
Cle and PLUS/ 4

PROGRAMMER" S§

GUIDE

Copyright (C) 1985 COMMODORE BUSINESS MACHINES (U.K.) LTD.

Table of Contents

TABLE OF CONTENTS

SECTION ONE - INTRODUCTION

1.1 INEroduction se sew eis se sin sis sis sie ova ew ols win 1
1.2 What is Included?...ccceceecceccccseaes 1

SECTION TWO - PROGRAMMING BASIC

IntroductioN.eceeeeesesecsosscccceasensns
Command and Statement Format..e.eeecesecee

BASIC CommandSv.issssnnvosvososanswan oss
AUTO: eecoccccsscccosccscscsssscssossssscscsscses
BACKUP os eooesoscccccscoscsacssasecscsssscs
COLLECT a ais sie ns wre i a 5 ois ove $0 we whe 3 & ia! 018) 910; 806 @

CONT. eveveoeeacscocscacscsacassccncscncasn
COPY.ceecoconcesnccscaossosscaccosacsasanssnse
DELETE. cecceececocccoccascscsosssansannnes
DIRECTORY cecevecococscoccccccoccsconcnsDLOAD:ccoeescsccsesssanscacssnscasacnss
DSAVE.cceeeeesacscscsscscscsccscsconcas

HEADER: :ececeeeoccecoscosccssscsacccncnns
HELP .ceeooeoaoeencscecsccscossncsccnnsonsKEY.eeeeoooeeoaocosescnsnsescosnscnsnns«oo

Bb

Bb

DRE

REE

RRWLWLWWLWWLWWWWLWWWWWWWWWWWWWN

LIST eeeeeaoseascscnscccasoscscssossssnssNNHHHEHEFRFFRFFWOON0

UB

WN

HRQROVOJOAUTE

WHS

LOAD :veecsosesccsoscscscssnscocoscscnneNEW.eeeeoooeeoooaoosasoosscscsasscancnnnns
RENAME. ecco ecccocccsccenccocscnscsnncns

RENUMBER::cecoocecocscoccocossosccccoccns
RUN:coeoaoeeoceacocecosscsascnscnansnnns
SAVE. eceeeeescecsccscssosscscossassncnsnnse
SCRATCH: cseeevcoosccscosccccsocsosscsscsssne
VERIFY covsssnsnssssensssnsnsnnsonnsersss
BASIC StatementS..ccccccccccccccccssnnae
BOXeeeeeooooooeooansosoacossosascasccsncnseo

0

so

0

eo

«

oo

CHAR::oeevencoososscccscsnssncscccsnssas
CIRCLE :ceecsceessceccsossssossnsccssaccsCLOSE.ceesceccscscosscscacocsscsscnscnnss
CLRevcececesacscscscosscscscsscscssncnss
CMDeveeececoscacocoscecacocssccsnsccnss
COLOR.cceecenssocscaocacsssosaccccosscncs
DATA.iceeeoseseosssssscccsaossosscsscansnns

DEF EFNoceeoceeracesososccsosasssacnnasnasnse
DIM:ceoeceosccocscossscccssnsassscnnsnsnse

DO (LOOP) WHILE (UNTIL EXIT) ceeeececsen
DRAW. ceoesceecccccocscssoscnascccoansanseENDoceococosoocscocococencasnscncosnannse
FOR «ce TO cee STEPcececcccccococccosnsnse
GET eeeeoessescscsansescsassscnsnscnsas .
GETKEY..ceeeecocococcncnnne cecececscnaeGET#.ceveecscsccccscsscaccccssncaccsonns
GOSUBeeececoocscossnccososcsanassssansas
GOTO OF GO TO.ccsccccccccscssocnncsncanae
GRAPHIC. cococesssnscsssssescsssscnccscs
GRAPHIC CLR:ccccccccccoccscccccccsanscsse

NRNNNNONNODODNNONNNNNNNNNNNNNNNNNRNDNNODNNNRDNODNNNNNNNNDNDNNNDNDNDNDNDNDNDN

NNN

NNNNNNNNMNONNNONNNODNNNONNNDONNDNDNNNNNNNNNNNNDNODNNDNNNNDNDNDNODNNDN

NNHEREHEHEFRRFEFEFHEFOONOU

Re

WN

HFRWVOJOUVE

WN

©

8

o

6

eo

es

oe

6

+

eo

8

so

8

oe

se

+

6

eo

©

©

+

eo

6

oe

oe

eo

o

8

es

0

es

8

se

0

8

eo

eo

WOON

UL

EE

WWWH

Table of Contents

IF so. THEN ... ELSE.ccccccecroscconncs
INPUT. eeeeeceecseccccaccaasesnoasnnsnnnsINPUT. os ero ave wos sie ie an as #1 8 18 00: wis wie 078 a6 #

LET. 00 00:0 a6 wie #08 0 8 is: sve 016 808 808 & $78 808 018 6 6 4 61% &

LOCATE. tecesccccoocscscacasssosccansnsMONITOR. ¢eeeeeoneeaceenensassscocsannns
NEXT wo nie 0:0 0 000 aie 010 1910 1» sie s70 lon ise i atie: #76 #18 i; ia) 8

ON'sio ois wie wis is wim oie 316 0 8 8 9% $76 wi 516 8 66 676 @6 & #8 &

OPEN. cteeeceeeecceocnocscaccnnnsasnnns
PAINT ecececasceccccscoccscsosscsccnsnssPORE.csssevcesncscsstosocesnnsacssanssos

®

eo

6

+

s&s

eo

+

so

eo

eo

so

PRINT sie sis ws im ate wis #06 80 0 19) 510 ais ie 66 8 91% 676 0876 60PRINT USING:cecsocecscscoccoosccccoases
PUDEF ceceeeoesoscscccsoscscoocosnsnscscsss
READ :cecreeceecsocoencccccsccoasoccsnsasnns

REMeceeeeceoeesocecccaoscacccacsasososnas
RESTORE. cceteecccccscscscsccsccccccosscs
RESUME ceeeeeccoscscocccsccsscscocccnscsRETURN.cececsooscoscacccccocccocccnsnses
SCALE:cceeeosesecscccscssccccsccsscscocns
SCNCLReeccseoscecscsasccoocacccscnscsas

SOUND cieeeesssacccoscscccccccococcoacons
SSHAPE/GSHAPE. cece eeeecccccccssssoocnns
STOP .ccecececececsosccesctscssosscsccsnne
SYS eieececseeococecscanssscscccccccccsns
TRAP. ceeeceoeocscscsccscccscscnancocnons
TRON: coeesoceososssocccsacssscsnccoccosnes
TROFF ceeecececsccsssccccosassosscccncacnsVOL.ceeeeeoaosoceceocscccccccaccocnsnns

MUU

BERBER

RWWWWWLWWLWWWWWNNNNNDNDNDN

NHFQIWVWONOATVNBWNHRQOUONOAUVTEWNHFQOVOIOAUL

EWN

®

oe

9

©

©

eo

6

so

8s

eo

eo

8

eo

°

8

oe

eo

eo

»

WAIT. eeeeeeoeeeancosascocoscscossosccsnnsAdditional Graphic Statement
Informations se ev eo w om oe oie aie © om oo as 4 66 ole
FUNCTIONS: 56 56 06 94 8 08 a0 5d 6:0 6 oh mt 500 mom ww
Numeric FuUncCtionNS..ceesecessccsccssaccs
ABS (X) (absolute value) .cceeceecsccccces
ASC (XS) ws wos om wid wis 656 976 oie o7e #6 @ 57% as 9.6 6.9
ATN (X) (arctangent) ccecccececccsccccncces
COS(X) (COSiN@) ceeecesccccsccscsccannsns
DEC (hexadecimal-string).cecceececececccecs
BXP(X)is avs wis w ors ois oe 8 5 aie ae 6% #18 808 wi ale 0PNXX(X) senso ssnsss assess ins onsen on
INSTR: 6:6 5 a 556 51d 608 5.578 008 a8 558 8 8 0 66 ous 08 (6 8INT(X) (integer) .c.ceecessccescccsccnaaa
JOY (N) ce 0x0 wom wi enw ws 78 0 ois sis #50 wis & #7) 01% 016 #78 8

LOG(X) (logarithm)....ceeeeecccccecanns
PEEK(X) ssveisinnnssssnsacnansinoininie sn
RCLR(N) ceceeccecccncccncssacsccsccccscnes
RDOT (N) eevevecnencceenncnncccnepencnnns

NOD

NNPNONNNODNPODNODNNONNDNODNNDNNDNDNODNDNDNDNDNDRNDND

NNN

[8

I

a

TE

lo

YG

NO

NT

SEE

NT

NV

Ny

®

8

eo

eo

eo

eo

+

8

es

0

ee

8

&

eo

eo

es

&

6

hb

ee

8

8

8

ee

e

RGB(X)eoeoeeoeocoscocacsoscosscacscccsnnse
RLUM(N) ceececcecccccocccccnssccccsoaansa
RND (X) (random NUMbEr) cccececcecccccacscs
SGN (X) (3ign) eesesvevsvonvosases onesies
BINIX) (Sine) sissssiosnsasnnnsninscnsoss
SQR(X) (Square root) .ececececccccccscocnscs
TAN (X) (tangent) cceceeccccceccccccsccccs
USR(X) eeeecescecccccncaccccsccsoccnscns

NNN

NNRNRNRNRNRNNRNNNRNNRNRNNRNNNR

eo

es

6

os

6

5s

8

8s

es

6

8

sas

eee

se

sw

AANA

GC

ACO

GGG

GA

GGG

AGA

CFs

BEE

EYEE

BE

Ae

6

ew

ewe

=

bb

“os

8

8

os

6s

ce

6&8

66

sels

bw

seb

NNNHFHEHHEHHEHERREEWOONAUS

WN

NHEFQWVWONAVEWNDHS®R

ii

PNDNNNONNNNNNNNNNONNODNDNNNRONNODNNDNDNODNDNDNNDNDNDN

NNN

NRONNNPOPNONNDNODNNNNNNDNNONNNNDNNDNNDNDNNDNDNN

Table of Contents

. nN w VAL (XS) sv oo si vi5 506 56 9 6 9 6 9 978 97% 978 906 919% 37% &7%

String FURNCEIONS ws ws wee sm awa wie w.6 4 5. on
CHRS (X) coeencanconsscsoscoscscasascsnsnas
ERR (IN) ace oie svn sre vs ws 18 19 8 18 850 676, 078 wis #73 & o's) 70
HEXS(N) 6 om 00s wa wis wis 5:6 98 8 656 57 978 60s 08 #8 99
LEETS (XS 7X) am si wis sie 50 6 5 9 6. 6% 0% w8 06 0 6 0038
LEN(XS) ceveeseeresnesenscsocsossnsancacacs
MIDSHXS , N'yX) co sv wis wre m8 1 9 13: 8 19; sie; as wis 70 150 @ 0) 05
RIGHTS {XS +X) is sis 515 we 5 55 5 6 5 956 606 676 90% 50d 3 6STRSU(KY ais a 550s 016 956 be 000 101 8 8 8 01 90. 8:8 05-906 01 w 16) 0.0
Other EUNCEiONS se eis ave iersis so ois ace sie bie sie @ ais
ERE (X) 00 w sm ain 5:6 5/8 wis ss 18 0s sl 0:5 sits 7 ais @6 580

WWWWWWNNNNDNDNDNDNDNDN.
es

eo

eo

se

oe

eo

ONLI

NNO

OOOO

OOO

©

oe

es

eo

+

+

so

“es

eo

NAV

WN

«

os

«ee

oe

POS(X) sessccsoscsocasssoscssccasscacsanssSPC(X)eeoeeeeoecaoeccccnsoccasncnsansse
TAB(X) eeceececcsosccscccccassescnsannseTU (PI) eeeeeneennnceosscecesnnacnanannnan
VARIABLES AND OPERATORS .ccceesecccncossesVariableS.ceeeceeeeseecscsasascasooscnens
VARIABLE NAMES. c.0 oie oe aia sis isi io ois ain 8: os #8 8

RESERVED VARIABLE NAMES .tceecscccccccesBASIC OPERATORS :cccescesccccscssccccascsBASIC Abbreviation and Reference Chart.

the

esses.

Sa

«sea

NH
oe

cee

ee

N=

Gs

WwN

NNN

NNDNODNRODNDNODNDNODNODNDNNNDNDNDNDNDN

SECTION THREE - PROGRAMMING MACHINE CODE

What is Machine Language?...cececeeecss
What does Machine Code Look Like?......
Simple Memory Map of the Clé and PLUS/4
The Registers Inside the 7501
Microproces Sorc. sie sis we wis v #16 iw 515 w5s ore 505 4 o

THE ACCUMULATOR ss vsvisssssonscodsnnsne
THE X INDEX REGISTER:ceceeosseccccccces
THE Y INDEX REGISTER, «suwowowssnsssnsss
THE STATUS REGISTER.ws sews sswsnssaswsssTHE PROGRAM COUNTER:c:coscsssosasscccse
THE STACK POINTER::.cecescsssccscccccascs
THE INPUT/OUTPUT PORT :eeeecescccccacocenWriting Machine Language ProgramS......
TEDMON COMMANDS isssssomonnéss sss nsss on
USING TEDMON.::eseseseascsnsscnccsccanes
COMMAND DESCRIPTIONS svewsonsssvsssnmsnss
HEXADECIMAL NOTATION. .ceeeesccccscscescse
ADDRESSING MODES. cesses inscsssccssscsnseZERO PAGE: scssvcssnsscncnssosessssnsnss
THE “STACK. e sie suo one ose 0:0 @ aw site wie ris: aye aie, & #818
INDEXING. so si 00 ois ws sis 0 10) 8:6 86 808 6700 956 8088 & &

INDIRECT INDEXED:swswaswnswawsansansncosnsi
INDEXED INDIRECT .:eeececocsnccscsscnasa
BRANCHES AND TESTING.:eoeeecscasoscacoces
SUBROUTINES sis ove sie win asia jie 0:0 105 5.6 aim 65, 008 858 9106 8

7501 MICROPROCESSOR INSTRUCTION SET =
ALPHABETIC SEQUENCE.:eessccccascssscncs
THE KERNALcivescossonnnssnososanonscacse
HOW TO USE THE KERNAL.cteceeseooscccsacae
USER CALLABLE KERNAL ROUTINES .:eeecsossKERNAL ROUTINE DESCRIPTIONS .c.cecceececeas

WWwWwww

oe

Sw

=

oe

eo

oo

+

eo

NOU

WN

HH

HW

0D

JoOUI

UU

UE

bbb

=

WN

ay

“

.

N=

WWWWWWLWWUWLWWWLWWLWWWWWWWWWWW

eo
wn

=

©

oe

eo

eo

oe

4

eo

es

eo

es

eo

WwWwww

ev

ei

oH aa
"ve

WN

iii

NON

NNNNNNONNDNDNNNNDNDNDNODNDNDNDND

DN

WWLWWWLWWLWWLWWWWLWWWWLWWWWWWWW

www

Wwwww

44
44
44
44
44
44
45
45
45
45
45
45
46
46
46
46
46
46
47
47
48
50

NH

AONB

RWWWWWW

Table of

3.11.4
3.12

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

Contents

ERROR CODES.cveuecsencesscccossccannnas 3 = 52
Cl6é AND PLUS/4 MEMORY MAP.............. 3 = 53

> | SCREEN DISPLAY CODES

B - ASCII AND CHR$ CODES

C - SCREEN AND COLOUR MEMORY MAPS

D - DERIVING MATHEMATICAL FUNCTIONS

E - MUSICAL NOTE TABLE

F - ERROR MESSAGES AND DOS ERROR MESSAGES

G - C16 AND PLUS/4 SCHEMATIC DIAGRAMS

iv

Section One Introduction

SECTION ONE

INTRODUCTION

1.1 Introduction
The C16 and PLUS/4 PROGRAMMER'S GUIDE has been developed as a
working tool and reference source for those who want to
maximize their use of the built-in capabilities of your C16
or PLUS/4. This manual contains the information you need for
your programs, it is designed so that everyone, from the
beginner to the professional experienced in 6502 machine
language, can find the information to develop his creative
programs. The Cl6 and PLUS/4 PROGRAMMER'S GUIDE also shows
you the capabilities, and limitations, of your C16 or PLUS/4.

