .LIB and .FIL references.
7.1 ACTIVATING THE ASSEMBLER

To use the assembler type "ASM" and press return., The
copyright notice and the user prompt line.

sembler will print &

7.2. USING THE ASSEMBLER

When a program 1s being assembled, the user has the option of creating three
types of output tile on disk.

The first type is an object f{le which contains the data necessary to create
a machine code program, 1in the hex format that has been historically
supported by Commodore Assemblers. These files may be read by loaders and {in
addition are the one of the standard input formats for the JCL Software EPROM
programmer.

An alternative, and frequently more useful file {is a directly loadable
progras (or binary) file. This file way be loaded {into memory for {fmmediate
execution and carries a load address set by the source file 1line chat (flrst
generated an output.

It should be noted that the assembler will not overwrite either of these
files unless instructed to do so.

The third type of file, WHICH IS ALWAYS WRITTEN WITH REPLACE {a a symbol
table file, and is crcated when a .SAVE instruction {s included In the source
file. This file consists of the symbol table created during assembly together
with the value asigned to each symbol. The symbol table file carrfes a suffix
.SYM on its filename and {s a sequential file. Each entry is of the form :

(label) = §$(value)

Rev 25.02.86
Page 32

Partld

This file may be inspected by loading into memory using GET, or wused as ‘a
definitions file for later projects.

When the assembler is called with ASM a prompt line asks :

.mocmnm.chmngn"mn—n=m5n.m.v.o\a\x.nv
7.

The required response is the name of the source file followed by one or more
options., The source file name Is also used to aame any output files produced,
8o it becomes a simple matter to keep all files related to a single project
correctly named. If output files are to be re-written because they already
exist place an @ symbol at the start of the source file name.

If a drive number is specified then the assembier looks for all parts of the

source file on the specifted drive and also creates the output files on the
same drive.

,m

Results {n the production of a module file which is a program file suitable
for immediate loading. The module file is produced carrying a name consisting
of the source file nzme with the suffix .MOD.

,0

Causes the assembler to create a hex format object file. The sequential file
produced in this manner carrles a name conslating of the source file name
with the suffix .0BJ.

x .

’

Results in the assembler writing directly to core so that the resulting code
may be exccuted {mmedintly. Sectlon 8.2 describes salc areas for code
assembled using this facility.

Note that a hex file, a module file or a write to core can be produced on one
assembly cycle.

-Hv

Will produce a printout. Note that {f printing is allowed by using the “.p”
option individual sections of the source may be llsted or not llsted by the
inclusion of .LISt and .NOLIst commands in the source file. The default s to
LLISt.

N

Obeys the same rules as “~,p” but output {s directed to the screen. During
aench assumbly cycle it {s pomsible to toggle the screen listing f(lag to turn
the listing on/off regardle of the 1inttial state selected by the °,&°
option.

c

’

Normal operation of the asscmbler {s to read the source file from disk, but
for small projects sclection of the ~,c” option will cause the assembler to
read the curreant source held in core.

After completing the response line press RETURN. To skip assembly, delete the
response and press RETUKRN.

Rev 25.02.86
; Page 33

50§

!
v~.ﬁ. Partlé v Partl5
;_ur_..u v ’
Wy
R }
xm%d HALTING THE ASSEMBLER 8.0 LOADING A FINLSHED PROCRAM.
i
%ﬁ ; When the assembler is running, operation may be halted by pressing the 8.1 Methods of loading machlne code programs.
B RUN/STOP ke). 1f this is done, the assembly process will be stopped and the
L prograa will wale for the user to either coatinue the assembly or to The JCL Software Assembler dispenses with the neced for a loader to rtead ASCII
A terminate 1t completely. Press the B key to terminate the assembly and return files into mempry as Lt produces a loadable program (or binary) file directly.
a] to command level. Press the S key to toggle the acreen listing flag. Pressing .
.“ any other key will continue the assembly proceas. This feature ts useful for .\
“. users without printers, as parts of the 1listing can be examined during Machine code programs may be londed into memory by means which depend on the
. assembly. machine in use.
) L)
m COMMAND FILES o Commodore 128 series machines provide the BLOAD function that will load a
\ program file at any location within memory. Eg:-
! The asseabler may be run with a SYS call which includes the filecname and
assembler options to be used. In addition, the sssembler provides an error BLOAD "ftlename",B15,00,P1024
flag which 1is zero {f the there were no assembly errors. With these
factlities 1t becomes possible to write a BASIC command file that -controls ' The C-64 and Plush mnchines utilise a secondary address aystem to flag that o
the entire assembly process. file 18 not a BASIC program, and that it 1s to be loaded at the natursl load
. address (determined by the first two bytes of the program file, lo, hi.) and
A typical C64 command file would be rtun by the DOS Support LOAD and RUN also that re-linking is to be by-passed :
symbol. eg:
“~CMD LOAD "ffllename",8,1 -
ps
The command file would then carry out the following functions automatically: After a LOAD called from within a program Is completed, BASIC will resume
operatlion at the beginning of the program, but variables are not destroyed. A
l. Scratch unwanted flles to provide the greatest amount simple program statement such as this will load a utility sulte:

of disk space for the assembler.
10 GG=GG+1:I1F CG=1 THEN LOAD “filename",8,1

2. Assemble the source flle/s.
puring program debugging the pOS Support “X° functlon will load a progrsm
3. Terminate if there was an errvor, or load the resulting binary file type of file into its natural load address, also without re-linking, etc @
with LOAD "filename.MOD",8,1

- X0:filename
4. Call the loaded program with a SYS call.
A typical command file including the appropriate calls for the each machine —
will be found on the system disk. '
Important note: *C64 and Plus 4* command files should not asign any BASIC
variables unless MEMTOP 1is lowered to an address below the symbol table.
Rev 25.02.86 Rev 25.02.86

pPage 34 - Page IS5

v &8 0 P R T

‘7.(?-1! NSRS Y

BRSPS 5 R 3
- e gt e s

e o

Parcl$

8.2 Integrating BASIC and Machine code

The two most significant differences between machine language and BASIC are
the speed of executlon and the ease of programming / debugging. A program
written {n BASIC can usually be finished to specification 1in a much shorter
time than the equivalent program in machine code. The speed of executfon of
the BASIC verslon may leave a lot to be desired. Most operations carrled out
by a machine code program can be carried out in BASIC, again provided time s
not the most critical parameter. The speed of execution of machine code can
be several hundred times that of BASIC and this 18 probably the main reason
machine code programs are written,

A popular compromise 18 to write parts of & program 1in BASIC and the
remalinder in machine code, thus taking advantage of the good points of both
systems. Such a program i{s called a HYBRID. A well designed hybcld program

loads Ln the same mannar as an ordlnary program, and naeds 0o spaclal actlon
on the part of the user.