This GUIDE is not designed to teach the BASIC programming
language or the 6502 machine language. If you do not already
have a working knowledge of BASIC and BASIC programming,
COMMODORE recommends that you study the Cl6 or PLUS/4 USER'S
GUIDE supplied with your computer. The USER'S GUIDE gives you
an easy-to-read introduction to the BASIC programming
language.

1.2 What is Included?
Section Two covers all aspects of programming in BASIC 3.5.
This "BASIC Encyclopaedia" gives Commodore BASIC 3.5 language
commands, statements and functions listed in alphabetical
order. Included in that section is a "quick 1list" which
contains all the words and their abbreviations.
The Cl6 or PLUS/4 computer has many powerful graphics
features. These are also covered in Section Two.

Section Three gives information about machine code
programming. :

The Appendices contain technical information. Their contents
are as follows:

Appendix A Screen Display Codes
Appendix B ASCII and CHR$ Codes
Appendix C Screen and Colour Memory Maps
Appendix D Deriving Mathematical Functions
Appendix E Musical Note Table
Appendix F Error Messages and DOS Error Messages
Appendix G Cl6 and PLUS/4 Schematic Diagrams

Section Two Programming Basic

SECTION TWO

PROGRAMMING BASIC

2.1 Introduction
This section provides formats, ‘brief explanations ‘and
examples of the BASIC 3.5 commands and statements.
Commands and statements are listed in separate sections.Within each section, the commands and statements are listedin alphabetical order. Commands are used mainly in direct
mode, while statements are most often used in programs. In
most cases, commands can be used as statements in a programif they are prefixed by a line number. Many statements can be
used as commands by using them in direct mode, i.e., withoutline numbers. If you are unsure where a term is located,refer to the BASIC Abbreviation and Reference Chart (seeSection 2.8).
This chapter is organized as follows:
* COMMANDS: the commands used to work with programs, edit,store, and erase them.
* STATEMENTS: the BASIC program statements used in numbered

lines of programs.
* FUNCTIONS: the string, numeric, and print functions.
* VARIABLES AND OPERATORS: the different types of variables,

legal variable names, and arithmetic and logical operators.

2.2 Command and Statement Format

For the sake of clarity, the commands and statements in thissection are presented in standard format conventions. In most
cases, there are several examples illustrating the command.
The following gives an example of the format conventions used
in the BASIC commands and statements in this manual:
EXAMPLE: LOAD "program name" ,D@,D8

additional arguments
keywords argument (possibly optional)

The parts of the command or statement given in upper case
must be entered exactly as they appear in the format listing.Other words, such as "program name", are printed in lower
case. When quote marks ("") appear, usually around a program
or file name, you include them in the command or statement,
as in the format example.

Section Two Programming Basic

KEYWORDS appear in upper case letters. YOU MUST ENTER THESEWORDS EXACTLY AS THEY APPEAR. However, many keywords haveabbreviations (see the Reference Chart).
Keywords are part of the BASIC language that your computerknows. They are the central part of a command or statement,and tell the computer what kind of action you . want it totake. These words cannot be used as variable names.
ARGUMENTS (also called parameters) appear in lower caseletters. Arguments are the parts of a command or statementthat you select; they complement keywords by providingspecific information about the command or statement. Forexample, a keyword tells the computer to load a program,while an argument tells the computer which specific programto load and a second argument specifies which drive theprogram disk is in. Arguments include filenames, variables,line numbers, etc.
SQUARE BRACKETS [] show OPTIONAL arguments. Select any ornone of the arguments listed.
ANGLE BRACKETS <> indicate that you MUST choose one of thearguments listed.
VERTICAL BAR I separates items in a list of arguments whenyour choices are limited to those arguments listed. Whenthe vertical bar appears in a list which is enclosed inSQUARE BRACKETS, your choices are limited to the items inthe list, but you still have the option not to use anyother arguments.
ELLIPSIS ..., a sequence of three dots, means that anoption or argument can be repeated.
QUOTATION MARKS "" enclosing character strings, filenames,and other expressions. When arguments are enclosed inquotation marks in a format, you must include the quotation"marks in your command or statement.

PARENTHESES () When arguments are enclosed in parenthesesin a format, you must include the parentheses in yourcommand or statement. Parentheses are also required whenthey appear in a command or statement description.
VARIABLE refers to any valid BASIC variable name, such asX, A$, or Ts.
EXPRESSION means any valid BASIC expression, such as A+B+2or .5*(X+3)

Section Two Programming Basic

2.3 Basic Commands

2.3.1 AUTO

AUTO [line#]
Turns on the automatic line numbering feature. This eases the
job of entering programs by typing the line numbers for you.As you enter each program line and press RETURN, the nextline number is printed on the screen, with the «cursor in
position to begin typing that line. The [line#] argumentrefers to the increment between line numbers. AUTO with NO
ARGUMENT turns off auto line numbering, as does RUN. This
statement is executable only in direct mode.

EXAMPLES:

AUTO 10 automatically numbers lines in increments of ten
AUTO 50 automatically numbers lines in increments of fifty
AUTO turns OFF automatic line numbering

2.3.2 BACKUP

BACKUP Ddrive# TO Ddrive# [,ON Uunit#]
NOTE: This command can only be used with a dual disk drive.
This command copies all the files on a diskette to anotherdiskette on a dual drive system. You can copy onto a new
diskette without first using the HEADER command to format the
new diskette because the BACKUP command copies all the
information on the diskette, including the format. Always
BACKUP important diskettes in case the original is lost or
damaged.

Because the BACKUP command also HEADERS diskettes, itdestroys any information on the diskette onto which you are
copying information. So if you are backing up onto a
previously used diskette, make sure it contains no programs
you wish to keep. See also the COPY command.

EXAMPLES:

BACKUP D@ TO D1 Copies all files from the disk in
drive @ to the disk in drive 1

BACKUP D@ TO D1, ON U9 Copies all files from drive 0 to
drive 1 in disk drive unit 9

Section Two Programming Basic

2.3.3 COLLECT

COLLECT [Ddrive#][,ON Uunit#]
Use this command to free up space allocated to improperlyclosed files and delete references to these files from thedirectory. .

EXAMPLE:

COLLECT D@

2.3.4 CONT

CONT (Continue)
This command is used to re-start the execution of a programthat has been stopped either by using the STOP key, a STOPStatement, or an END statement within the program. Theprogram will resume execution where it left off, CONT doesnot work if you have changed the program or added lines toit, if the program stopped due to an error, or if you causedan error before trying to re-start the program. The errormessage in this case is CAN'T CONTINUE ERROR. Even moving thecursor to a program line and hitting RETURN without changinganything causes CONT to not work.

2.3.5 copy
COPY [Ddrive#,] "source file" TO [DArive#,] "other file" [,ONUunit#]
COPYs a file on the disk in one drive (the source file) tothe disk in the other drive on a dual disk drive, or createsa copy of a file on the same drive giving the copy adifferent file name.

EXAMPLES:

COPY D@,"NOON" TO D1,"NIGHT" Copies NOON from drive @ todrive 1, renaming it NIGHT
COPY D@,"STUFF" TO D1,"STUFF" Copies STUFF from drive @

to drive 1

COPY DG TO D1 Copies all files from drive
@ to drive 1

COPY "CATS" TO "DOGS" Copies CATS to the samedrive giving it the name
DOGS

Section Two Programming Basic

2.3.6 DELETE

DELETE [first line#][-last line#]
Deletes lines of BASIC text. This command can be executed
only in direct mode.

EXAMPLES:

DELETE 75 Deletes line 75

DELETE 10-50 Deletes lines 10 through 58 inclusive
DELETE -50 Deletes all lines from the beginning of

the program up to and including line 50

DELETE 75- Deletes all lines from 75 on to the end
of the program

2.3.7 DIRECTORY

DIRECTORY [Ddrive#][,Uunit#][,"filename"]
Displays a disk directory on the screen. Use <CTRL/S> to
pause the display and any other key to restart the displayafter a pause. Use the <C=> key, the Commodore key, to slowit down. The DIRECTORY command cannot be used to print a hard
copy. To do that you must LOAD the disk directory destroying
the program currently in memory.

EXAMPLES:

DIRECTORY List all files on the disk
DIRECTORY D1,U9,"WORK" Lists the file on disk drive unit

9 (8 is the default), drive 1,
named WORK

DIRECTORY "AB*" Lists all files starting with theletters "AB", like ABOVE, ABOARD,
etc.

DIRECTORY D@,"FILE?.BAK" The ? is a wild-card that matches
any single character in that
position: FILEl.BAK, FILE2.BAK,
FILE3.BAK all match the string.

NOTE: To print out the DIRECTORY of drive @, unit 8, use the
following:
LoAD"S@",8
OPEN4,4:CMD4:LIST
PRINT#4:CLOSE4

Section Two
Programming Basic

2.3.8 DLOAD

DLOAD "filename" [,Ddrive#] [,Uunit#]
This command loads a Program from disk into current memory.Use LOAD to load programs from tape. You must supply aprogram name.

EXAMPLE:

DLOAD "DTRUCK" Searches the disk for the program "DTRUCK"and LOADs it
DLOAD (AS) LOADs a program from disk whose name isthe variable AS. vou get an error if AS isempty
The DLOAD command can be used within a BasIC program to findand RUN another Program on disk. This is called chaining.
2.3.9 DSAVE

DSAVE "filename" [,Ddrive#] [,Uunit#]
This command stores a program on disk. Use SAVE to storeprograms on tape. You must supply a program name.
EXAMPLES:

DSAVE "DDAY" SAVEs the program "DDay" to disk
DSAVE (AS) SAVEs to disk the program whose nameis in the variable AS
DSAVE "PROG3",D@,U9 SAVEs the program "PROG3" to the diskdrive with a unit number of 9

Section Two Programming Basic

2.3.10 HEADER

HEADER "diskname",Ddrive#[,Iid#][,ON Uunit#]
Before you can use a new disk for the first time you mustformat it with the HEADER command. If you want to erase an

. entire disk for re-use, you can use the HEADER command. This
command divides the disk into sections called blocks, andcreates on the disk a table of contents, called a directoryor catalog. The diskname can be any name up to 16 characters
long. The id number is any 2 characters. Give each disk a
unique id number.

WARNING: Be careful when you HEADER a disk because the HEADER
command erases all data previously stored on that disk.
Giving no id number allows you to perform a quick header. The
old id number is used. You can only use the quick header
method if the disk was previously formatted, since the quick
header only clears out the directory rather than formattingthe disk.
EXAMPLES:

HEADER "MYDISK",I123,D@

HEADER "THEBALL",I45,D1,U8

2.3.11 HELP

HELP

The HELP command is used when you get an error in your
program. When you type HELP, the line where the error
occurred is listed, with the portion containing the error
displayed in flashing characters.

Section Two Programming Basic

2.3.12 KEY

KEY [key#,string]
There are eight (8) function keys available to the user onthe Commodore 16 and Plus/4 computers, four unshifted andfour shifted. You can define what each key does when pressed.KEY without any parameter specified gives a listingdisplaying all the current KEY assignments. The data youassign to a key is typed out when that function key ispressed. The maximum length for all the definitions togetheris 128 characters. Entire commands or a series of commandscan be assigned to a key. For example:
KEY 7,"GRAPHIC@"+CHRS$ (13)+"LIST"+CHRS (13)

causes the computer to select text mode and list your programwhenever the "F7" key is depressed, in direct mode. TheCHR$ (13) is the ASCII character for RETURN. Use CHRS (34) toincorporate a double quote into a KEY string.
The keys may be redefined in a program. For example:
19 KEY 2,"TESTING"+CHRS (34) :KEY3, "NO"

10 FORI=1TO8:KEYI,CHRS (I+132):NEXT
To restore all function keys to their default values, resetyour computer by turning it off and on, or press the RESETbutton.

2.3.13 LIST

LIST [first line] [-[last line]]
The LIST command lets you look at lines of a BASIC programthat have been typed or LOADed into memory. When LIST is usedalone (without any numbers following it), you get a completeLISTing of the program on your screen. This may be sloweddown by pressing the <C=> key, paused by <CTRL-S> andunpaused by pressing any other key, or STOPped by pressingthe <RUN/STOP> key. If you follow the word LIST with a linenumber, only that line is displayed. If you type LIST withtwo numbers separated by a dash, all the lines from the firstto the second number are shown. If you type LIST followed bya number and just a dash, it shows all the lines from thatnumber to the end of the program. And if you type LIST, adash, and then a number, you get all the lines from thebeginning of the program to that line number. Using thesevariations, you can examine any portion of a program, orbring lines onto the screen for modification.

Section Two Programming Basic

EXAMPLES:

LIST Shows entire program
LIST 100- Shows from line 100 until the end of the

program
LIST 10 Shows only line 10

LIST -100 Shows lines from the beginning until line 100

LIST 19-200 Shows lines from 10 to 200, inclusive

2.3.14 LOAD

LOAD ["filename"[,device#][,relocate flag]]
Use this command when you want to use a program stored on
cassette tape or on disk. If you just type LOAD and press the
<RETURN> key. Press PLAY on your cassette unit, and the
computer starts looking for a program on the tape. When itfinds one, the message FOUND "filename" is displayed on the
screen. Press the <C=> key to LOAD that program. If you do
not press that key, after a brief interval the computer
resumes searching on the tape. Once the program is LOADed,
you can RUN, LIST, or change it.
You can also type the word LOAD followed by a program name,
which is either a name in quotes or a string variable. The
name may be followed by a comma (outside of the quotes) and a
number, or numeric variable, which is the number of the
device where the program is stored, i.e., disk or tape. If
there is no number given, your computer assumes device number
1, which is the cassette unit.
The other device commonly used with the LOAD command is the
disk drive, which is device number 8.

EXAMPLES:

LOAD Reads in the next program on tape
LOAD "BASES" Searches tape for a program called

BASES, and LOADS it if it is found
LOAD AS Looks for a program whose name is in the

variable called AS

LOAD "BRIDGES",8 Looks for the program called BRIDGES on
the disk drive, and LOADS it if found

The LOAD command can be used within a BASIC program to find
and RUN the next program on a tape. This is called chaining.

Section Two Programming Basic

The RELOCATE FLAG determines where in memory a program isloaded. A relocate flag of # tells the computer to LOAD the
program at the start of the BASIC program area, and a flag of1 tells it to LOAD from the point where it was SAVEd. Thedefault value of the relocate flag is #. This is generallyused only when LOADing machine language programs.

2.3.15 NEW

NEW

This command erases the program in memory and clears anyvariables that have been used. Be careful when you use thiscommand. Unless the program was stored on disk or cassette,it is lost until you type it in again.
The NEW command can also be used as a statement in a BASICprogram. When this command is executed, the program is erasedand execution stops.

2.3.16 RENAME

RENAME [Ddrive#,]"old name"TO"new name" [,Uunit#]
Used to rename a file on a diskette.
EXAMPLE:

RENAME D@,"ASSET" TO "LIABILITY" Changes the name of thefile from ASSET to
LIABILITY

2.3.17 RENUMBER

RENUMBER [new starting line#[,increment[,o0ld startingline#]]]
The new starting line is the number of the first line in theprogram after renumbering. It defaults to 10.
The increment is the spacing between line numbers, i.e., 14,20, 30 etc. It also defaults to 10.
The old starting line number is the line number in theprogram where renumbering is to begin. This allows you torenumber a portion of your program. It defaults to the firstline of your program.
This command can only be executed from direct mode.