In a typlcal Commodore system RAM fs allocated for program storage, variable
storage and system use, Buffer areas are popular locations for transitory
machine code utilities but the safest areas to wuse arc 1Inslde the program

area, In a space protected from the operating system by the adjustment of cthe
varlous system pointers.

Here {s a brief description of the most popular methods of producing hybrid
software.

Mechod |

Lower the top of memory pointers to convince the operating system that {s has
less RAM than usual, and then load the machine language wutilities 1in to the
reserved space. The reference manual usually describes the zero page
locations defining the top of memory (MEMTOP 18 the label generally wused).
Lower the top of memory before any varfable are declared, and do a CLR to
bring all varfable polnters {nto agreement,

This method has the advantage of offering a fixed address for the machine

code origin, and correct use of a Jump table allows the BASIC program to
access the machine code via stable SYS calls.

On the debit side, the top of memory 18 a popular place for debugging
routines and utilities so a clash over memory space can arise.

Method 2

Write the BASIC section, and fix the machine code utilities Just above 1it.
Before saving the program the end of text pointers are ralsed to finclude both
BASIC and machine code. On loading back into the machine the operating system
cannot distinguish between the BASIC and machine code and sets the end of
text palnter to Include hoth sections.

Theee sre no pactlcular advantages to thie method, and many disadvantages.

the BASIC program cannot he modified without flrat saving the machine
ectlon for re-jolning. Problems can arise due to the real end of BASIC
nat being whete the oparating ayatam thinka 1t I, but tha worwt f(eature la
thet a need to re-assemble can artse Lf the BASIC sectlion becomes larger and
overlaps the start of the machine code. In add{tion, the entry polnt table
will move after re-assembly, and the BASIC SYS calls will need to be adjusted
or computed by examining the appropriate BASIC pointers.

Rev 25.02.86
Page 136

Partls

Method 3

At the normal start of BASIC place a single line with a SYS call cthat directs
the interpreter to a short machine language program which resets the start of
BASIC to a higher address where the main BASIC program 1s stored, thus
reserving a space for machine code. The same rtoutlne also adjusts the BASIC
TXTPTR to the start of this new BASIC area and then performs an RTS. The
result 18 that the maln BASIC program then runs and can call the
in the lower section of memory using SYS calls.

net
wnachine code

Once this method 1s mastered It will be found to be the best way to Integrate
machlne code into BASIC. The finished program loads and vruns as (€ ft

were
all BASIC, The BASIC section can be wod{flaed without worrying about clashes
with the machine code. Also, the BASIC program can access the machine code
through a jump table at s stable addross at the start ot the wachtne language

section,

If the BASIC sectlon {s modified, all the programmer need do before re-saving
the hybrid {s reset the bottom of BASIC polnters in zero page. (TXTTAB).

This method of integrating machine code and BASIC was developed by JCL
Software on the original PET 2001 machine and has worked well on all later
CBM single bank machines. Because the method fnvolves placing a few llnes of
code at either end of the main machine language program it was given the name
“TOP”N TAIL". Source listings of TOP and TAIL appear In Appendix III and the
example listed in Appendix V uses them.

Rev 25.02.86
Page 37

L e 0 s ssre e 1 b BT 8 v+ 1o,

- Partl?
3 Partl$

words, the LOAD command always loads a file {nto the same place It wa saved
. 9.0 TESTING AND DEBUGGING WITH THE MONITOR from. This 1s very important in machine language work, since few progra are 1

completely relocatable. The file will be loaded {nto memory until the end of

The MONITOR 1s the machine language monftor for your computer. It contains

file marker (EOF) is found. Ui
~ many features that will enable you to create, modify and test wmachine
: language prograns and subroutines. The MONITOR”s purpose is to make {t easy Example: L '"SCREEN", 08 :reads a file from disk drive. w
. for you to exanine and change memory while debugging your program.
. * ‘w
h 9.1 Activating the MONITOR

COMMAND: M (MEMORY c~wvr><v

The machine language monitor on the C64 Assembler is accessed by typing ''MON" Purpose : To display ‘5naoq< as a hexadecimal dump within the nvnn—nnnn
] and pressing RETURN. The C128 and Plus 4 have bullt in monftors which address range. In additlion, the ASCII equivalent of each byte is shown at the
; function in a simflar manner to the C64 monitor; the user is advised to read

end of each line of display.
the sppropriate Commodore documentation for full detalls.

: Syntax : M(address 1)(address 2)
9.2 Using the C64 MONITOR

(addreas 1): First address of the hex dump

The MONITOR will respond by displaying the CPU registers and flashing the
cursor. The period {s a prompt that lets you know ,nrn MONITOR prograa {ia

walting for a command. The commands are described on the following pages.
Appendix VIII provides a summary of MONITOR commands.)

(address 2): Last address of hex dump (Optional. If omitted, eight bytes
will be displayed.) .

Memory is displayed in the following format: -
9.3 MONITOR Program Commands :

ADDRESS. + CONTENT ASCIT
COMMAND: G (CO)

.:AO4B 7F E7 00 AA AA AE 02 FF

Purpose: Begin execution of a program at a specified address.

Memory content may be edited using the screen editor. To edit, move the
- Syatax: G (address) cursor to the data to be modified. Type the deslred correction and press
RETURN. :

(address): An optional argument specifying the new value of the program
counter and address where execution 1s to start. When the address is left out,

execution will begin at the current PC. (The curreat PC can be viewed using Example: M 0000
the R command.) P .:0000 4C 7F EF AA 00 02 F7 FF .iecevee
. The CO command will restore all registers (displayable by the R command) and The first eight bytes of memory are displayed. ’

- begin executfon at the specified starting address. Caution {8 recommended 1in

using the GO commsnd. (It may sometimes be wise to set a breakpoint somevhere COMMAND : R (REGISTER DISPLAY)
in the line of program execution to prevent loss of control.) '

Purpose: Show important processor registers. The program status register,
program counter, the accumulator, the X and Y index reglaters and the stack

e pointer are displayed. .
Execution begins at location 040C. :

) Example: G 040C .

. Syntax : R N

T COMMAND: L (LOAD) a4

Example : R #
PC IRQ SR AC XR YR SP

0850 96C8 02 03 04 FE F&4

Purpose t Load a file frca disk.

Syntax : L “filena

', (device)

filename: Any legal filename COMMAND : S (SAVE)

(device): A two-digit byte {ndicating the device number from which to load . Purpose: Save the contents of memory onto tspe or disk.

08 (s disk (or 09, etc.)

Syntax 1 § "fllenamo",(device),(addrasal),(addr
0l 1is the c ette drive

s2) ki

filename: Any legal filename for saving the data. The fllename must be
The LOAD command causes a file to be loaded into memory. The stacting address enclosed in double quotes; single quotes are illegal.

{s contained in the firet two bytce of the file (in a PCM flle). Ia other

Rev 25.02.86
Rev 23,02.86 Page 39
Page 318

B S ikt ST T

L e

Partl8

(device): Any 1EEE device or cassette may be used. The device number of the
Commodore disk drives are normally factory eet to 08. Two digits wust always
be entered, for example 08 for device 8 and Ol for the cassette drive.

(address 1): Starting address of memory to be saved, alwaye 4 digits.

(address 2): Four digits specifylng the ending address of memory to be saved,

plus one. All data up to, but not fncluding the byte of data at this
will be saved.

The file created by this command {s a load file, 1.e., the flrst two bytes
contain the starting address (address 1) of the data. The ffle way be

recalled using the “L° command.
Example : S "CAME",08,0400,0C00
saves memory from $0400 to SOBFF onto disk.

COMMAND : H (HUNT)

Purpose : Searches through a specified memory range for the
occurence of a atring of up to 40 hex values.

Syntax : H (addressl) (address2) (bl) (b2)euee...

(addressl) : start address of. search,
(address?) : end address of search.
(bl) (b2) : hexadecimal valuea of the string to be located.

Example : H 2000 3500 20 D2 FF

Hunts from the start address $2000 to the end address $3500 for the string of
three bytes $20 $D2 SFF. The address of each location where the match ls
found Is displayed as a four byte hexadecimal value.

Hunt may be terminated with the stop key.

Command : F (FILL)

Purpose : Ftll a specified area of memory with a single
bycte value.

Syntax : F (addressl) (address2?) (byte)
(address!) : Flrat address to be filled.

(address?) Last address to be ftlled.
(byte) Value to be wrltten into memory.

Example i ¥ 0400 0420 AO

Fille the addre

range $0400 to $0420 with the value $AO.

Rev 25.02.86
Page 40

U IUDIE S,

address,

Parcl8

COMMAND : @ (READ/WRITE TO DISK)

Purpose : Allows the disk error channel to be read, and commands
to be sent to the dlsk unit.

Syntax : @

Acheives the same function as the “@° {n DOS Support. A channel {8
establtshed to read the error channel on device B and the result displayed on
the screcn.

Syntax : QIO . @N1:(disk name,bid) QUJ erc

Transmite the string following the inittal “@° to the disk commwand channel,

COMMAND : X (EXIT TO COMMAND LEVEL)

Purpose : Returns control to the machine to comuand level in BASIC or editor
mode.

Syntax : X

COMMAND: D (DIS-ASSEMBLE FROM CORE) See note 1.

Purpose : Provides a screen dis-assembly from memory.

Syntax : D (address)

The acreen dis-assembler will output ten lines of display and then wait.If
the user presses the cureor down key more code will be shown, any other key
results in the monitor prompt. Each line of display {is in the following

format:

$addr mne operand +hl h2 h) al a2 al}

Hhere !
addr = the address of the opcode.
mne = mnemonic of the opcode.

operand = value of byte or bytes comprising the operand.
hl h2 h3 = hex values of the opcode and associated operand.
al a2 al = ASCII equivalent of hl h2 and h3,

Bytes which do not contafn a valid 6500 opcode, which by virtue of thelir
address would be expected to contain one, are displayed in .byt format :

Saddr byt $xx shi al
Whare xx ia the byta that does not dis-asmemble an an opcoda, Note that the

dia-assombler uves thw same moemonic table as the assembler and thus will
correctly display sny special opcodes that have been patched by the opsrator.

Branch inatructions are displayed specially :

$addr mne *+2+45xx ;$addr2 ;hl h2 al a2

Rev 25.02.86
Page 41

il
—

ATy

I sl o

- e

Parcls
Where :
. represents the address of the opcode.
+2 = the number of bytes taken up by the opcode and operand.
+5ux = ghe branch

range AFTER the fnatruction has executed.

Saddr2 « the target address of the branch fnstruction.

CUOMMAND : A (ASSEMBLE)

Purpose : Provides a simple line sssembler which allows code to be

assembled
at a specifled starting address.

Syntax : A (address)

The assenbler prompts with the address specified in the
source text using the standard 6500 nmnemonics and operand
not be used in a simple line assembler.

original call, Enter
format. Labels may

Branch references should be entered with dummy target address until the code
is completed. Then patch the correct address. This procedure is simplified by
using the dis-assenmbler which produces a screen display that may be

imsedistly re-assembled by entering the assembler with a dummy address,
amuending the dis-assembled line of code and pressing return.

Rev 25.02.86
Page 42

Appendix i
Appendix I MEMORY MAP FOR C-64 WITH JCL ASSEMBLER
SFFFF
BK Kernal ROM
$E000
4K 1/0
$D000
($CB800-$CFFF used by IEEE adaptors.)
$C000 .
BASIC ROM, Assembler behind
$A000 -
Editor and assembler work space
$8000 -
BASIC, source text or
symbol table during assembly .
$4000 4 ; :
BASIC or source file text.
$0800
System variables and screen RAM.
$0000 —

NOTES

1. The area $C000 to 5CFFF {s free for the testing of small programs without
adjusting any system pointers.

2. Source/BASIC may occupy the space 30800 to $8000. °SOURCE AT RISK® wiil be
nwwwna Ltf the sembler is called and the current text exceeds $4000.