2 - 10

Section Two Programming Basic

EXAMPLES:

RENUMBER 20,20,1 Renumbers the program, starting atline 1. Line 1 becomes line 20, and
other lines are numbered in increments
of 20

RENUMBER, , 65 Renumbers in increments of 10, startingat line 65. Line 65 becomes line 14,
unless there are already lines numbered
10-64, in which case the command is not
carried out

2.3.18 RUN

RUN [line#]
Once a program has been typed into memory or LOADed, the RUN
command causes it to be executed. This command clears allvariables before starting program execution. If there is no
number following this command, the computer starts at the
lowest numbered program line. If there is a number following
the RUN command, execution starts at that line. RUN may be
used within a program.
EXAMPLES:

RUN Starts program working from lowest line number

RUN 100 Starts program from line 100

2.3.19 SAVE

SAVE ["filename"[,device#[,EOT flag]l]
This command stores on cassette tape or disk a program
currently in the computer's memory. If you just type the word
SAVE and press <RETURN>, your computer attempts to store the
program on the cassette. It has no way of checking if there
is already a program on the tape in that location, so be
careful with your tapes. If you type the SAVE command
followed by a name in quotes or a string variable name, the
computer gives the program that name when it SAVEs it. In
this way the program is more easily located and retrieved in
the future.

2 - 11

Section Two Programming Basic

If you want to specify a device number for the SAVE, place acomma after the quotes following the name. Then type a numberor numeric variable. Device number 1 is the cassette unit,and number 8 is the disk. After the number on a tape command,there can be a comma and a second number, which is between gand 3. If this number is 2, the computer puts an END-OF-TAPEmarker, i.e. EOT flag, after your program. If you are tryingto LOAD a program and the computer finds one of these markersrather than the required program, you get a FILE NOT FOUNDERROR.

EXAMPLES:

SAVE Stores program to tape without a name
SAVE "MONEY" Stores on tape with the name MONEY

SAVE AS Stores on tape with name in variable AS
SAVE "YOURSELF",8 Stores on disk with name YOURSELF
SAVE "GAME",1,2 Stores on tape with name GAME andplaces an END-OF-TAPE marker after theprogram

2.3.20 SCRATCH

SCRATCH "filename" [,Ddrive#] [,Uunit#]
Deletes a file from the disk directory. As a precaution, youare asked "Are you sure?" before the operation is carriedout. Type a Y to perform the SCRATCH or type N to cancel theoperation. Use this command to erase unwanted files in orderto create more space on the disk.
EXAMPLE:

SCRATCH "MY BACK",D@ Erases the file MY BACK from the diskin drive @

2.3.21 VERIFY

VERIFY "filename" [,device#][,relocate flag]
This command checks a program on tape or disk against the onein memory. Use VERIFY after saving a program to ensure thatnothing went wrong with the SAVE. This command can also beused to position a tape so that your computer resumes writingfollowing the end of the last program on the tape. To dothis, tell the computer to VERIFY the name of the lastprogram on the tape. It does so, and tells you that theprograms do not match. The tape is then positioned forstoring the next program erasing an old one.

2 - 12

Section Two Programming Basic

VERIFY with no arguments checks the next program on tape,regardless of its name, against the program currently in
memory. VERIFY followed by a program name, in quotes, or astring variable, searches the tape for that program and thenchecks it against the one in memory. VERIFY followed by a
name, a comma, and a number checks the program on that device
number, 1 for tape, 8 for disk. The relocate flag is the same
as in the LOAD command.

EXAMPLE:

VERIFY Checks the next program on the tape
VERIFY "REALITY" Searches for REALITY on tape, checks

against memory

VERIFY "ME",8,1 Searches for ME on disk, then checks

2.4 Basic Statements

2.4.1 BOX

BOX [colour source#],al,bl,[a2,b2][,angle][,paint]
colour source Colour source (0-3), default is 1

(foreground colour)
al, bl Corner coordinate (scaled)
a2, b2 Corner opposite al, bl (scaled), default is

the PC

angle Rotation in clockwise degrees, default is @

degrees
paint Paint shape with colour (@=off, l=on),default is ©

This command allows you to draw a rectangle of any size
anywhere on the screen. To get the default value, include a
comma without entering a value. Rotation is based on the
centre of the rectangle. The Pixel Cursor (PC) is left at a2,
b2 after the BOX statement is executed.
EXAMPLES:

BOX 1,10,10,60,60 Draws the outline of a rectangle
BOX,1¢,10,60,60,45,1 Draws a filled, rotated box, i.e. a

diamond

BOX, 30,90,,45,1 Draws a filled, rotated polygon

2 - 13

Section Two Programming Basic

2.4.2 CHAR

CHAR [colour source#] ,x,y, "string" [, reverse flag]
colour source Colour source (8-3)
x Character column (8-39)
y Character row (0-24)
"string" Text to be printed
reverse Reverse field flag (@=off, l=o0n)

Text, i.e. alphanumeric strings, can be displayed on anyscreen at a given location using the CHAR command. Characterdata is read from the character ROM area. You supply the xand y coordinates of the starting position and the textstring you wish to display. Colour source and reverse imagingare optional.
The string is continued on the next line if it prints pastthe right hand edge of the screen. When used in TEXT mode,the string printed by the CHAR command works in the same waythat a PRINT string works, including reverse field, cursors,flash on/off, etc. These control functions inside the stringdo not work when the CHAR command is used to display text ina GRAPHIC mode.

2.4.3 CIRCLE

CIRCLE [cs], [a,b], xr{,[yr][,[sall, [ea], [angle] [,inc]]]]]
cs Colour source (8-3)
a,b Centre coordinate (scaled), defaults to the PixelCursor (PC)

Xr X radius (scaled)
yr Y radius, default is xr
sa Starting arc angle, default @

ea Ending arc angle, default 360

angle Rotation in clockwise degrees, default is ¢ degrees
inc Degrees between segments, default is 2 degrees

2 - 14

Section Two Programming Basic

The CIRCLE command can be used to draw a circle, ellipse,arc, triangle or an octagon. The final coordinate is on thecircumference of the circle at the ending arc angle. Anyrotation is about the centre. Arcs are drawn clockwise fromthe starting angle to the ending angle. The segment incrementcontrols the coarseness of the shape, with lower values forinc creating rounder shapes.
EXAMPLES:

CIRCLE, 160,100,65,10 Draws an ellipse
CIRCLE, 160,100,65,50 Draws an oval
CIRCLE, 60,40,20,18,,,,45 Draws an octagon
CIRCLE, 260,40,26,,,,,90 Draws a diamond

CIRCLE, 60,140,20,18,,,,120 Draws a triangle

2.4.4 CLOSE

CLOSE file#
This command completes and closes any previously OPENned
files. The number following the CLOSE command is the file
number to be closed.
EXAMPLE:

CLOSE 2 Logiral file 2 is closed

2.4.5 CLR

This command erases any variables in memory, but leaves the
program itself intact. This command is automatically executed
when a RUN or NEW command is given, or any editing is
performed.
2.4.6 CMD

CMD file#[,write list]
CMD sends the output which usually goes to the screen, e.g.
PRINT statements, LISTs, to another device. Note that this
does not include POKEs onto the screen. The other device can
be a printer, or a data file on tape or disk. This device orfile must be OPENed first. The CMD command must be followed
by a number or numeric variable referring to the file.

2-15

Section Two Programming Basic

EXAMPLE:

OPEN 1,4 OPENs device #4, i.e. the printer
CMD 1 All normal output now goes to the printer
LIST The LISTing goes to the printer, not the screen.This includes the word READY.

PRINT#1 Set output back to the screen
CLOSE1l Close the file
2.4.7 COLOR

COLOR source#,colour#[,luminance#]
Assigns a colour to one of the 5 colour sources:
Number Source
0 background
1 foreground
2 multicolour 1
3 multicolour 2
4 border
The colours you can use are in the range 1-16. These are fromyour keyboard colour keys, i.e. 1 is black, 2 is white, 9 isorange, etc. As an option, you can include the luminancelevel 0-7, with @ being lowest and 7 being highest. Luminancedefanlts to 7. This lets you select from eight levels ofbrightness for any colour except black.

2.4.8 DATA

DATA list of constants separated by commas
This statement is followed by a list of items to be used byREAD statements. The items may be numbers or words, and areseparated by commas. Words need not be enclosed in quotationmarks, unless they contain a SPACE, colon, and/or comma. Iftwo commas have nothing between them, the value is READ as azero for a number, or an empty string depending on the typeof variable that you are READing data into. The DATAstatement must be part of a program, otherwise it is notrecognized. See also the RESTORE statement, which allows yourcomputer to reread data.
EXAMPLE:

DATA 160,200,FRED,"WILMA",,3,14,ABC123

2 - 16

Section Two Programming Basic

2.4.9 DEF FN

DEF FN name (variable)=expression
This command allows you to define a complex calculation as afunction. In the case of a long formula that is used severaltimes within a program, this command can save a lot of space.
The name you give the numeric function begins with theletters FN, followed by any legal numeric variable name.First define the function by using the DEF statement followed
by the name you have given the function. Following the nameis a set of parentheses () enclosing a numeric variable. Inthe following example this is X. After the parentheses is anequal sign, followed by the formula you wish to define. You
can "call" the formula, substituting any number for X, usingthe format shown in line 20 of the example below:
EXAMPLE:

10 DEF FNA(X)=12*(34.75-X/.3)+X
20 PRINT FNA(7)

The number 7 is inserted each place X is located in the
formula given in the DEF statement.
NOTE: DEF FN can only be used with standard numeric
functions, not integer or string functions.

2.4.10 DIM

DIM variable (subscripts) [,variable(subscripts)]...
Before you can use an array of variables with more than 11
elements, that array must first be DIMensioned. The DIM
statement is followed by the name of the array, which may be
any legal variable name. After the variable name, enclosed in
parentheses, you put the number, or numeric variable, of
elements in each dimension. An array with more than one
dimension is called a matrix. You may use any number of
dimensions. Note that the whole list of variables you are
creating takes up space in memory, and it is easy to run out
of memory. To calculate the number of variables created with
each DIM statement, multiply the total number of elements in
each dimension of the array together, remembering that each
array starts with element 0.

NOTE: Integer, i.e. single-digit, arrays take up 2/5ths of
the space of floating point arrays.

2 - 17

Section Two Programming Basic

EXAMPLE:

19 DIM AS (40),B7(15),CC%(4,4,4)
41 Elements 16 Elements 125 Elements
You can DIMension more than one array with a DIM statement. byseparating the arrays with commas. If a program attempts toexecute a DIM statement for any array more than once, a
re'DIMed array error message is displayed. It is good
programming practice to place DIM statements near the
beginning of a program.

2.4.11 DO (LOOP) WHILE (UNTIL EXIT)

DO [UNTIL boolean argument § WHILE boolean argument]
statements [EXIT]

LOOP [UNTIL boolean argument I WHILE boolean argument]
Performs the statements between the DO statement and the LOOP
statement. An example of a boolean argument is A=1 or H>=57.If no UNTIL or WHILE modifies either the DO or the LOOP
statement, execution of the intervening statements continuesindefinitely. If an EXIT statement is encountered in the bodyof a DO loop, execution is transferred to the first statement
following the LOOP statement. DO loops may be nested,following the rules defined for FOR-NEXT loops (see Sections2.4.14, and 2.4.28).
If the UNTIL parameter is used, the program continues loopinguntil the boolean argument is satisfied, i.e. becomes TRUE.
The WHILE parameter is basically the opposite of the UNTIL
parameter, i.e. the program continues looping as long as theboolean argument is TRUE.

EXAMPLE:

DO UNTIL X=0 OR X=1
REM
LOOP
DO WHILE A$="":GET AS$:LOOP

2 - 18

Section Two Programming Basic

2.4.12 DRAW

DRAW [colour source#][,al,bl][,TO0 a2,b2,][...]
With this command you can draw individual dots, lines, andshapes. You supply colour source (8-3), starting (al, bl) andending points (a2, b2).
EXAMPLES:

A dot: DRAW 1,100,580 No endpoint specified, defaults toal,bl value for a2,b2 to create adot
Lines: DRAW ,10,10 TO 100,60

DRAW TO 25,30
A shape: DRAW ,10,10 TO 10,60 TO 100,60 TO 16,10

2.4.13 END

END

When a program encounters an END statement, it stops RUNning
immediately. You may use the CONT command to re-start the
program at the statement following the END statement (seeSection 2.3.4).

2.4.14 FOR ... TO ... STEP

FOR variable=start value TO end value [STEP increment]
This statement is used in conjunction with the NEXT statementto set up a section of the program that repeats for a setnumber of times. This is useful if you want to pause a
program, or perform an operation, e.g. printing, a certainnumber of times. ’

The loop variable is added to or subtracted from during the
FOR/NEXT loop. The start value and the end value are the
beginning and ending counts for the loop variable.
The logic of the FOR statement is as follows. First, the loopvariable is set to the start value. When the program reaches
a line with the command NEXT, it adds the STEP increment tothe value of the loop variable. The default value of the STEP
increment is 1. The program then checks the loop variable to
see if it is higher than the end of the loop value. If it is
not higher, the next line executed is the statement
immediately following the FOR statement. If the loop variableis larger than the end of the loop number, then the next
statement executed is the one following the NEXT statement. A

STEP value can be positive or negative. See also the NEXT
statement (see Section 2.4.28).

2 - 19

Section Two Programming Basic

EXAMPLE:

10 FOR L=1TO20
20 PRINT L
30 NEXT L
40 PRINT "BLACKJACK! L="L

This program prints the numbers from one to twenty on thescreen, followed by the message BLACKJACK! L=21.
The end of the loop value may be followed by the word STEPand another number or variable. In this case, the valuefollowing the STEP is added to the loop variable each time.This allows you to, for example, count backwards, or byfractions.
You can set up loops inside one another, i.e. nested loops.Note, you must ensure you nest loops so that the last loop tostart is the first one to end.
EXAMPLE OF NESTED LOOPS:

10 FOR L=1TOl@40

20 FOR A=5TOll1STEP2 This FOR ... NEXT loop is "nested"inside the larger one30 NEXT A

40 NEXT L

2.4.15 GET

GET variable list
The GET statement is a way to get data from the keyboard onecharacter at a time. When it is executed, the character typedis received. If no character is typed, then a null, i.e.empty, character is returned, and the program continueswithout waiting for a key. The <RETURN> key is not pressed asthat key can be received with a GET.

The word GET is followed by a variable name, usually a stringvariable. If a numeric variable were used and any key otherthan a number was hit, the program would stop with an errormessage. The GET statement may also be put into a loop,checking for an empty result, which waits for a key to bestruck to continue. The GETKEY statement (see Section 2.4.16)could also be used in this case. This command can only beexecuted within a program.

2 - 20

Section Two Programming Basic

EXAMPLE:

10 GET AS<>"A"THEN1Q

This line causes the program to wait for the "A" key to be
pressed before continuing.

2.4.16 GETKEY

GETKEY variable list
The GETKEY statement is very similar to the GET statement.Unlike the GET statement, GETKEY waits for the user to type acharacter on the keyboard.
This command can only be executed within a program.
EXAMPLE:

19 GETKEY AS

This line waits for a key to be struck. Typing any key will
continue the program.

2.4.17 GET#

GET#file number,variable list
Used with a previously OPENed device or file to input one
character at a time. Otherwise, it works like the GET
statement.
This command can only be executed within a program.
EXAMPLE:

GET#1,AS

2.4.18 GOSUB

GOSUB line#
This statement is similar to the GOTO statement, except that
the program jumps back to the statement immediately following
the GOSUB when a line with a RETURN statement is encountered.
The target of a GOSUB statement is called a subroutine. A

subroutine is useful if a particular routine is used at
several different places in the program, Instead of
duplicating the section of program, you can set it up as a
subroutine, and GOSUB to it from the different parts of the
program. See also the RETURN statement (see Section 2.4.41).

2-21

Section Two Programming Basic

EXAMPLE:

20 GOSUB 800 Means go to the subroutine beginning at line
: 80¢ and execute it

800 PRINT "HI THERE" :RETURN

2.4.19 GOTO or GO TO

GOTO line
When a GOTO statement is encountered, the program execution
jumps to the line number specified. When used in direct mode,
GOTO line# allows you to start execution of the program atthe given line number without clearing the variables.
EXAMPLE:

18 PRINT "REPETITION IS THE MOTHER OF LEARNING"

20 GOTO 10

The GOTO in line 20 causes line 10 to be executed until the
<RUN/STOP> key is pressed.

2.4.20 GRAPHIC

GRAPHIC mode[,clear option]
This statement puts your computer into one of the 5 graphicmodes:

Mode Description
normal text
high-resolution graphics
high-resolution graphics, split screenmulticolour graphics
multicolour graphics, split screen

wh

HS

When executed, GRAPHIC 1-4 allocates a 10K bit-mapped area of
memory for graphics, and moves the BASIC text area below thehi-res area. This area remains allocated even if you returnto TEXT mode (GRAPHIC @). If 1 is given as the second
argument in the GRAPHIC statement, the screen is alsocleared.
EXAMPLES:

GRAPHIC 1,1 Selects hi-res graphic mode and clears the
screen

GRAPHIC 4,0 Selects multi-colour graphics with an areafor text, without clearing the screen

2 - 22

Section Two Programming Basic
2.4.21 GRAPHIC CLR

GRAPHIC CLR

This is a form of the GRAPHIC statement. This statementclears the 10K of memory allocated to the graphic area, andthat memory space becomes available for BASIC once again.

2.4.22 IF ... THEN ... ELSE

IF expression THEN then-clause [:ELSE else-clause]
IF ... THEN allows you to analyse the BASIC expressionpreceded by IF and take one of two possible courses ofaction. If the expression is true, the statement following
THEN is executed. This statement may be any BASIC statement.If the expression is false, the program goes directly to thenext line, unless an ELSE clause is present. The expressionbeing evaluated may be a variable or formula, in which caseit is considered true if non-zero, and false if zero. In most
cases, it is an expression involving relational operators,i.e. =, <, >, <=, >=, <>, AND, OR, NOT.

The ELSE clause, if present, must be in the same line as the
IF-THEN clause. When an ELSE clause is present, it is
executed when the IF expression is FALSE.

EXAMPLE:

50 IF X>0 THEN PRINT"OK":ELSE END

Checks the value of X. If X is greater than 0, the THEN
clause is executed, and the ELSE clause is not. If X is not
greater than @, the ELSE clause is executed and the THEN
clause is not.

2.4.23 INPUT

INPUT ["prompt string";]variable list
The INPUT statement allows the computer to ask for data and
place it into a variable or variables. When an INPUT
statement is encountered, the program stops, prints a
question mark, i.e. ?, on the screen, and waits for the user
to type the answer and press the <RETURN> key.

2 - 23

Section Two Programming Basic
The word INPUT is followed by a variable name or list ofvariable names separated by commas. There may be a messageinside quotes before the list of variables to be input. Ifthis message (called a prompt) is present, there must be asemicolon (;) after the closing quote of the prompt. Ifseveral variables are to be INPUT, they should be separatedby commas when typed in. If not, the computer asks for theremaining values by printing two question marks (??). If youpress the <RETURN> key without INPUTing values, the INPUTvariables retain the values previously held for thosevariables. This statement can only be executed within aprogram.
EXAMPLE:

10 INPUT"WHAT'S YOUR NAME"; AS

20 INPUT"AND YOUR FAVOURITE COLOUR"; BS

30 INPUT"WHAT'S THE AIR SPEED OF A SWALLOW"; A

2.4.24 INPUT#

INPUT#file number,variable list
This works like INPUT, but takes the data from a previouslyOPENed file or device. No prompt string is allowed. Thiscommand can only be used in program mode.
EXAMPLE:

INPUT#2,A$,C,DS

2.4.25 LET

[LET] variable=expression
The word LET is hardly ever used in programs, since it is notnecessary, but the statement itself is the heart of all BASICprograms. Whenever a variable is defined or given a value,LET is always implied. The variable name which is to receivethe result of a calculation is on the left side of the equalsign, and the number or a formula is on the right side.
EXAMPLE:

10 LET A=5

20 B=6

30 C=A*B+3

40 DS$="HELLO"

LET is implied (but not necessary) in lines 20, 30 and 490.

2 - 24

Section Two Programming Basic
2.4.26 LOCATE

LOCATE x-coordinate, y-coordinate
The LOCATE command lets you put the pixel cursor (PC)anywhere on the screen. The PC is the current location of thestarting point of the next drawing. Unlike the regularcursor, you can't see the PC, but you can move it with theLOCATE command. For example:
LOCATE 160,100

positions the PC in the centre of the high resolution screen.You do not see anything until you use one the graphicscommands to draw something. You can find out where the PC isat any time by using the RDOT(@) function to get theX-coordinate and RDOT(l) to get the Y-coordinate. The coloursource of the dot at the PC can be found by PRINTing RDOT (2).
NOTE: In all drawing commands where a colour option isavailable, you may select a value from ¢ to 3, correspondingto the background, foreground, multicolour 1, or multicolour
2 as the colour source.

2.4.27 MONITOR

MONITOR

This command takes you out of BASIC into the built-in machine
language monitor program. The monitor lets you develop,debug, and execute machine language programs more easily than
in BASIC. See the section on monitor commands for moreinformation. When in the monitor, typing an "X" and pressing
<RETURN> returns you to BASIC.

2.4.28 NEXT

NEXT [variable,...,variable]
The NEXT statement is used with the FOR statement. When the
computer encounters a NEXT statement, it goes back to the
corresponding FOR statement and checks the loop variable,(see Section 2.4.14 for more detail). If the loop isfinished, execution proceeds with the statement after the
NEXT statement. The word NEXT may be followed by a variable
name, a list of variable names separated by commas, or novariable names. If there are no names listed, the last loopstarted is the one being completed. If the variables aregiven, they are completed in order from left to right.
EXAMPLE:

10 FOR L=1 TO 1@:NEXT
20 FOR L=1 TO 1@:NEXT L
3¢ FOR L=1 TO 18:FOR M=1 TO 10:NEXT M,L

2 - 25

Section Two Programming Basic
2.4.29 ON

ON expression <GOTO/GOSUB> line#l [,line#2,...]
This command makes the GOTO and GOSUB statements into specialversions of the IF statement. The word ON is followed by aformula, then either GOTO or GOSUB, then a list of linenumbers separated by commas. If the result of the calculationof the formula, i.e. expression, is 1, the first line numberin the list is executed. If the result is 2, the second linenumber is executed, and so on. If the result is @, or largerthan the number of line numbers on the list, the next lineexecuted is the statement following the ON statement. If thenumber is negative, an ILLEGAL QUANTITY ERROR results.
EXAMPLE:

10 INPUT X:IF X<@ THEN 10
20 ON X GOTO 50,38,30,70
25 PRINT"FELL THROUGH":GOTO 10
30 PRINT"TOO HIGH":GOTO 10
58 PRINT"TOO LOW":GOTO 10
7@ END

When X=1, ON sends control to the first line number in thelist, i.e. 50. When X=2, ON sends control to the second line,i.e. 30, etc. When X is greater the 4, execution "fallsthrough" to line 25.

2.4.30 OPEN

OPEN file#[,device#[,secondaryaddress |," filename, type, mode"]]]
The OPEN statement allows your computer to access devicessuch as the Datassette recorder, the disk unit, a printer, oreven the monitor screen. The word OPEN is followed by alogical file number, which is the number to which all otherBASIC statements refer. This number is from 1 to 255. Thereis normally a second number after the first called the devicenumber. Device number ¢ is the computer keyboard, 3 is thescreen, 1 is the Datassette recorder, 4 is the printer, 8 isusually the disk unit. A zero, i.e. @, may be included infront of the device number digit, e.g. 68 for 8. The defaultvalue is 1. COMMODORE recommend that you use the same filenumber as the device number.

2 - 26

Section Two Programming Basic
Following the second number may be a third number called thesecondary address. In the case of the cassette, this can be §
for read, 1 for write and 2 for write with an end-of-tapemarker at the end. In the case of the disk unit, the numberrefers to the channel number. With the printer, the secondaryaddresses are used to set the mode of the printer. See yourprinter manual for more information on secondary addresses.There may also be a string following the third number, whichcould be a command to the disk drive or the name of the fileon tape or disk. The type and mode refer to disk files only.File types are prg, seq, rel and usr. Modes are read andwrite.
EXAMPLES:

19 OPEN 3,3 OPENs the SCREEN as a device
10 OPEN 1,0 OPENs the keyboard as a

device
20 OPEN 1,1,4,"UP" OPENs the cassette for

reading, file to be searched
for is named UP

OPEN 4,4 OPENs a channel to use the
printer

OPEN 15,8,15 OPENs the command channel on
the disk

5 OPEN 8,8,2,"TEST,SEQ,WRITE" creates a sequential diskfile for writing
See also: CLOSE, CMD, GET#, INPUT# and PRINT# statements and
system variables ST, DS and DS$ (see Sections 2.4.4, 2.4.6,2.4.17, 2.4.24, 2.4.34, and 2.7.1.2).

2.4.31 PAINT

PAINT [colour source] [,[a,b][,mode]]
Colour source @-3 (default is 1, foreground colour)a,b starting coordinate, scaled (default is at

the PC)
mode 0 = paint an area defined by the colour

source selected
1 = paint an area defined by any non-
background source

The PAINT command lets you fill an area with colour. It fillsin the area around the specified point until a boundary of
the same colour or any non-background colour, depending on
which mode you have chosen, is encountered. The final
position of the PC will be at the starting point (a,b).

2 - 27

Section Two Programming Basic
NOTE: If the starting point is already the colour source you
name, or any non-background colcur when mode 1 is used, thearea to be PAINTed does not change colour.
EXAMPLE:

16 CIRCLE ,160,100,65,50 draws outline of circle
20 PAINT ,160,100 fills in the circle with colour

2.4.32 POKE

POKE address, value
The POKE command allows you to change a value in thecomputer's RAM, and lets you modify many of the Input/Outputregisters. POKE is always followed by two numbers orequations. The first number, i.e. the address, is a locationinside the computer's memory. This can have any value from @

to 65535. The second number is a value from ¢ to 255. This isplaced in the location given by the address, replacing anyvalue currently in that location. This command can be used tocontrol anything displayed on the screen, e.g. placing acharacter at a particular location and changing the colour atthat location.
EXAMPLE:

10 POKE 16000¢,8 Sets the value at location 16800 to 8

20 POKE 16*1¢0d,27 Sets the value at location 16060 to 27

NOTE: PEEK, a function related to POKE, is listed underFUNCTIONS (see Section 2.6.1.12).

2.4.33 PRINT

PRINT printlist
The PRINT statement is the major output statement in BASIC.While the PRINT statement is the first BASIC statement mostpeople learn to use, there are many subtleties to be masteredhere as well. The word PRINT can be followed by anycombinations items in the printlist. The printlist is asfollows:
Characters inside quotes ("text lines")Variable names (A, B, A$, X$§)
Functions (SIN(23), ABS (33))Punctuation marks (;,)

2 - 28

Section Two Programming Basic
The characters inside quotes are often called literals
because they are printed exactly as they appear. Variable
names have the value they contain, either a number or a
string, printed. Functions also have their number values
printed. Punctuation marks are used to help format the data
neatly on the screen. The comma divides the screen into 4
columns for data, while the semicolon doesn't add any spaces.Either of these punctuation marks can be used as the last
symbol in the statement. This results in the next PRINT
statement acting as if it is continuing the current PRINT
statement.
EXAMPLES:

RESULT

10 PRINT "HELLO" HELLO
20 AS="THERE":PRINT "HELLO,"AS HELLO, THERE
30 A=4:B=2:PRINT A+B 6
5@ J=41:PRINT J; :PRINT J-1 41 40
60 C=A+B:D=A-B:PRINT A;B;C,D 4 2 6 2

See also: POS(), SPC() and TAB() FUNCTIONS (see Sections
2.6.3.2, 2.6.3.3, and 2.6.3.4).

2.4.34 PRINT#

PRINT# file#,printlist
The PRINT# statement is similar to the PRINT statement,
except that while PRINT is used to display data on the
screen, PRINT# is used to send data to a device or file. The
word PRINT# is followed by a number, which refers to the
device or data file previously OPENed. The number is followed
by a comma, and a list of things to be PRINTed. The comma
sends 10 spaces to most printers and can be used as a
separator for disk files. Some devices may not work with TAB
and SPC. The semicolon acts in the same manner for spacing as
it does in the PRINT statement.
EXAMPLE:

100 PRINT#1,"HELLO THERE!",A$,BS,

2 - 29

Section Two Programming Basic

2.4.35 PRINT USING

PRINT [#filenumber,]USING format list;printlist
These statements allow you to define the format of string and
numeric items you wish to print to the screen, printer, or
another device. Put the format you require in quotes. This is
the format list. Then add a semicolon and a list of items you
want printed in the format, this is the print list. The list
can be variables or the actual values you require printed.
For example:
5 X=32:Y=100.23:A$="CAT"
10 PRINT USING "S$##.##";13.25,X,¥
20 PRINT USING "###>#";"CBM",AS

When you RUN thisprogram, line 14 prints out:
$13.25 $32.00 $xx*xx

NOTE: it prints ***** jnstead of the Y value because Y has 5
digits and does not conform to the format list, as explained
below in this section.
Line 208 prints this:

CBM CAT leaves three spaces before printing "CBM" asdefined in format list
CHARACTER NUMERIC STRING

Hash sign (#%)

Plus (+)
Minus (-)
Decimal point (.)
Comma (,)
Dollar sign (S$)

Four carets (©
Equal sign (=) X

Greater than sign X

X

PDS

XK

XK

any

2 - 30

Section Two Programming Basic
The hash sign (#) reserves room for a single character in the
output field. If the data item contains more characters than
the number of # in your format field, the following occurs:
For a numeric item, the entire field is filled with asterisks
(*). No numbers are printed.
For example:
10 PRINT USING "####";X

For these values of X, the format displays:
X=12.34 12

X=567.89 568

X=123456 kxkE

For a STRING item, the string data is truncated at the bounds
of the field. Only as many characters are printed as there
are hash signs (#) in the format item. Truncation occurs on
the right.
The plus (+) and minus (-) signs can be used in either thefirst or last position of a format field but not both. The
plus sign is printed if the number is positive. The minus
sign is printed if the number is negative. If you use a minus
sign and the number is positive, a blank is printed in the
character position indicated by the minus sign.
If you use neither a plus nor minus sign in your format field
for a numeric data item, a minus sign is printed before thefirst digit or dollar symbol if the number is negative and no
sign is printed if the number is positive. This means that
you can print one character more if the number is positive.If there are too many digits to fit into the field specified
by the # and +/- signs, then an overflow occurs and the field
is filled with asterisks (*).
A decimal point symbol (.) designates the position of the
decimal point in the number. You can only have one decimal
point in any format field. If you do not specify a decimal
point in your format field, the value is rounded to the
nearest integer and printed without any decimal places.
When you specify a decimal point, the number of digits
preceding the decimal point, including the minus sign, if the
value is negative, must not exceed the number of # before the
decimal point. If there are too many digits an overflow
occurs and the field is filled with asterisks (*).