3. Several 1EEE-4BB bus adaptors use the ares $C800 to SCFFF for software and

- L Software adaptor works
_storage 8o thia space will become un-safe. The JC
“with w- versions of the C-64 assembler when used with an appropriate mother

board.

Page 43

e pime e d A b T R0 ot gl amtr e ¢

Appendix Lb
Appendix fa

Appendi) 1 MEMORY MAP FOR PLUS 4 with Assembler
Appendix 1 MEMORY MAP FOR C128 Assembler

BANK 1

B 0 $FFFF i
ANK)

$F800 top of text/basic/labels *
SFFFF

$E000 Start of BASIC variables
Source text / BASIC

Symbol table $C000
$CO00 ~-==omvuun . symbol table
$8800

Syabal table

Source text / BASIC : text/basic work space

$8000 ===~-- -

r - $8000

text/basic work space . T
Syabnl table

Source text / BASIC

$5000 B
. mnemonic table
' $4C00
$4000 ~— — ———— - |
Editor, Assembler, Utilfcles $4000
tncluding working vartables
Assembler cache area
editor and assembler
S$1E00 $1C00 ===mmmmm e
R D L e SR ——————— 1001
\ scraen, colour map, o/s work space
NOTES $0000)
I. The ASM command swaps the assembler from bank | to bank 0. All normal exit :
modes cause the Fditor to be returned to bank 0.
. . NOTES
2. The start ‘of BASIC vartables Ln bank | is met by the loader program. Users t of source code or .
requiring mocfe space for BASIC program development should make appropriate 1. The space $5000 to $F800 is available for developmen
adjustments to thje loader.

BASIC. “SOURGCE AT RISK~ will be flagged if the source ls larger than $B800
and the aweumbler 1w called.

. Rev 25.02.86 us
Rev 25,02.86 Page
Page 44

prr

Appendix 1f . .

Appendix it

i
b Appendix II USING COMMAND FILES
Appendix III TOP'N TAIL SOURCE LISTING FOR C-64
.~ .”.a. ””u..munn.“”-“ m“..-:.:n [lle L a BASIC program that mangagos one or mora
H disk or renntng L convert source (iles into a program file reslding on ' 1000 ;PUT"@O0:TOP"
m g ln memory. Command files automate repetftative tasks. : 1010 3
. For example, tak ; 1020 ;(C)JCL SOFTWARE “TOP AND TAIL”
. no.l-::_n”:o:-- ”.n”n aﬂ<n_o?-n:n of a plece of code fntended to deal with a J 1030 ;BASIC AND MACHINE LANGUAGE INTEGRATION
i “usercoms” and s nﬁon“;. aum xnaa user port. The source file (s called v 1040 ; ¢
"10 SYS(2063)" method of N”nnamum_“a uumncmnm n. loadable program using the 1050 ;SEE US-64 USER MANUAL SECTION 8.3
) g8 v ASIC. To re- p ' 1060 ;
_“ the following steps would be made manually:— e-assemble the softuare : 1070 .SKI 3
1080 TXTPTR = $7A ;CHRGET POINTER
{ |. Erase old .MOD and .SYM files to ensure disk ‘ : : 3
w. w. 0“.~nw~. the progres malAk ASH MUBENCONS,H" space s adequate. "mww.@xqa>a $28 ;POINTER TO START OF BASIC
: e oy sembly errors then load the .MOD file 1110 * = $0801 ;NORMAL START OF BASIC
' b L ‘ 1120 ; ‘o
M. OAD 4and RUN the completed program. 1130 sSYNTHESIZE <10 SYS (2063)° S
1 All vers 1140 .WORD REF ;FORWARD POTNTER i
;. svs n-:—w”“som w_>_M~m=aav~m., have an entry polnt which may be called with a 1150 LWORD 10 ;LINE £10 %
At inspected with program and an error flag 1in page zero which may be 1160 JBYT $9E ;“SYS” TOKEN ¥
n th PEEK .u:.u—. the assembler has finished. 1170 JBYT 7(2063)°
1180 .BYT 00 sEND OF BASIC LINE .
: The following two potats must be observed : 1190 REF .BYT 00,00 YEND OF TEXT DOUBLE NULL i
g I. C64 and P : 1200 ; '
i HENTOP n” wo“”wn“ Mws.”u”“_:”.».ﬂnmn w”o:: —..=On create BASIC varlables unless 1210 ;RESET BASIC TXTPTR ABOVE RESERVED SPACE
e ust above t \
i space for the wanted varfables. & comand Eile, leaving sufficlent __wmw www “Mﬂp__.ﬂ_x ;
{ 240 1H>NUL ot
\ 2. The SYS call must give the 1 L.DA NULL,
: source f{
.m nuaber, drive 0 will be assumed. le name directly WITHOUT a drive S “www) STA TXTPTR+1 f
- » W
A 1270 ;RESET START OF BASIC) [
L Here Ls a typical C64 command file to automate the above steps. 1280 LDA #<BASIC :
vl ik
o smaeear - TS) i
. 15,8,15,"S0: USERCOMS. A" : CLOSEIS ; L
+]. 30 SY5 32171, "USERCOHS, K" SESO TXTTABH i
5 IF PEEK (253) THEN STOP ! . . i
‘W SO LOAD “USERCOMS.HOD" , B "wwm ﬂuczvhmwmw>ﬂmumw<ma SPACE ‘
¥ 3
W . X
< When this v 1340 ;
w re-sseeable nhmn:a ”: been wsaved on disk, all that Lle neccessary to 1350 $PUT JUMP TABLE FOR USER CODE HERE. ;
Bl run the machine language again is to RUN "CMD", 1360 ;CONCLUDE USER SOURCE WITI .LIB TAIL
i Examples of skel 1370 .END :
s eton commnand files for each machi
3 Asseabler system disk. chine will be found on che 1000 ;PUT “@0:TAIL"
» ’ .
1010 ;
> 1020 ;(C)JCL SOFTWARE “TOP AND TAIL”

1030 ;BASIC AND MACHINE CODE INTEGRATION
1040 ;SEE US64 USER MANUAL SECTION 8.3

z v 1050 ;
S 1060 ,SKI 3
] 1070 TAIL RTS , ;RETURN TO BASIC

! 1080 NULL .BYT 00 {NULL AT START OF BASIC
ieow 1090 BASIC .BYT 00,00 ;2 NULLS = ZERO PROGRAM
: 1100 ; s
’ : 1110 .END .