2 - 31

Section Two Programming Basic
A comma (,) allows you to place commas in numeric fields. The
position of the comma in the format list indicates the
position of the comma in the printed number. Only commas
within a number are printed. Unused commas to the left of the
first digit appear as the filler character. At least one #

must precede the first comma in a field.
If you specify commas in a field and the number is negative,
then a minus sign is printed as the first character even if
the character position is specified as a comma.

EXAMPLES:

FIELD EXPRESSION RESULT COMMENT

##.4+ -.01 g.01- Leading zero added
#H.8- 1 1.0 Trailing zero added
#h44 -100.5 -101 Rounded to no decimal

places
E23 -1000 hh kh Overflow because four

digits and minus sign
cannot fit in field

BH 19 10. Decimal point added
#S## 1 $1 Leading § sign
A dollar sign (§) shows that a dollar sign will be printed in
the number. If you want the dollar sign to float (always be
placed before the number), you must specify at least one #
before the dollar sign. If you specify a dollar sign without
a leading #, the dollar sign is printed in the position shown
in the format field.
If you specify commas and/or a plus or minus sign in a format
field with a dollar sign, your program prints a comma or signbefore the dollar sign.
The four up arrows or carets (°""") are used to specify that
the number is to be printed in E+ format. You must use # in
addition to the "°°" to specify the field width and the ~***
must appear after the #.

You must specify four carets ("""") when you want to print a
number in E-format, i.e. scientific notation. If you specify
more than one but fewer than four carets, you get a syntaxerror. If you specify more than four carets only the firstfour are used. The fifth, and subsequent, carets areinterpreted literally as no text symbols.
An equal sign (=) is used to centre a string in the field.
You specify the field width by the number of characters in
the format field, the = is included in this count. If the
string contains fewer characters than the field width, the
string is centred in the field. If the string contains morecharacters than can fit in the field, the right-mostcharacters are truncated and the string fills the entirefield.

Section Two Programming Basic
A greater than sign (>) is used to right justify a string in
a field. You specify the field width by the number ofcharacters in the format field. The = is included in thiscount. If the string contains fewer characters than the fieldwidth, the string is right justified in the field. If thestring contains more characters than can fit into the field,the right-most characters are truncated and the string fillsthe entire field.

2.4.36 PUDEF

PUDEF "1 through 4 characters"
PUDEF lets you redefine up to 4 symbols in the PRINT USINGstatement. You can change blanks, commas, decimal points anddollar signs into some other character by placing the newcharacter in the correct position in the PUDEF controlstring.
Position 1 is the filler character. The default is a space.Place a new character here when you want another character to
appear in place of spaces.
Position 2 is the comma character. Default is a comma.

Position 3 is the decimal point. Default is a decimal point.
Position 4 is the dollar sign. Default is a dollar sign.
EXAMPLES:

14 PUDEF "*" PRINTs * in the place of blanks
20 PUDEF " &" PRINTs & in place of commas
3@ PUDEF " .," PRINTs decimal points in place of commas,

and commas in place of decimal points40 PUDEF " .,P" PRINTs English pound sign in place of §,
decimal points in place of commas, and
commas in place of decimal points

2.4.37 READ

READ variable list
This statement is used to place information contained in DATA
statements into the variables in the variable list. This
allows the program to manipulate the data or performcalculations on it. The READ statement variable list maycontain both strings and numbers. Care must be taken to avoid
reading strings where the READ statement expects a number.
This produces an ERROR message.
EXAMPLE:

READ AS$,GS$,Y
DATA XXX,YYY,19

2 - 33

Section Two Programming Basic

2.4.38 REM

REM message
The REMark statement allows notes and comments to be included
in the program without affecting the operation of the
program. Note that this statement adds to the program's
length and, therefore, slows it down. It may be followed by
any text, although use of graphic characters may produce
strange results.
EXAMPLE:

19 NEXT X:REM THIS LINE IS UNNECESSARY

2.4.39 RESTORE

RESTORE [line#]
This command resets the pointer to the first item in a DATA
statement list. This allows you to re-READ the information in
a DATA statement(s). If a [line#] follows the RESTORE
statement, the pointer is set to that line. Otherwise the
pointer is reset to the first DATA statement in the program.
EXAMPLE:

RESTORE 200

2.4.40 RESUME

RESUME [line# | NEXT]

This is used to return to execution after TRAPping an error(see Section 2.4.48). With no arguments, RESUME attempts to
re-execute the line in which the error occurred. RESUME NEXT
resumes execution at the next statement following the
statement containing the error. RESUME line# will GOTO thespecific line and begin execution there.

2.4.41 RETURN

RETURN

This statement is always used with the GOSUB statement (seeSection 2.4.18). When the program encounters a RETURN
statement, it goes to the statement immediately following thelast GOSUB command executed. If no GOSUB was previouslyissued, then a RETURN WITHOUT GOSUB ERROR message isdisplayed, and program execution is stopped.

2 - 34

Section Two Programming Basic
2.4.42 SCALE

SCALE <1/1@>

The scaling of the bit maps in multicolour and highresolution modes can be changed with the SCALE command.
Entering:
SCALE 1

turns scaling on. Coordinates may then be scaled from @ to
1623 in both X and Y. The normal scale values when scaling is
not turned on, are:

n "multicolour mode X g to 159 Y g to 199

g to 319 Yhigh resolution mode X g to 199

Scaling can be turned off by entering "SCALE @".

2.4.43 SCNCLR

SCNCLR

Clears the current screen, whether graphics, text, or both,i.e. split screen.

2.4.44 SOUND

SOUND voice#,frequency control,duration
This statement produces a SOUND using one of three voices
with a frequency control in the range 6-1023 for a duration
of 0-65535 68ths of a second.
Vv Voice
1 Voice 1 (tone)
2 Voice 2 (tone)
3 Voice 2 (white noise)
If a SOUND for voice N is requested, and the previous SOUND
for the same N is still playing, BASIC waits for the previous
SOUND to complete. SOUND with a duration of @ is a special
case. It causes BASIC to turn off the current SOUND for that
voice immediately, regardless of the time remaining on the
previous SOUND. See the MUSIC NOTE TABLE in the appendix for
the frequency control values corresponding to real notes.
EXAMPLE:

SOUND 2,800,36400 Plays a note using voice 2 with
frequency set at 800 for one minute

2-35

Section Two Programming Basic
2.4.45 SSHAPE/GSHAPE

SSHAPE and GSHAPE are used to save and restore rectangular
areas of multicolour or high resolution screens using BASIC
string variables. The command to save an area is:
SSHAPE string variable,al,bl [,a2,b2]
string variable String name is which data is saved
al,bl Corner coordinate (scaled)
a2,b2 Corner coordinate opposite (al,bl)(default is the PC)

Because BASIC limits string lengths to 255 characters, thesize of the area you may save is limited. The string sizerequired can be calculated using one of the following(unscaled) formulae: *

L (mcm) INT ((ABS (al-a2)+1)/4+.99)* (ABS (bl-b2) +1) +4

L (h-r) INT ((ABS (al-a2)+1)/8+.99) * (ABS (bl-b2)+1) +4

(mcm) refers to multi-colour mode; (h-r) is high resolution
The shape is saved row by row. The last four bytes of thestring contain the column and row lengths less one, i.e.
ABS (al-a2) in low/high byte format. If scaled, divide thelengths by 3.2 (X) and 5.12 (Y).
The command to display a saved shape on any area of thescreen is:
GSHAPE string variable name [,[a,b][,mode]]
string Contains shape to be drawn
a,b Top left coordinate of the position where the

shape is to be drawn (scaled - default is the PC)
mode Replacement mode:

@ - place shape as is (default)
1 - place field inverted shape
2 - OR shape with area
3 - AND shape with area
4 - XOR shape with area

EXAMPLES:

SSHAPE "VARIABLES",3,0 Saves screen area from the upperleft corner to where the cursor is
positioned. The saved area is giventhe name VARIABLES

GSHAPE "VARIABLES",,,l1 Displays VARIABLES shape with
background and foreground colours
reversed, with the top left of the
shape positioned at the cursor

Section Two Programming Basic

2.4.46 STOP

STOP

This statement halts the program. A message, BREAK IN LINE #,where # is the line number containing the STOP, is displayed.The CONT command can be used to re-start the program at thestatement following the STOP command. This statement isusually used while debugging a program.

2.4.47 SYS

SYS address
The word SYS is followed by a decimal number or numeric
variable in the range @ to 65535. The program begins
executing the machine language program starting at that
memory location. This is similar to the USR function exceptthat SYS does not pass a parameter to the machine language
program. See Chapter 4 for more information about machine
language programs.

2.4.48 TRAP

TRAP [line#]
When turned on, TRAP intercepts all error conditions
including the <RUN/STOP> key, except "UNDEF'D STATEMENT
ERROR". In the event of an execution error, the error flag is
set, and execution is transferred to the line number named in
the TRAP statement. The line number in which the erroroccurred can be found by using the system variable EL (seeSection 2.7.1.2). The specific error condition is contained
in system variable ER. The string function ERR$ (ER) gives the
error message corresponding to any error condition ER.

NOTE: An error in a TRAP routine cannot be trapped. The
RESUME statement can be used to resume execution. TRAP with
no line# argument turns off error TRAPping.

2.4.49 TRON

TRON

TRON is used in program debugging. This statement begins
trace mode. When you are in trace mode, the line number of
that statement is printed as each statement is executed.

Section Two Programming Basic

2.4.50 TROFF

TROFF

This statement turns trace mode, i.e. TRON, off.

2.4.51 VOL

VOL volume level
Sets the current VOLume level for SOUND commands. VOLume may
be set from @ to 8, where 8 is maximum volume, and @ is off.
VOL affects both voices.

2.4.52 WAIT

WAIT address,value 1 [,value 2]

The WAIT statement is used to halt the program until the
contents of a location in memory changes in a specific way.
The address must be in the range from @ to 65535. Value 1 and
value 2 must be in the range from @ to 255.

The content of the memory location is first exclusive-ORed
with value 2 (if present), and then logically ANDed with
value 1. If the result is zero, the program checks the memorylocation again. When the result is non-zero, the programcontinues with the next statement.

2.5 Additional Graphic Statement Information
There are some concepts that apply to all of the bit map
graphics statements. First is the concept of the Pixel Cursor
(PC). The PC is similar to the cursor in text mode, it is the
position where the next dot is to be drawn. Unlike the text
cursor, the PC is invisible. All drawing commands use the PC.
In addition, the locate command allows you to reposition the
PC without drawing anything.

2 - 38

Section Two Programming Basic

Wherever you would use X,Y coordinates in a drawing command,
you can use RELATIVE coordinates instead. Relativecoordinates are based on the current location of the PC. To
use this system, place a + or - in front of the coordinates.
A plus sign before the X value moves the PC to the right. A
minus sign before the X value moves the PC to the left.Similarly, a minus sign before the Y coordinate moves the BPC

up, while a plus sign moves the PC down. For example:
LOCATE +104¢,-25 moves the PC right 100 pixels and

up 25

DRAW 1,+10,+13T0100,100 draws a line 10 pixels right and
10 pixels below the current value
of the PC to the absolute point
109,100

You can also specify a distance and an angle relative to thecurrent PC by separating the two parameters by a semicolon.
For example:
LOCATE 50;45 moves the PC from its current location by a

distance of 50 dots at an angle of 45 degrees

2.6 FUNCTIONS

2.6.1 Numeric Functions
Numeric functions are classified as such because they returnnumbers. The functions they perform range from calculatingmathematical functions to specifying a screen location.Numeric functions follow the form:

FUNCTION (argument)
where the argument can be a numerical value, variable orstring.

2.6.1.1 ABS (X) (absolute value)
The absolute value function returns the magnitude of the
argument X.

2.6.1.2 ASC(XS)

This function returns the ASCII code, i.e. number, of thefirst character of XS.

2 - 39

Section Two Programming Basic

2.6.1.3 ATN(X) (arctangent)
Returns the angle, in radians, whose tangent is X.

2.6.1.4 COS (X) (cosine)
Returns the value of the cosine of (X), where X is an angle
measured in radians.

2.6.1.5 DEC (hexadecimal-string)
Returns decimal value of hexadecimal-string
(d<hexadecimal-string<FFFF)

EXAMPLE:

N=DEC ("F4")

2.6.1.6 EXP (X)

Returns the value of the mathematical constant e (2.71828183)raised to the power of X.

2.6.1.7 FNxx(X)

Returns the value of the user-defined function xx created in
a DEF FNxx statement.

2.6.1.8 INSTR (string 1,string 2 [,starting position])
Returns position of string 2 in string 1 at or after the
[starting position]. The starting position defaults to the
beginning of string 2. If no match is found, a value of # isreturned.
EXAMPLE:

PRINT INSTR ("THE CAT IN THE HAT","CAT")

the result is 5, because CAT starts at the fifth character in
string 1l.

2 - 40

Section Two Programming Basic

2.6.1.9 INT(X) (integer)
Returns the integer portion of X, with all decimal places tothe right of the decimal point removed. The result is alwaysless than or equal to X. Thus, a negative number with decimal
places becomes the integer less than its current value, e.g.INT (-4.5)=-5.
If the INT function is to be used for rounding off, the form
is INT (X+.5) or INT (X-.5).
EXAMPLE:

X=INT (X*100+.5)/100 rounds to the next highest number

2.6.1.18 JOY (n)

1 position of joystick #1
2 position of joystick #2

When n
n

Any value of 128 or more means the fire button is also
depressed. The direction is indicated as follows:

up
Fire = 128 + 1

8 2
LEFT 7 a 3 RIGHT

6 4
5

DOWN

EXAMPLE:

JOY (2) with a value of 135 fires joystick #2 to the the left

2.6.1.11 LOG(X) (logarithm)
This function returns the natural log of X. The natural logis log to the base e (see EXP(X), Section 2.6.1.6). To
convert to log base 16, divide by LOG (10).

2.6.1.12 PEEK (X)

This function gives the contents of memory location X, where
X is located in the range of @ to 65535, returning a result
from 0 to 255. PEEK is often used in conjunction with the
POKE statement.

2 - 41

Section Two Programming Basic

2.6.1.13 RCLR(N)

Returns current colour assigned to source N, where N is in
the range @=< N =<4.

@=background, l=foreground, 2=multicolour 1, 3=multicolour 2,
4=border

2.6.1.14 RDOT(N)

Returns information about the current position of the pixel
cursor (PC) at XPOS/YPOS.

N = @ for XPOS
1 for YPOS
2 colour source

2.6.1.15 RGB (X)

Returns current graphic mode (X is a dummy argument and can
be any value).

2.6.1.16 RLUM(N)

Returns current luminance level assigned to colour source N.

2.6.1.17 RND(X) (random number)

This function returns a random number between @ and 1. The X

is a dummy argument and can be any value. This is useful in
games, to simulate dice rolls and other elements of chance.
It is also used in some statistical applications. The first
random number should be generated by the formula RND(-TI), to
give a different random number each time the program is RUN.
After this, the number in X should be a 1, or any positive
number, (X represents the seed, or what the RaNDom number is
based on). If X is zero, RND is re-seeded from the hardware
clock every time RND is used. A negative value for X seeds
the random number generator using X and gives a random number
sequence. The use of the same negative number for X as a seed
results in the same sequence of random numbers. A positive
value gives random numbers based on the previous seed.