' Note that the example in Appendix V uses TOP"N TAIL

Rev 25.02.86 A _ =

.o Page 46 Rev 25.02.86 .
¥ Page 47

N T (aramaia ot AN

I e P L .

B e, A S e

Appendix {v

Appendix IV 6500 SERIES MICROPROCESSOR INSTRUCTION SET

Add wvith carry to accumulator
"AND" to accumulator

Shift left one bic (memory or accumulator)
BCC Branch on carry clear

BCS Branch on carry set

Branch on result zero

BIT Tesc #its fn memory with accumulator
BML Branch on result mlnus

BNE Branch on result not zero

BPL Branch on result plus

BRK Force an {nterupt or break

BVC Branch on overflow clear

BVS Branch on overflow set

CLC Clear carry flag

CLD Clear decimal mode

CLI Clear tnterupt disable b{t i
CLV Clear overflow flag

CHP

Compare memory and accumulator
CPX Compare memory and {ndex X

CPY Compare memory and index Y

DEC Decrenment memory by one
DEX Decrement index X by one
DEY Decrement index Y by one
EOR Exclusive OR memory with
INC Increment memory by one
INX Increment X by one

INY Increment Y by one

JHP Jump to new locatfon
Jump to new location saving return address
Transfei memory to accumulator

LDX Transfer memory to index X

LDY Tranafer memory to index Y

accumulator

LSR Shift one bit right (memory or accumulator)
NOP Do nothing ~ no operation

ORA "OR” memory with accumulator

PHA Push accumulator on stack

PHP Push

processor statua on stack

PLA Pull accumulator from stack

PLP Pull processor status from stack

ROL Rotate one bit left (memory or accumulator)
ROR Rotate one bit right (memory or accumulator)
RTI Return from interupt

RTS Return from subroutine

Subtract memory and carry from accumulator
SEC Set carry flag

SED Set decimal mode

SEl Set Interupt disable statun

Store accumulator {n memory

STX Store tndex X in memory

STY Store index Y {n memory

Transfer accumulator to index X

TAY Transfer accumulator to index Y

TSX Transfer stack to {ndex X

TXA Transfer index X to accumulator
TXS Transfer fndex X to stack register
TYA

Transfer index Y to accumulator

Rev 25.02.86
Page 48

Ct yetmmeee v A pen

. 2

i

Appendix v

Appendix V A SAMPLE LISTING FROM THE JCL SOFTWARE ASSEMBLER

dump screen.....page f 2

:routine to copy screen to current .
H

;zero page pair

;open o/p channel G
;close channel ;
;leee output i

;screen ram origin 4

;make pointer to screen

;open output channel

;counter for screen lines

;cbm printer line preanble

ipet chr from the screen
imake Into ascil

soutput to If = &

;bump line scan

;tent for limit

;dec line count _a
;exit {f done 3

Linef Addr Code Source
00003 0000 ;call “top" with .11b and no list
00005 0000 .11b top
00046 0822 .opt list
00048 0822 :
WWMMN WNWW ;logical file number 4. v-upm uses
00051 0822 ;a sys call to perform dump := .
00052 0822 ; 100 open4,4 : sys2082 close
00053 0822 :
= $fb
822 frekzp $
WMMWW WwNM chkout = §ffc9
00057 0822 clrchn = S§ffcc
00058 0822 chrout = $ffd2
00059 0822 screen = $0400
22 H _
wwmmw WM- ml entry point for sys call
062 0822 .
Mmoou 0822 a2 00 entry 1ldx f<screen ;
00064 0824 a9 04 1lda HVuMnnu:
00065 0826 86 fb stx wnrnv .
00066 0828 85 fc sta frekzp+
00067 082a ;
1dx 4
00068 082a a2 04
00069 082c 20 c9 ff jsr chkout
00070 082f H N
00071 O0BR2f a9 19 1da 125 ,
00072 0831 B8d 7a OA sta temp
00073 0834 :
00074 0834 a9 11 loopa 1lda -Pu .
00075 0836 20 d2 ff jer chrou
0075 o8 : :1ine Index
1dy #0 H
00077 0839 a0 00
00078 083h bl fh loopb lda (frekzp),y
00079 0OB83d 20 63 08 AL nﬂasnn
00080 0840 20 d2 (f jac chro
00081 0843 cB iny reo
oo ohee a0 WN MHH loopb ;not yet...
0846 d0 :
Mwmww 0848 a9 0Od 1da #5d ;eend a c/r
00085 O0B84a 20 d2 ff jsr chrout
00086 084d ;
00087 084d 3
00088 O084d ce 7a 08 dec nnﬂmn
00089 085d f0 0d Wna ex
00090 0852 :
Rev nu.on.mm page 49

e A A

Il

Appendix v
Part20

duap screen.....page f# 3 Appendix VI EXPLANATION OF ERROR MESSACES

i
-Linel Addr Code Source H Ecrror messages are given in the progranm 1isting accompanying .nrn stateaents
: in error. The following is a 1list of all error messages which aight be
' produced during asscmbly.
00091 : :
00092 0852 a5 fb hunp .Hnu“avm;nnq Fo next Line v #4BRANCH OUT OF RANGE
00093 0854 18 e e .
00094 0855 69 28 ade 140 All of the branch instructions (excluding the two jumps), are seabled into
00095 0857 85 fb eta frek two bytes of code. One-byte 18 for the opcode and the other for the address
UU0Y6 0859 90 d9 b s —nr zp to branch to. The branch is taken relative to the address of the beginning of
0U097 UBSL ¢b fc »wn nooma 4 the mext fustruction. Lf the value of the byte s 0-127, the branch s
00098 0854 d0 d5 e.n uan zptl forvard; {f the value Ls 128-255, the brench ts backward, (A negative branch
00099 OHSE . heé 1o0pa) 18 in two”s complement form). Therefore a branch instruction can only branch
. forward 127 or backward 128 byres rcelative co the beginning of the next