2 - 42

Section Two Programming Basic

To simulate the rolling of a die, use the formula
INT (RND(1)*6+1). First, a random number from g-1 ismultiplied by 6, this expands the range to 0-6, i.e.0 <n < 6. Then 1 is added, making the range 1 <= n < 7. The
INT function chops off the decimal places, leaving the resultas a digit from 1 to 6.
To simulate 2 dice, add together two of the numbers obtained
using the above formula.
EXAMPLE:

10d X=INT (RND(1l)*6)+INT(RND(1)*6)+2 Simulates 2 dice
110 X=INT (RND(1)*1000)+1 Number from 1-1000
120 X+INT (RND(1)*150)+100 Number from 106-249

2.6.1.18 SGN (X) (sign)
This function returns the sign, i.e. positive, negative, or
zero, of X. The result is +1 if positive, @ if zero, or -1 if
negative.

2.6.1.19 SIN(X) (sine)
This is the trigonometric sine function. The .result is the
sine of X, where X is an angle in radians.

2.6.1.20 SQR(X) (square root)
This function returns the square root of X, where X is a
positive number or @. If X is negative, an ILLEGAL QUANTITY
ERROR results.

2.6.1.21 TAN(X) (tangent)
This gives the tangent of X, where X is an angle in radians.

2.6.1.22 USR(X)

When this function is used, the program jumps to a machine
language program whose starting point is contained in memorylocations 1281 and 1282. The parameter X is passed to the
machine language program in the floating point accumulator.
Another number is passed back to the BASIC program through
the calling variable. In other words, this allows you to
exchange a variable between machine code and BASIC. See
Chapter 4 for more information on the USR function.

2 - 43

Section Two Programming Basic

2.6.1.23 VAL (X$)

This function converts the string X$ into a number, and is
essentially the inverse operation from STR$. The string is
examined starting at the left-most character, converting only
characters which are in recognizable number format. If your
computer finds any illegal characters, i.e. which it does not
recognize as being in number format, it converts only the
portion of the string up to that character.
EXAMPLE:

10 X=VAL ("123.456") X=123,456
20 X=VAL("3E@3") X=3000
30 X=VAL("12a13B") X=12
40 X=VAL ("RIUOL7*") X=0
50 X=VAL("-1.23.23.23") X=-1.23
60 A$="123":X=VAL (AS) X=123

NOTE: 3E@3 is scientific notation for 300d.

2.6.2 String Functions
String functions differ from numeric functions in that theyreturn characters, graphics or numbers from a string insteadof a number. A string is a group of characters enclosed in
quotation marks.

2.6.2.1 CHRS$ (X)

This function returns a string character whose ASCII code is
X.

2.6.2.2 ERRS(N)

Returns the string describing error condition N (see TRAP).

2.6.2.3 HEXS(N)

Returns a four character string containing the hexadecimal
representation of value N, where N is in the range8< N <65535.

2.6.2.4 LEFTS$ (X$,X)

This returns a string containing the leftmost X characters of
XS.

2 - 44

Section Two Programming Basic

2.6.2.5 LEN (XS)

Returns the number of characters (including spaces and other
symbols) in the string XS.

2.6.2.6 MIDS (X$,N,X)

This returns a string containing X characters, starting with
the Nth character in X$. MID$ can also be used on the leftside of an assignment statement as a pseudo-variable. MIDS
(string variable, starting position, length) = source string,see the example below.

This function reassigns values of positions (starting
position) through (starting position + length) of source
string to the characters of string variable in corresponding
locations. Length defaults to the length of string variables,
and an error results if (starting position + length) is
greater than the length of the source string.
EXAMPLE:

16 A$="THE LAST GOODBYE"
20 PRINT AS Prints "THE LAST GOODBYE"
30 MIDS (AS,6,3)="ONG"
40 PRINT AS Prints "THE LONG GOODBYE"

2.6.2.7 RIGHTS (X$,X) .

This returns the right most X characters in XS$.

2.6.2.8 STR$ (X)

This returns a string which is identical to the PRINTed
version of X.

EXAMPLE:

X=123
AS$S=STRS (X)

2.6.3 Other Functions

2.6.3.1 FRE (X)

This function returns the number of unused bytes available in
memory. X is a dummy argument.

2 - 45

Section Two Programming Basic

2.6.3.2 POS (X)

This function returns the number of the column (8-39) where
the next PRINT statement begins on the screen. X is a dummy
argument.

2.6.3.3 SPC(X)

This is used in the PRINT statement. It allows you to skip
over X spaces. X can have a value from @-255.

2.6.3.4 TAB (X)

This is used in the PRINT statement. The next item to be
printed is in column number X. X can have a value from @ to
255.

2.6.3.5 TX (PI)
The PI symbol, when used in an equation, has the value of3.14159265.

2.7 VARIABLES AND OPERATORS

2.7.1 Variables
Your computer uses three types of variables in BASIC. Theseare normal numeric, integer numeric and string (consisting of
alphanumeric and other characters) variables.
Normal NUMERIC VARIABLES, also called floating pointvariables, can have any value from 10°-38 to 10°+38, with upto nine digits including the decimal point. When a number
becomes larger than nine digits can show, as in 10°-16 or16°+108, the computer displays it in scientific notation, withthe number normalized to 1 digit and eight decimal places,followed by the letter E and the power of ten by which the
number is multiplied. For example, the number 12345678961 isdisplayed as 1.23456789E+10.
INTEGER VARIABLES can be used when the number is in the range-32768 thru +32767, with no fractional portion, i.e. nodecimal places. An integer variable is a number like 5, 14,
or -10@. Integers take up less space than floating pointvariables when used in an array.
STRING VARIABLES are those used for character data. They cancontain numbers, letters and any other character that the
computer can display. An example of a string variable is
"COMMODORE PLUS/4".

2 - 46

Section Two Programming Basic

2.7.1.1 VARIABLE NAMES

VARIABLE NAMES may consist of a single letter, a letterfollowed by a number, or two letters. Although variable namesmay be longer than 2 characters, only the first two aresignificant.
An integer variable is specified by using the percent (%)sign after the variable name. A string variable has thedollar sign ($) after its name.
EXAMPLES:

Numeric variable names: A AS BZ

Integer variable names: A% A5% BZ$

String variable names: A$ AS5$ BzS

ARRAYS are lists of variables with the same name using anextra number (or numbers) to specify an element of the array.Arrays are defined using the DIM statement, and may befloating point, integer, or string variable arrays. The arrayvariable name is followed by a set of parentheses ()enclosing the number of variables in the list.
EXAMPLES: A(7), B2%(ll), A$(87)

Arrays may have more than one dimension. A two-dimensionalarray may be viewed as having rows and columns, with thefirst number identifying the column and the second number inthe parentheses identifying the row, as if specifying acertain grid location on a map.
EXAMPLES: A(7,2), BZ%(2,3,4), 2$(3,2)

2.7.1.2 RESERVED VARIABLE NAMES

There are seven variable names which are reserved for use byyour computer, and may not be used for another purpose. Theseare the variables DS, DS$, ER, EL, ST, TI and TIS. You alsocannot use KEYWORDS such as TO and IF, or any names thatcontain KEYWORDS, e.g. SRUN, RNEW or XLOAD are not allowed asvariable names.
ST is a status variable for input and output (except normalscreen/keyboard operations). The value of ST depends on theresults of the last input/output operation. See the READSTKERNAL routine (Section 4.11.3) for more information onSTATUS.

2 - 47

Section Two Programming Basic

TI and TIS are variables that relate to the real-time clockbuilt into your computer. The system clock is updated every1/60th of a second. It starts at @ when your machine isturned on, and is reset only by changing the value of TIS.The variable TI gives you the current value of the clock in1/60ths of a second.
TIS is a string that reads the value of the real-time clockin 24-hour format. The first two characters of TIS containthe hour, the 3rd and 4th characters are the minutes, and the5th and 6th characters are the seconds. This variable can beset to any required numeric value, and is automaticallyupdated as a 24 hour clock.
EXAMPLE: TI$="101539g" Sets the clock to 16:15 and 39

seconds (AM)

The value of the clock is lost when your computer is turnedoff. It starts at zero when your computer is turned on and isreset to zero when the value of the clock exceeds 235959,i.e. 23 hours, 59 minutes and 59 seconds.
The variable DS reads the disk drive command channel, andreturns the current status of the drive. To display the diskdrive status, PRINT DSS. These status variables are usedafter a disk operation, like a DLOAD or DSAVE, to find outwhy the red error light on the disk drive is blinking.
ER, EL and ERR$ are variables used in error trappingroutines. They are usually only useful within a program. ERreturns the last error encountered since the program was RUN.EL is the line where the error occurred. ERR$ is a functionwhich allows your program to print one of the BASIC errormessages. PRINT ERRS$ (ER) prints out the Proper error message.

2.7.2 BASIC OPERATORS

The ARITHMETIC operators include the following signs:
addition
subtraction
multiplicationdivision
raising to a power (exponentiation)

PN

*
1
+

2 - 48

Section Two Programming Basic

In a statement containing more than one operator, there is aset order in which the operations are carried out - first,exponentiation, then multiplication and division, and last,addition and subtraction. If two operations have the same
priority, then calculations are performed in the order theyoccur in the statement, from left to right. If you want these
operations to occur in a different order, BASIC 3.5 allows
you to give a calculation a higher priority by placingparentheses around it. Operations enclosed in parentheses arecalculated before any other operation. You must ensure that
your equations have the same number of left parentheses asright parentheses or a SYNTAX ERROR message is displayed when
you RUN your program. ~

There are also operators for equalities and inequalities,these are called RELATIONAL operators. They are listed below.
Arithmetic operators always take priority over relational
operators.

is equal to
is less than
is greater than

<= or =< is less than or equal to
>= or => is greater than or equal to
<> or >< is not equal to

val

Finally, there are three LOGICAL operators, with lower
priority than both arithmetic and relational operators:

AND
OR
NOT

These are used most often to join multiple formulas in
IF...THEN statements. When they are used with arithmetic
operators, they are evaluated last, i.e. after + and -.
EXAMPLES:

IF A=B AND C=D THEN 100 requires both A=B and C=D to
be true

IF A=B OR C=D THEN 100 allows either A=B or C=D to
be true

A=5:B=4:PRINT A=B displays a value of @

A=5:B=4:PRINT A>B displays a value of -1
PRINT 123 AND 15:PRINT 5 OR 7 displays 11 and 7

2 - 49

Section Two Programming Basic

2.8 BASIC Abbreviation and Reference Chart
KEYWORD

ABS
ASC
ATN
AUTO
BACKUP
BOX
CHAR
CHRS$
CIRCLE
CLOSE
CLR
CMD
COLLECT
COLOR
CONT
copy
Cos
DATA
DEC
DEF FN
DELETE
DIM
DIRECTORY
DLOAD
DO
DRAW
DSAVE
END
ERRS
EXP
FOR
FRE
GET
GETKEY
GET#
GOSUB
GOTO
GRAPHIC
GSHAPE
HEADER
HEXS$

IF...GOTO
IF...THEN...ELSE
INPUT
INPUT#
INSTR
INT
Joy
KEY

ABBREVIATION

<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>

h <SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none

<SHIFT>
none

<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none

<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none

<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none
none
none

i <SHIFT>
in <SHIFT>

none
j <SHIFT>
k <SHIFT>

NoO0ONOoOQuUoUepeE

—

nnaoaq

o

oo
—

o
oo

Q

j=

om o ~

o

=

Fuaaauq

9

QQ

MAO

OO

QQ

POC

XCoOHRIPOMPCALD

my»

ununomon

mm

OXWZn

CoD

Mm

>

wn

Zz

oO

50

TYPE

function - numeric
function - numeric
function - numeric
command
command
statement
statement
function - string
statement -
statement
statement
statement
command
statement
command
command
function - numeric
statement
function - numeric
statement
command
statement
command
command
statement
statement
command
statement
function - stringfunction - numeric
statement
function - numeric
statement
statement
statement
statement
statement
statement
statement
command
function - stringstatement
statement
statement
statement
function - numeric
function - numeric
function - numeric
command

Section Two Programming Basic

LEFTS le {SHIFT> F function - string
LEN none function - numeric
LET 1 <SHIFT> E statement
LIST 1 <SHIFT> I command
LOAD 1 <SHIFT> O command
LOCATE lo <SHIFT> C statement
LOG none function - numeric
LOOP lo <SHIFT> O statement
MIDS m <SHIFT> I function - string
MONITOR m <SHIFT> O statement
NEW none command
NEXT

)
n <SHIFT> E statement

ON...GOSUB on...go <SHIFT> S statement
ON...GOTO ON...g <SHIFT> O statement
OPEN o <SHIFT> P statement
PAINT p <SHIFT> A statement
PEEK Pp <SHIFT> E function - numeric
POKE P <SHIFT> O statement
POS none function - numeric
PRINT 2 statement
PRINT# P <SHIFT> R statement
PRINT USING ?2us <SHIFT> I statement
PUDEF Pp <SHIFT> U statement
RCLR r <SHIFT> C function - numeric
RDOT r <SHIFT> D function - numeric
READ r <SHIFT> E statement
REM none statement
RENAME re <SHIFT> N command
RENUMBER ren <SHIFT> U command
RESTORE re <SHIFT> S statement
RESUME res <SHIFT> U statement
RETURN re <SHIFT> T statement

. RGR r <SHIFT> G function - numeric
RIGHTS r <SHIFT> I function - string
RLUM r <SHIFT> L function - numeric
RND r <SHIFT> N function - numeric
RUN r <SHIFT> U command
SAVE Ss <SHIFT> A command
SCALE sc <SHIFT> A statement
SCNCLR Ss <SHIFT> C statement
SCRATCH sc <SHIFT> R command
SGN s <SHIFT> G function - numeric
SIN s <SHIFT> I function - numeric
SOUND s <{SHIFT> 0 statement
SPC (s <SHIFT> P function - special
SQR s <SHIFT> Q function - numeric
SSHAPE s <SHIFT> S statement
STatus none reserved - numeric
STOP s <SHIFT> T statement
STRS st <SHIFT> R function - string
SYS Ss <SHIFT> Y statement

2 - 51

Section Two Programming Basic

TAB (t <SHIFT> A function - special
TAN none function - numeric
TI none reserved - numeric
TIS none reserved - string
TRAP t <SHIFT> R statement
TROFF tro <SHIFT> F statement
TRON tr <SHIFT> O statement
UNTIL u <SHIFT> N statement
USR u <SHIFT> S function - special
VAL none function - numeric
VERIFY v <SHIFT> E command
VOL v <SHIFT> O statement
WAIT w <SHIFT> A statement
WHILE w <SHIFT> H statement

2 - 52

Section Three Programming Machine Code

SECTION THREE

PROGRAMMING MACHINE CODE

3.1 What is Machine Language?
At the heart of every microcomputer is a centralmicroprocessor, sometimes known as the central processingunit (C.P.U.). The C.P.U. is a very special microchip which
is the computer's "brain". Almost everything that the
computer does is controlled by the C.P.U. Everymicroprocessor understands its own language of instructionswhich are called machine language instructions. Machine
language is the ONLY programming language that your C16 or
PLUS/4 understands, it is the NATIVE language of the machine.
COMMODORE BASIC V3.5 is not the machine language of the C16
or PLUS/4. In order that the computer can understand the
COMMODORE BASIC V3.5 programming language the computercontains a machine language program stored in a read only
memory, i.e. ROM. This machine language program is called the
OPERATING SYSTEM, i.e. 0S. When the computer is switched on,it is automatically "RUN".

The OPERATING SYSTEM "organizes" all the memory in yourmachine for the various tasks the computer performs.
All of the commands that are available in COMMODORE BASIC
V3.5 are simply recognized by another huge machine language
program built into your C16 or PLUS/4. This program "RUNs"
the appropriate piece of machine language depending on which
BASIC command is being executed. This program is called the
BASIC INTERPRETER, because it interprets each command.