00100 085 . :
120 cc f extt Jsr clrchn i (netruction. Lf an attempt is made to branch further than these liatts, this

;close channel

0010l 0862
00102 0863 60) res ;return to basic ercror message will be printed. To correct, restructure the prograa.
00103 0863 jsubren to .
Mw_ca 0863 29 7€ Sen mod “Mwmnnn screen code to cbm ascif #ADUPLICATE SYMBOL
105 0865 8
00106 0868 NM ww o wnm templ . The firsct field on the card fs not an opcode so it is interpreted as a label. -
00107 086a Oe 79 08 and 433t 1f the current line is the fiast line in which that symbol appears as a label
00108 0B6d 2c 79 08 asl ctempl (or on the left side of an equals sign), it is put into the syabol table and
00109 0870 10 02 bte cempl tagged an defined in that 1ine. However, Af the symbol has appeared as a
00110 0872 09 80 bpl trl label, or on the left of an cquate prior to the current line, the assembler
00111l 0874 70 02 ora 1380 finds the label already in the symbol table. The assembler docs not allow
00l12 0BJ6 09 4O el it “wmo E cedefinicions of symbols and will, in this case, prcint this crror message.
ora .
00113 03878 60 rcs S#FILE EXISTS
QU4 04879 H
00Ll5S 087 - .
0ull6 ccww icemporary storage area The FILE EXISTS error message occurs when the object file or module file me
00117 087a templ . -t = . aslready exists on the dlskette. This error can be corrected by scratching the
00118 O087b Meavu =t _ old file or changing the dlskette.
0011 . ceatl” N .
.oc_ww MMW” ;call “tail” with .11b and no list Note that the Asscmbler opens output files BEFORE starting PASS I, o lictle
00139 087f I time is wasted Lf the file alrecady exists. This ts preferable to the morg
-opt 1list usual practice of opening output fllen at the start of PASS 2, which can be
after wome time has elapued.
end of assembly, error count = 00000
: : *4PILE NOT FOUND
besic 047d chkout ffc¢Y chrout [ffd2 clrchn ffce '
H”“..n WSN exit ogst frekzp 00fb loopa 0834 The FILE NOT FOUND error message 1s displ el when one of the following
»w 83b null 087¢ ref 080d screen 0400 . occure!
ee2 o878 cempl 0879 temp2 087s trl 0874 ;
0878 trans 0863 txeper 007a txttab 002b The source file was not found
A .LIB specifies a nonexistent file
A .FIL specifles a nonexistent file
1]
The user should make sure that the filensme is not misspelled, or that the
. wrong diskette was placed tn the disk drive.
*AFORWARD REFERENCE
The expression on the right side of an equals sign contains a 3 bol that
haen“t been defined previously.
A label or expression which uses a yet undefined value 18 considered to be
referenced forward to the to-be-defined value and results 1in the uge of a
Rev 25.02.86 Rev 25.02.86
Page 50 Page 5l

ot S g ot s

B ¥ Sk
e oy
— e —==

D e

PR

Parc20

dumay value on pass |,

**ILLECAL ADDRESS MODE

operand, the

assembler
owing the

opcode) and

» absolute, etc.). If the type
of operand found 1s not valid for the opcode, this error message will be
printed.

Check to see what types of operands are allowed for the opcode and nake gure
the form of the -operand type 18 correct (see the section 1.1 on addressing
modes).

Check for the operand fileld starting with 4
supposed to he an fndirect operand, recheck the
types available. [f the format was w

left parenthesta. 1f {t {a
correct format for the two

rong (missing right parenthesls or index
register), this error will be printed. Also check for migsing or wrong {index
registers {n an indexed operand (form: expression, index register),
The assembler recognizes an indirect address by the parentheses that surround
te. 1f the fleld following an opcode has parentheses around it, the assembler
will try to assemble ft as an {nd{rect address. If the operand field extends
into absolute mode, {.e., larger than 255, (two bytes would be required to
specify the address),

this error message will be printed.

#* IMPROPER OPCODE

The assembler searches a line until f¢ finds the first non-blank
string. If this string 13 not one of the 56 valid opcodes, {t

label and places it In the symbol table. It then conttnues
next non-blank character

character
assumes it {s 4
parsing for the

string. If none are found, the next 1fne will be
read {n and the asmembly will continue. Hovever, 1f a second fleld s found,
it s assumed to be as opcode (since only one label ts allowed

per line). If

this character string f{s the error message {3 displayed.

not a valid opcode,

which case the assembler
will {nterpret the opcode as a label (If no label appears on the line). 1t
vill then try to assemble the next fleld as the opcode. If there 18 another
fleld, this error will be printed.

Check for a misspelled opcode or for more than one label on a line.

“*INDEX MUST BE X OR Y

After finding a valid opcode, the assembler looks for the

operand, [n
cate, the ({irst charactar (n the ope

this

nd flold s a left parenthesis. The
assenbler Interprets the next field as an Indirect address which, with the
exception of the Jump statement, must be indexed by one of the index
reglaters, X or Y. In the erronecous case, the character that the assembler
was trying to interpret as an index reglster {s not X or Y and this error
message {s printed.

Check for the operand field

starting with a Jleft parenthesis. If {t {g
Supposed to be an fndirect operand, recheck the correct format for the two
types avaflable., If the format is vrong (missing right parenthesis or index
reglster), this error will be printed. Also, check for missing or wrong index

Rev 25.02.86
Page 52

- ———

Part2l

registers {n an {ndexnd operand (form: expression, {ndex register).

——

ARLABEL START NEFD A-2

asacabler
et to mearnret 1e wn o Tabels Movavars the fiset chacncter of the Fleid
it an a label. Howaver, e i e
Mn—ng MM “”Vﬂﬂ:ﬁﬂnr an alphabetic character and the error message is p
oes n

with a special character. Also check for an f{llegal label {n the instruction.

*ALABEL TOO LONG

sin, the
bols are limited to s8ix characters |in -a:wnﬂ.w:ﬂdﬁw w:nw—s”mu v
et looks for one of the separating characters . u hove) mpararnes i
uuaniw"ana:; :w n label or string. If other than one o n:M ener nrrator
Geed n_”n error message will be printed providing that : o o htied
:anMnnn:o symbol to extend beyond six n:anmnnmnw n:a Mwﬂanwn heck Tor ™
nn:an= betwecen labels and opcodes. Also, check .NM o TN iane uteh
nv“n mmnan word; and doesn”t begin with a sem nn”u a._NVm—.
a”uwav—mn 18 trylng to interpret part of the comment as a
*A*NON-ALPHANUHERIC .
feld wous
1 re made up of one to six alphanumeric n-m»nm. AJM Muvmwnnpu_ pust >
e unu; nwoa‘nro opcode field by one or more blun m.a .nr—u e e
cmvnmﬂ M separator {s between the label and the opcode,
or othe : L

might be printed. .

B pha . =
Each of the 56 valid opcodes are made up of three alphabetic characters They
must be separated from the operand fteld (if one is :nnnaax-wv by one or more
blanks. If the opcode ends with a m_unn—m_. character (such as a comma), this
error message will be printed.

In the case of lone label or an opcode that necds no operand, they can be

foll rec a semicolon to denote the rest o the fne Is a .comment.
y by 1 |
ollowed di (R h 1 d] f] 1

*4pC DECREMENT

inates {f a
r is considered to be a fatal error and mwznﬂ”M< :ﬂ“Ma e program
Thia nnmn—m Is belng produced. The error is genera sphen the progran
”MM””Mn {8 decremented due to incrementing nrnnum”ownmﬂwtmn e e et
ounter to an
statement redeflnea the program c
for the next byte.
d address
files and carry a loa
» directly loadable program | jond address
zoa:_w—m“_”: ”ﬂ“ ﬂ_”an vwna of assembled code. 1o~:=JJ “_“””=n z”a-np<.
“vmnMFaM. :ﬂ; tha f{ntecrvening space [illed with SFF y .
ete L} "
discontinuities are not allowed. .
each time an

on because
Hex object code files will accept a ncgative transition

ted, and a new

address discontinuity occura the current cznﬂ:a _M”Mu—w—“unﬂhﬂnn”vmn. but bad
alue.

line started with the new program ne::namwﬂoz programmer will also tolerate

practice. (Note that the JCL Software
this practice.)

Rev 25.02.86 Page 53

ki
4

B e

Parc22

#*READ ERROR

This message refers to a disk drive read error.

Refer to your disk drive
manual for a description of these errors and their

causes,

#4SOURCE AT RISK *NOT C128*

The symbol table used by the assembler and Rource code being editted ahare
the same address space. In the Cb4 about 14K of source code may be rectalned
fn memory without risk of overvwriting by the symbol _table. (Plus4d -~ 26K.)
When the assembler Is used it first checks to see {f the end of the text held
In memory Is above the start of the symbol table, and 1f it 1is then this
error message is displayed and the assembler returns to command level, The

corrective procedure {s to save the rext using PUT, and then use NEW to clear
memory.

*AUNDEFINED DIRECTIVE

All assembler directives begin .with a perfod. T1f a period is the first
character In a non-blank field, the assembler {nterprets the following
character string as a directive. If the character string that follows {s not
a valid assembler directive, thils error message will be printed.

Check for a misspelled directive or a perlod at the beginning of a fleld that
fs not a directive.

**MISSING/ILLEGAL SYMBOL

This error 1s generated by the second pass. If a symbol is defined (shows up
on the left of an equate or as a label in a atatement), pass one will enter
ft in the symbol table. Therefore, a symbol in an operand field, found before
the definttion, will be defined with a value when pass awo. assembles {it. In
this case, the assembly process can be completed.

However, {f pass one doesn”t find the symbol as a label or on the left of
equate, the asscmbler never enters it in the symbol table as a defined symbol.

When pa two tries to interpret the operand field the symbol is in, there 1is
no corresponding value for the operand.

an

This error message will also occur if the assembler is looking

for a needed
fleld and runs off the end of the line before the field is found. .

Rev 25,02.86

e e smmeg s st o e se e qegym et

<

o A

)

Part22

VERY IMPORTANT NOTE

; r
When the assembler finds an expression ﬂtronznn~—nn—nn”” nusnm”mﬂ””d “Manﬂsa"o
he right of an equais sign) it tries to evaluate .
”” “ -wavup within the expression that hasn’t been defined yet, —nsnnznnnnﬂwwﬂu
will flag it as a forward reference and wait to evaluate {t n
pass.

If the expression {8 on the right side of an equal unds. the Mwntnﬂn
reference la a severe error and will be flagged as n:n”. wﬂtnuo~. e
expresafon 1s fn an OPERAND fileld of a valid OPCODE, cthe rs [

two bytes for the value of the expression.
uﬂ“”nﬂﬂn asao“; pass fiils in the <u~=nuMn a”n Mxvﬂn-u“”“h —n:m:nnsn<n“-—ﬁwaﬂnﬂ
i.e.,<256, the inatruc
the expression is one byte long . e
he forward reference to page
than required. This is because t e s the et
s one byte of memory (the extra one that was . :
“““”oanra ::uaar_mn didn"t know how large the value was, so it saved for th
.]
largest value which was two bytes.

2 <THEY
IT IS TWUS ESSENTIAL THAT ALL ZERO PAGE REFERENCES ARE DECLARED BEFORE
ARE REFERRED TO IN AN QPERAND.
AY

variables and wemory

The good programming practice of declaring all frEa HL

seignments at Uhe atart of the source file will avold any proble
source.