3.2 What does Machine Code Look Like?
Each memory location has its own number which identifies it.This number is known as the "address" of a memory location.If you imagine the memory in your C16 or PLUS/4 as a streetof buildings, then the number on each door is, of course, the
address.

Section Three Programming Machine Code

3.3 Simple Memory Map of the Cl6 and PLUS/4

The following table introduces you to the computer's "street"
and the functions of the various addresses in that "street".
ADDRESS DESCRIPTION

g &1 7501 registers
2 Start of memory
to 2045 Memory used by the operating system
2048 to 3071 Colour RAM

3072 to 4095 Screen memory

4096 Start of BASIC text area
8192 Start of BASIC when HIRES is on

53248 Beginning of character ROM

If you do not understand what the description of each part of
memory means, do not worry, this becomes clear as you work
through this section of the manual.
Machine language programs consist of instructions which may
or may not have operands (parameters) associated with them.
Each instruction takes up one memory location, any associated
operand is contained in one or two locations following theinstruction.
In BASIC programs, words like PRINT and GOTO only take up one
memory location, rather than one for each character of the
word. The contents of the location that represents a
particular BASIC keyword is «called a token. In machine
language, there are different tokens for different
instructions, which also take up just one byte (one memorylocation = one byte).
Machine language instructions are very simple. Each
individual instruction carries out one small step in a
program such as changing the contents of a memory location,
or changing one of the internal registers, i.e. special
storage locations, inside the microprocessor. The internalregisters form the basis of machine language.

Section Three Programming Machine Code

3.4 The Registers Inside the 7501 Microprocessor

3.4.1 THE ACCUMULATOR

This is the most important register in the microprocessor.
Various machine language instructions allow you to copy the
contents of a memory location into the accumulator, copy the
contents of the accumulator into a memory location, modify
the contents of the accumulator or some other register
directly, without affecting any memory. The accumulator is
the only register that has mathematical instructions.

3.4.2 THE X INDEX REGISTER

This is a very important register. There are instructions for
nearly all of the transformations you can make to the
contents of the accumulator. However, there are other
instructions for things that only the X register can do.
Various machine language instructions allow you to copy the
contents of a memory location into the X register, copy the
contents of the X register into a memory location, and modify
the contents of the X, or some other register, directly.

3.4.3 THE Y INDEX REGISTER

This register has instructions for nearly all of the
transformations you can make to the contents of the
accumulator and the X register. There are also other
instructions for things that only the Y register can do.
Various machine language instructions allow you to copy the
contents of a memory location into the Y register, copy the
contents of the Y register into a memory location, and modify
the contents of the Y, or some other register directly.

3.4.4 THE STATUS REGISTER

This register consists of six "flags". A flag lets you know
whether something has, or has not, occurred. These flags give
you information about the current "status" of the processor.

3.4.5 THE PROGRAM COUNTER

This contains the address of the current machine language
instruction being executed. Because the operating system is
always "RUNning" in your Cl6 or PLUS/4, the program counter
is constantly changing. It can only be stopped by halting the
microprocessor in some way.

Section Three Programming Machine Code

3.4.6 THE STACK POINTER

This register contains the location of the first empty place
on the stack. The stack is used for temporary storage by
machine language programs and by the computer.

3.4.7 THE INPUT/OUTPUT PORT

This register is an 8-bit input/output port. It is at memorylocation @, for the DATA DIRECTION REGISTER, and 1, for theactual PORT.

3.5 Writing Machine Language Programs
The C16 and PLUS/4 both contain a machine language programcalled TEDMON which enables you to easily write machine
language programs. TEDMON includes a machine languagemonitor, a mini assembler, and a disassembler.
Machine language programs written using TEDMON can run bythemselves, or be used as very fast "subroutines" for BASIC
programs since TEDMON has the ability to coexist with BASIC.

Section Three Programming Machine Code

3.5.1 TEDMON COMMANDS

A ASSEMBLE Assemble a line of 75081 code
Cc COMPARE Compare two sections of memory and

report any differences
D DISASSEMBLE Disassemble an area of memory

F FILL Fill an area of memory with the
specified byte

G GO Start execution at the specifiedaddress
H HUNT Hunt through memory for all occurrencesof certain bytes
L LOAD Load a file from tape or disk
M MEMORY Display the hexadecimal values of

particular memory locations
R REGISTERS Display the 75081 registers
S SAVE Save to tape or disk
T TRANSFER Transfer code from one section of

memory to another
v VERIFY Compare memory with tape or disk
X EXIT Exit TEDMON

. (period) Assembles a line of 7501 code
> (greater than) Modifies memory

; (semi-colon) Modifies 7501 register displays
NOTE: In the PLUS/4 only, location S$07F8 controls whether
TEDMON looks at ROM or RAM above $8000. If this location is
set to $00 when TEDMON is commanded to do a disassembly or
memory dump above $8000, it displays BASIC and the KERNAL. Ifthis location is set to $80, TEDMON displays the RAM under
BASIC and KERNAL. This is often convenient for machine
language program development. Note that location $@7F8 does
not affect the GO command. The GO command starts execution in
the current memory map (ROM on or RAM on) regardless of the
setting of location S$@7F8.

Section Three Programming Machine Code

3.5.2 USING TEDMON

Enter TEDMON by typing:
MONITOR

TEDMON responds by displaying the 7518 registers and the
flashing cursor. The cursor is the prompt that lets you know
that TEDMON is waiting for your commands.

3.5.3 COMMAND DESCRIPTIONS

COMMAND: A

PURPOSE: Enter a line of assembly code
SYNTAX : A <address> <opcode mnemonic)» <operand>

<address> a hexadecimal number indicating the location in
memory where the opcode is to be placed.
<opcode mnemonic> a standard MOS Technology assembly language
mnemonic, e.g. LDA, STX, ROR, etc.
<operand> the operand, when required, can be any of the legaladdressing modes. For zero-page modes, a 2-digit hex number
is required whose value is less than $100. For non-zero-pageaddresses, 4-digit hex numbers are required.
A <RETURN> is used to indicate the end of the assembly line.If there are any errors on the line, a question mark (2?) is
displayed, and the cursor moves to the next line. The screeneditor can then be used to correct those errors.
When a line of code is successfully assembled, the assembler
prints a prompt containing the next legal memory location
which can be used for an instruction. This means that A and
the address number do not have to be typed more than once
when typing assembly language programs into the Cl6 and
PLUS/4.

EXAMPLE:

.A 1200 LDX #$00
<A 1202

NOTE: a period (.) is equal to the ASSEMBLE command.

EXAMPLE:

.2000 LDA #$23

Section Three Programming Machine Code

COMMAND: C

PURPOSE: Compare two areas of memory

SYNTAX : C <address 1> <address 2> <address 3>

<address 1> is a hexadecimal number indicating the startaddress of the first area of memory

<address 2> is a hexadecimal number indicating the end
address of the first area of memory

<address 3> is a hexadecimal number indicating the startaddress of the area of memory to be compared with the firstarea of memory

If the two areas of memory are the same, then TEDMON prints a
<RETURN>, indicating that the second area of memory is the
same as the first. The addresses of any bytes in the two
areas which are different are printed on the screen.

COMMAND: D

PURPOSE: Disassemble machine code into assembly language
mnemonics and operands
SYNTAX : D [<address>] [<address 2>]

<address> a hexadecimal number setting the address at which
disassembly is to start
<address 2> an optional hexadecimal ending address of the
code to be disassembled
The format of the disassembly is only slightly different than
the input format of an assembly. The difference is that thefirst character of a disassembly is a period rather than an
A, this is for readability, and the hexadecimal of the code
is listed as well.
A disassembly listing can be modified using the screeneditor. Make any changes to the mnemonic operand on the
screen, then press the <RETURN> key. This enters the line and
calls the assembler for further modifications.
A disassembly can be paged. Typing a D on its own causes the
next 20 bytes of code to be disassembled to the screen.
EXAMPLE:

D 3000 3004
. 30600 AS 00 LDA #500
. 3002 FF 22?
. 3003 D@ 2B BNE $3030

Section Three Programming Machine Code

COMMAND: F

PURPOSE: Fill a range of locations with a specified byte
SYNTAX : F <address 1> <address 2> <byte>

<address 1> the first location to be filled with the <byte>

<address 2> the last location to be filled with the <byte>

<byte> a 1 or 2-digit hexadecimal number

This command is useful for initializing data structures or
any other RAM area.
EXAMPLE:

F 0400 @¢518 EA

This fills memory locations from $0408 to $0518 with SEA
which is a NOP instruction.

COMMAND: G

PURPOSE: Begin execution of a program at a specified address
SYNTAX : G [<address>]
<address> is an optional argument specifying the new value ofthe program counter and the address where execution is tostart. When <address> is left out, execution begins at thecurrent location of the PC, i.e. Program Counter. The PC can
be viewed using the R command.

The GO command restores all registers and begins execution atthe specified starting address. The registers can be
displayed using the R command. Caution is recommended in
using the GO command. To return to TEDMON after executing a
machine language program, use the BRK instruction.
EXAMPLE:

G 140cC

Execution begins at location $140C.

Section Three Programming Machine Code

COMMAND: H

PURPOSE: Hunt through memory within a specified range for alloccurrences of a set of bytes
SYNTAX : H <address 1> <address 2> <data>

<address 1> beginning address for the hunt
<address 2> ending address for the hunt
<data> is the data set to search for. Data may be hexadecimal
or an ASCII string. An ASCII string is specified by precedingthe first character with a single apostrophe, e.g. ‘STRING.
Data may be a single or multiple element argument. When
multiple and in hexadecimal, each number must be separated by
a space.
EXAMPLES:

H C@¢8 FFFF 'READ Search for ASCII string "READ" from
$C@0@ to SFFFF

H AQG0@ Al@l A9 FF 4C Search for data $A9, SFF, $4C, from
S$SA100 to $AlQl

COMMAND: L

PURPOSE: Load a file from cassette or disk
SYNTAX : L <"filename">,<device>
<"filename"> is any legal Cl6 or PLUS/4 filename enclosed in
quotes
<device> is a hexadecimal number indicating the device to
load from. 1 is cassette, 8 is disk.
The LOAD command causes a file to be loaded into memory. The
starting address is contained in the first two bytes of the
(program) file. In other words, the LOAD command always loads

a file into the same area of memory as it was saved from.
This is very important in machine language work, as few
programs are completely relocatable. The file is loaded into
memory until the end of file marker (EOF) is found.
EXAMPLE:

L "SCREEN",1 Reads the file called SCREEN from cassette
L "TANK",S8 Reads the file called TANK from disk

3-9

Section Three Programming Machine Code

COMMAND: M

PURPOSE: To display memory within the specified address range
as a hexadecimal and ASCII dump

SYNTAX : M [<address 1>] ([<address 2>]

<address 1> first address of memory dump. This is optional.If it is omitted, then one page is displayed starting from
the last address specified
<address 2> last address of memory dump. Optional. If
omitted, then one page is displayed starting from <address 1>

Memory is displayed in the following format:
>@310 8B 8C 42 CE OE CE 4C F4 :..BN. NLI

Memory content may be edited using the screen editor. Move
the cursor to the data to be modified, type the desiredcorrection and press <RETURN>. If there is a bad RAM location
or an attempt to modify ROM has occurred, a question mark (?)is displayed.
An ASCII dump of the data is displayed in REVERSE colours tothe right of the hex data. The REVERSE colours are todifferentiate the dump from other data displayed on thescreen. When a character is not printable, it is displayed as
a reverse period (.).
As with the DISASSEMBLY command, you can page down. This isdone by typing M and <RETURN>.

EXAMPLE:

>1C@@ 41 00 AA AA 00 98 56 45 :A.** VE
>1C10 41 60 AA AA 00 98 56 45 :A.**_ _ VE
>1Cl0 41 00 AA AA OO 98 56 45 :A.**_ _ VE
>1C18 41 00 AA AA 00 98 56 45 :A.** VE
>1C20 41 00 AA AA 00 98 56 45 :A.**_ VE
>1C28 41 0@ AA AA 00 98 56 45 :A.**_ VE
>1C30 41 00 AA AA @@ 98 56 45 :A.**_ VE
>1C38 41 00 AA AA 00 98 56 45 :A.**_ VE
>1C40 41 00 AA AA @F 98 56 45 :A.**_ VE
>1C48 41 00 AA AA G0 98 56 45 :A.**_ VE
>1C5@ 41 00 AA AA 00 98 56 45 :A.**_,. VE
>1CS58 41 00 AA AA 00 98 56 45 :A.**, VE

3-10

Section Three Programming Machine Code

COMMAND: >

PURPOSE: Can be used to set 1 to 8 memory locations at a time
SYNTAX : >address data byte 1 <data byte 2> <data byte 3>
.e.8
address - first memory address to be set
data byte 1 - data to be put at address
<data byte 2...8> - data to be placed in the successive
memory locations following the first address. Optional.
EXAMPLES:

>2000 08 places a $08 at location $2000

>3000 23 45 65 places a $23 at location $3000, a $45 at
$3001, and a $65 at $3002

COMMAND: R

PURPOSE: Show 7501 registers. The Program Counter, Status
Register, Accumulator, X and Y registers, and Stack Pointer
are displayed.
SYNTAX : R

EXAMPLE:

+R
PC SR AC XR YR SP

: 1002 01 02 03 04 F6

NOTE: the semi-colon (;) can be used to modify register
displays in the same way that > is used to modify memory.

3-11

Section Three Programming Machine Code

COMMAND: S

PURPOSE: Save the contents of memory onto tape or disk
SYNTAX : S <"filename">,<device>,<address 1>,<address 2>

<"filename"> any legal Cl6 or PLUS/4 filename enclosed in
quotes
<device> two possible devices are cassette and disk. To save
onto cassette use a device number of 1, to save onto disk use
a device number of 8.

<address 1> starting address of memory to be saved
<address 2> ending address of memory to be saved+l. All data
up to, but not including, the byte of data at this address is
saved.
The file created by this command is a program file. The first
two bytes contain the starting address <address 1> of the
data. The file may be recalled using the L command.

EXAMPLE:

S "GAME" ,8,0400,0C00
Saves memory from $0400 to S$OBFF onto disk.

COMMAND: T

PURPOSE: Transfer an area of memory to another location
SYNTAX : T <address 1> <address 2> <address 3>

<address 1> the start address of data to be moved

<address 2> the end address of data to be moved

<address 3> start address of new location to which the data
is to be transferred
Data can be moved from low memory to high memory or
vice-versa. Additional memory segments of any length can be
moved forward or backward any number of bytes.
NOTE: the value of <address 3> must not fall within the rangeof <address 1> to <address 2>.

EXAMPLE:

T 1401 1600 1400 Shifts the data from $1401 up to and
including $1600 one byte down in memory

3-12

Section Three Programming Machine Code

COMMAND: V

PURPOSE: Verify a file on cassette or disk with the memorycontents
SYNTAX : V <"filename">,<device>
<"filename"> is any legal Cl6 or PLUS/4 filename enclosed inquotation marks

<device> is a hexadecimal number indicating which device thefile is on, cassette is 1 or 01, disk is 8 or #8

The VERIFY command compares a file with the contents of
memory. The Cl6 or PLUS/4 responds by displaying the messageVERIFYING. If an error is found, the word ERROR is displayed.If the file is successfully verified, the flashing cursor
reappears.
EXAMPLE:

V "WORKLOAD",8

COMMAND: X

PURPOSE: Exit to BASIC

SYNTAX : X

When the X command is given, the machine stack pointer is setto the current stack pointer value (see the R command). Ifthis is modified in any way, use the BASIC CLR command toreset the pointers after exiting to BASIC.