.02.86
Rev 25.02 Page 55

et J

U, AR R T —— - -
Appendix vif Appendix vii =
Appendix VIT EDITOR COMMAND SUMMARY _w SCREEN nl * Select screen background colout
NOTE: Detail varies from machine to machine. Use the command “WORDS® to check ,. SCROLL * Turn on scroller and screen re—write g
wvhich options are in the versfon you are currently using. ' R $xxxx Set a BRK at 4 digit hex address xxxx
Command Description SIZE "PROGRAM" * pisplay atart and end address of program
.. ,M ASCl1 Select ASCII printer mode for ASM and TYPE ’ ypE) * Display text on screen in pages format
N ,m ASM Call the Assembler system. TYPE “FILE" * Display file on screen
u AUTO * Terminates AUTO nl 4 * uyh=printer Ixx=page length
options uf=pr h
«...W BASIC Ex{t EDIT mode and return to BASIC " . ' Pexchesdstoor Hoee R :Enn
R BOOM * Call cold start vector WORDS # pProvide a listing of all EDITOR commands .
. BORDER nl * Select border colour SCROLL OFTLONS . fl i
‘ CBM Select standard CBM printer mode - ".”__ —_H””M MMM...-. w””M M”MHM“NM“ “w ”Nﬂ MM-.“””Q_. mmmﬂ H “w
CHANGE/s1/82 * Change string throughout entfire text Mw M:nnMMN” wwnmﬂm Mm:npwm.nrm pereen: '
CHANGE/s1/82/ ,n1-n2 * Change string {n line range w M”“”M ”M ””“—.MnoMn”“”M“ .
CLRBRK Restore BRK set by SETBRK - M”””Mnnn MMM“ MMn“wnMM”mnq.n cursor line.
DEL nl-n2 * Delete a range of lines X exit, no action. . ¢ operation.
oH ol Display hex equivalent of nl . Commands marked with “*° may be used in BASIC or EDIT modes o P
» * Execute [irst line of text/program . See sections 6.3 and 6.4 for a full description of the operation of these i
EDIT Select EDIT mode of operation * commands. .
FIND/s1/ * Find string throughout entire text
FIND/sl/,nl=-n2 * Find string in line range .
GET “FILE" Load source file
CET “FILE” ,nl Append file at line nl ¥
HD xxxx Display decimal equivalent of four - :
- diglt hex string :
. e JOIN "PROCRAM" * Concatenate program to BASIC 5
S MON . * Call the Monitor . .
..,.“ PUT “dr:FILE" Save text on disk ffle . _
..c , w PUT "dr:FILE” ,nl-n2 Save part of text line range nl-n2
' « RBAS ’ re of BASIC pointer
. REN nl,n2,n) % Renumber new start, step, old start : .
. .. _
Rev 25.02.86 _ Rev 25.02.86

i Page 57
¥ Page 56 _

B EE s LT

R

S R bt -Lz

<2

ki

. ke o ot T B % Ry ek S

e ttr e

&g e

o

Appendix vif{

LR,

Appendix VIIL C64 MONITOR COMMAND SUMMARY

Cormand Format

LOAD L "dr:filename”,dv
MEMORY M addl add2

FILL F addl add2 byt

HUNT H addl add2 bytl byt2...

REGISTERS R

SAVE S :n~nnn~n=~:n:.a<.naa_.nnuu
EXIT X

DISK e

Go G addl

co G

DISASSEMBLE D addr

AsseMaLe A addr

See section 9.3 for a conplete description

Rev 25,02.86
: Page S8

Deacription

Load file from device dv
drive dr finto memory

Display memory between
limits addl and add2

Fills memory between addl
and add2 with the value
specified by byt.

Searches memory between addl
and add2 for the string bytl,
byt2 etc.

Display the CPU registers
with option to ammend.

Save memory on device dv
drive dr starting at addl
and ending at add2-1.

Return to normal command
level.(BASIC or EDIT nmode)

Read and report disk
error channel,

Start executioa~at addl

Start execution, status
as get by R (Regliasters).

Start dis-assembler display
At specified address. Press
cursor down for more.

Enter line assemblaer.

of these commands.

v

e ——

|
|

e 1AL XCLT, 2

Appendix ix

B A VR G {180 " St 1 Y o ———

Appendix 1X C64 DOS SUPPORT COMMAND SUMMARY

. 1t in as
Note that the Plus 4 and C128 have equivalent functions bui

andard

s 4 version.
s0 the DOS Support facilities are only included in the C64 v

bol
In all cases the @ symbol may be raplaced by the > symbo

Command

e

@c(dr):newfile=(dr):oldfile

e1(ar)
J|mzﬂmﬂv"ﬁnwr=n5nﬁ.nnv

@R(dr):nename=oldname

@s(dr):filename

aus

@$(dr):partname(*)

/filename
“filename

Xfilenane

Xfilename ,addr

See section 5.3 for a compl

Rev 25.02.86

aidaisisia o ugiis ot IR

e description of each of the

Description

Read and display current dlsk
status.

Copy flles.

Initialise drive dr.

Format a disk.

Rename a file. ‘
Scratch a file.

Reset disk unit.

Display disk directory
showing files commencing

with partname

Load a BASIC progran.

Load a BASIC program and RUN.

Load a program file at its own
address.

Load a program file at the decimal
address specified.

commande.

Page 59

Appendix x

Appendix X USING THE ASSEMBLER WITH OTHER 6500 SERIES PROCESSORS

The 6500 family of processors used 1{n Commodore and other computers and
single *board controllers, are manufactured world wide by a number of
Conpanies. Some members of the family have expanded Instruction seta that

include, focr exanple the ability to push and pull the X and Y registers to
and from the stack in addition to the accumulator,

The assembler allows additfonal Opcodes to be added to the standard

instruction set and 80 makes the Commodore computer an ideal low cost program
developaent sytem for these later processors.

During sembly each opcode mnemonic {s compared with a table of mnemonics
and address mode codes to determine the correct opcode to assemble, This
table is located n RAM. The table consists of a four byte cell for each
opcode and includes o dummy cell for each instruction that is missing from
the standard 6502 Set, making a total of 1024 bytes. The cells are stored f{n
opcode order and thus un-used cells may be over written by using the mon{itor,
or more conveniently a BASIC program.

Each four byte cell {s made up of the opcode mnemonfc (3 letters,
less) followed by an address mode code. The address mode codes are

no more, no
as follows

Address Mode Code Example
Indexed indirect 48 LDA (label,x)
Zero page 49 LDA $42
Immediate 50 LDA #42
Absolute 51 LDA $4242
Indirect indexed 52 LDA (label),yY
Zeropage,X 53 LDA $42,x
Absolute,Y 54 LDA §4242,Y
Absolute,X 55 LDA $4242,x
Absolute indirect 56 JMP ($0300)
Zero page,Y 57 LDA $42,Y
Accumulator 58 ROL A
Implied 59 INX

" Relative 60 BNE label

eleton example for each machine will be found on the system disk.

Rev 25.02.86
Page 60

poE T g
[