3-13

Section Three Programming Machine Code

3.6 HEXADECIMAL NOTATION

Hexadecimal is the notation usually used by machine language
programmers when they talk about a number or address in a
machine language program.
By looking at decimal, i.e. base 10, numbers, you can see
that each digit falls somewhere in the range 8 thru 9, i.e.
in the range zero through to a number equal to the base less
one. This is true of all number bases. Binary, i.e. base 2
numbers have digits ranging from zero to one, i.e. one less
than the base. Similarly, hexadecimal, i.e. base 16, numbers
have digits ranging from zero to fifteen. As there are no
single digit figures for the numbers ten to fifteen, thefirst six letters of the alphabet are used. This is shown in
the following table:
DECIMAL HEXADECIMAL BINARY

2 2 00000000
1 1 00009001
2 2 00000010
3 3 00000011
4 4 00000100
5 5 00000101
6 6 00000110
7 7 00000111
8 8 90001000
9 9 00001001
10 A 00001010
11 B 00001011
12 Cc 00001100
13 D 00001101
14 E 00001110
15 F 90001111
16 190 000810000

3.7 ADDRESSING MODES

3.7.1 ZERO PAGE

Absolute addresses are expressed in terms of a high and a low
order byte. The high order byte is often referred to as the
page of memory. For example, the address $1637 is in page
$16, i.e. decimal 22, and $0277 is in page $62, i.e. decimal
2. There is, however, a special mode of addressing known as
zero page addressing and is, as the name implies, associated
with the addressing of memory locations in page zero. These
addresses, therefore, ALWAYS have a high order byte of zero.The zero page mode of addressing only expects one byte todescribe the address, rather than two when using an absoluteaddress. The zero page addressing mode tells the
microprocessor to assume that the high order address is zero.
Therefore, zero page can reference memory locations whose
addresses are between $0000 and S@OFF.

3-14

Section Three Programming Machine Code

3.7.2 THE STACK

The 7501 microprocessor has a temporary storage area, known
as the stack which is used by both the programmer and themicroprocessor. It is also used to remember a particularorder of events. When a GOSUB statement is encountered in a
program, the BASIC interpreter "pushes", i.e. places, itscurrent position in the program onto the stack before goingto do the subroutine. When a RETURN is executed, the
interpreter "pulls", i.e. takes, this information off thestack so that the program continues executing at the correctpoint. The assembly language instructions for doing this are
PHA, which pushes the contents of the accumulator onto thestack, and PLA, i.e. the reverse, which pulls a value off thestack and places it in the accumulator. The status registercan also be pushed and pulled with the PHP and PLPinstructions respectively.
The stack is 256 bytes long, and is located in page one of
memory, from $6100 to $O1FF. It is organized backwards in
memory, the first position in the stack is at $@1FF, and thelast is at $0104.

Another register in the 7501 microprocessor is called thestack pointer. This always points to the next availablelocation in the stack. When a:.value is pushed onto the stack,it is placed at the location to which the stack pointer is
pointing, and the stack pointer is moved down, i.e.decremented, to the next position. When a value is pulled off
the stack, the stack pointer is incremented.
NOTE: the X register is referred to as X from now on.
Similarly A (for the accumulator), Y (for the Y index
register), S (for the stack pointer), and P (for the
processor status).

3.8 INDEXING

Indexing plays an extremely important part in the running of
the 7501 microprocessor. It can be defined as ‘"creating an
actual address from a base address plus the contents of
either X or Y registers".
For example, if X contains $05, and the microprocessor
executes an LDA instruction in the "absolute X indexed mode"
with base address $9000, then the actual location that is
loaded into the A register is $9006 + $05 = $9005. The
mnemonic format of an absolute indexed instruction is the
same as an absolute instruction except that an ",X" or ",Y"
denoting the index is added to the address.

3-15

Section Three Programming Machine Code

EXAMPLE:

LDA $9000,X

There are absolute indexed, zero page indexed, indirect
indexed, and indexed indirect addressing modes available on
the 7501 microprocessor. .

3.8.1 INDIRECT INDEXED

This only allows usage of the Y register as the index. The
actual address can only be in zero page. The mode ofinstruction is called indirect because the zero page addressspecified in the instruction contains the low byte of theactual address, and the next byte contains the high orderbyte.
EXAMPLE:

Location $02 contains $45, and location $03 contains S1E. Ifthe instruction to load the accumulator in the indirectindexed mode is executed and the specified zero page addressis $02, then the actual address is:
contents of $02
contents of $83
$00

Low order
High order
Y register
Thus the actual address = S1E45 + Y = S1EA45.

The title of this mode implies an indirect principle. To lookat it another way, "a letter is to be delivered to the postoffice at address $02, MEMORY ST., and the address on theletter is $05 houses past past $1608, MEMORY ST.". This isequivalent to the code:
LDA #S00 ; load low order actual base address
STA $02 ; set the low order of the indirect base address
LDA #S16 ; load the high order indirect address
STA $03 ; set the high byte of the indirect address
LDY #$05 ; set the indirect index (Y)

’LDA ($02),Y load indirectly indexed by Y

3.8.2 INDEXED INDIRECT

Indexed indirect only allows usage of the X register as the
index. This is the same as indirect indexed, rather than theactual base address. Therefore, the actual base address IS
the actual address because the index has already been used
for the indirect. Indexed indirect would also be used if atable of indirect pointers were located in zero page memory,and the X register could then specify which indirect pointerto use.

3 - 16

Section Three Programming Machine Code

EXAMPLE:

Location $62 contains $45, and location $03 contains $16. Ifthe instruction to load the accumulator in the indexedindirect mode is executed and the specified zero page addressis $02, then the actual address is:
contents of ($02 + X)
contents of ($03 + X)
$00

Low order
High order
X register

noun

Thus the actual pointer is in $02 + X = $02, and the actualaddress is the indirect address contained in $02 which is$1045.

The title of this mode does, in fact, imply the principleunderlying it. Look at it this way: "a letter is to be
delivered to the fourth post office at address $02, MEMORY
ST., and the address on the letter is $1606, MEMORY ST.".This is equivalent to the code:
LDA #$00 load low order actual base address
STA $06 set the low byte of the indirect address
LDA #816 load high order indirect address
STA $07 set the high byte of the indirect address
LDX #$04 set the indirect index (X)
LDA ($02,X) load indirectly indexed by X

NOTE: of the two indirect methods of addressing, the first(indirect indexed) is far more widely used.

3.8.3 BRANCHES AND TESTING

Another very important principle in machine language is the
ability to test, and detect certain conditions in a similar
fashion to the "IF...THEN, IF...GOTO" structure in BASIC.

The various flags in the status register are affected in
different ways by different instructions. For example, there
is a flag that is set when an instruction has caused a zero
result, and is reset when a result is non-zero. For example,
the instruction:
LDA #$00

causes the zero result flag to be set, because thatinstruction has resulted in the accumulator containing a
zero.

3-17

Section Three Programming Machine Code

There are a set of instructions that, given a particularcondition, branch to another part of the program. An example
of a branch instruction is BEQ, which means Branch if result
EQual to zero. These instructions branch if the condition is
true. If it is not, the program continues to the next
instruction, as if nothing had occurred. The branch
instructions branch by internally examining the status
register, not as a result of the previous instruction(s). For
example, the BEQ instruction branches if the zero result flag
(2) is set. The BEQ instruction has an opposite instruction
BNE, which means Branch on result Not Equal to zero, i.e. 2
not set. Every branch instruction has an opposite branch
instruction.
The index registers have a number of associated instructions
which modify the contents of those registers. For example,
the INX instruction INcrements the X index register. If the X

register contained $FF, which is the maximum number the X

register can contain, before it was incremented, it "wraps
around" back to zero. If you require a program to continue to
do something until you perform the increment of the X index
that pushes it around to zero, you can use the BNE
instruction to continue "looping" around, until X becomes
zero.
The reverse of INX, is DEX, which is DEcrement the X index
register. If the X index register contains zero, DEX wraps
around to S$FF.

Similarly, there are the INY and DEY instructions for the Y

index register.
If you do not want your program to wait until X or Y reaches,
or does not reach, zero, then use the comparison instructions
CPX and CPY. These allow you to test the index registers, or
the contents of memory locations with specific values. For
example, if you wish to see if the X register contains $440,
you would use the instruction:
CPX #540 compare X with the value $40
BEQ $7222? branch to somewhere else in the program if this

condition is "true"
The compare, and branch instructions play a major part in any
machine language program.
The operand specified in a branch instruction when using
TEDMON is the address of the section that the branch goes to
when the conditions are met. However, the operand is only an
offset, which gets you from where the program currently is to
the address specified. This offset is a single byte, and
therefore, the range that a branch instruction can use is
limited. It can branch from 128 bytes backward to 127 bytes
forward. Note that this is a total range of 255 bytes, the
maximum that a single byte can contain.

3 - 18

Section Three Programming Machine Code

TEDMON tells you if you try to "branch out of range" by
refusing to "assemble" that particular instruction. The
branch is a "quick" instruction by machine language standards
because it uses the "offset" principle as opposed to anabsolute address. TEDMON allows you to type in an absoluteaddress and it calculates the correct offset. This is one of
the advantages of using an assembler.

3.9 SUBROUTINES

In machine language you can call subroutines in much the same
way as you do in BASIC. The instruction to call a subroutineis JSR (Jump to SubRoutine), followed by the absolute address
of the subroutine.
Incorporated in the operating system is a machine languagesubroutine that PRINTs a character to the screen. The CBM
ASCII code for the character must be in the accumulator
before calling the subroutine. The address of this subroutineis S$FFD2.

The following program prints "HI" on the screen:
A 3000 LDA #$48 load the CBM ASCII code of "H"
A 3002 JSR $FFD2 print it
A 3005 LDA #$49 load the CBM ASCII code of "I"
A 3007 JSR S$FFD2 print that too
A 300A LDA #$0D load a carriage return
A 140C JSR SFFD2 print it
A 140F BRK return to TEDMON

G 3000 prints "HI" and returns to TEDMON

This "PRINT-a-character" routine is part of the KERNAL jump
table. The instruction similar to GOTO in BASIC is JMP, which
means JuMP to the specified absolute address. The KERNAL is a
long list of "standardized" subroutines that control ALL
input and output operations. Each entry in the KERNAL jump
table JMPs to a subroutine in the operating system. This
"jump table" is found between memory locations $FF81 to SFFF3
in the operating system.
The following program displays the alphabet using the KERNAL
PRINT routine. The only instruction in this program which you
have not yet been introduced to is TXA. This Transfers the
contents of the X index register into the Accumulator.

3-19

Section Three Programming Machine Code

A 3000 LDX #$41 X = CBM ASCII of "A"
A 3002 TXA A =X
A 3003 JSR S$FFD2 print character
A 3006 INX bump count
A 3007 CPX #$5B have we gone past "2"?
A 3009 BNE $3002 if no, go back and do more
A 300B BRK ‘if yes, return to TEDMON

To see your Cl6 or PLUS/4 print the alphabet, type:
G 3009

The comments that are beside the program explain its flow and
logic. If you are writing a program, COMMODORE recommends
that you write it on paper first, and then test small parts
of it at a time.

3.14 7561 MICROPROCESSOR INSTRUCTION SET - ALPHABETIC
SEQUENCE

ADC add memory to accumulator with carry
AND "AND" memory with accumulator
ASL shift left one bit (memory or accumulator)
BCC branch on carry clear
BCS branch on carry set
BEQ branch on result zero
BIT test bits in memory with accumulator
BMI branch on result minus
BNE branch on result not zero
BPL branch on result plus
BRK force break
BVC branch on overflow clear
BVS branch on overflow set
CLC clear carry flag
CLD clear decimal mode
CLI clear interrupt disable bit
CLV clear overflow flag
CMP compare memory and accumulator
CPX compare memory and index X

cpy compare memory and index Y

DEC decrement memory by one
DEX decrement index X by one
DEY decrement index Y by one

EOR "EXCLUSIVE-OR" memory with accumulator
INC increment memory by one
INX increment index X by one
INY increment index Y by one

3-20

Section Three Programming Machine Code

JMP jump to new location
JSR jump to new location saving return address
LDA load accumulator with memory
LDX load index X with memory
LDY load index Y with memory
LSR shift right one bit (memory or accumulator)
NOP no operation
ORA "OR" memory with accumulator
PHA push accumulator onto stack
PHP push processor status onto stack
PLA pull accumulator off stack
PLP pull processor status off stack
ROL rotate one bit left (memory or accumulator)
ROR rotate one bit right (memory or accumulator)
RTI return from interrupt
RTS return from subroutine
SBC subtract memory from accumulator with borrow
SEC set carry flag
SED set decimal mode
SEI set interrupt disable status
STA store accumulator in memory
STX store index X in memory
STY store index Y in memory

TAX transfer accumulator to index X

TAY transfer accumulator to index Y

TSX transfer stack pointer to index X
TXA transfer index X to accumulator
TXS transfer index X to stack pointer
TYA transfer index Y to accumulator

3.11 THE KERNAL

The KERNAL is a standardized JUMP TABLE to the 39 input,
output, and memory management routines in the operating
system.
The location of each routine in ROM may change as the systemis upgraded, and the KERNAL jump table is always changed to
match. If your machine language routines only use the system
ROM routines through the KERNAL, it takes much less work to
modify them, should that need ever arise.
The KERNAL jump table is located in the last page of memory,
in read-only memory (ROM) and allows you to simplify the
machine language programs you write.

3-21

Section Three Programming Machine Code

To use the KERNAL jump table, first set up the parametersthat the KERNAL routine needs in order to work. Then JSR,i.e. Jump to SubRoutine, to the proper place in the KERNAL
jump table. After performing its function, the KERNAL
transfers control back to your machine language program.
Depending on which KERNAL routine you are using, certain

‘registers may pass parameters back to your program. The
particular registers for each KERNAL routine may be found in
the individual descriptions of the KERNAL subroutines (see
Section 4.11.3).
You can JSR directly to the required KERNAL subroutine.
However, using the jump table ensures that machine language
programs still work if the KERNAL or BASIC is changed. Future
operating systems or machines may have the memory locations
of routines in different positions in the memory map, but the
jump table routines in existing programs will still work
correctly in spite of any changes.

3.11.1 HOW TO USE THE KERNAL

When writing machine language programs it is convenient to
use the routines which are already part of the operating
system for input/output, access to the system clock, memory
management, and other similar operations. It is an
unnecessary duplication of effort to write these routines
over and over again, and easy access to the operating system
helps speed machine language programming.

To use a KERNAL routine you must first make all of the
preparations that the routine demands. If one routine saysthat you must call another KERNAL routine first, then that
routine must be called. If the routine expects you to put a
number in the accumulator, then that number must be there. If
these guidelines are followed, the routines work as expected.
After all preparations are made, you must call the routine by
means of the JSR instruction. All KERNAL routines you can
access are structured as SUBROUTINES, and therefore end with
an RTS instruction. When the KERNAL routine has finished its
task, control is returned to your program at the instruction
after the JSR.

Many of the KERNAL routines return error codes in the status
word or the accumulator. This is in case you have problems in
the routine. Good programming practice and the success of
your machine language programs demand that you handle these
error codes properly. If you ignore an error return, the rest
of your program might fail.

Section Three Programming Machine Code

Summary: the three steps involved when using a KERNAL routine
are:
1. Set up
2. Call the routine
3. Error handling
The KERNAL routines are described in Section 3.11.3.
The following conventions are used in these descriptions:
FUNCTION NAME: name of the KERNAL routine.
CALL ADDRESS: this is the call address of the KERNAL routine,
given in hexadecimal and decimal.
COMMUNICATION REGISTERS: registers listed under this heading
are used to pass parameters to and from the KERNAL routines.
PREPARATORY ROUTINES: certain KERNAL routines require that
data be set up before they can operate. The routines needed
are listed here.
ERROR RETURNS: a return from a KERNAL routine with the CARRY
set indicates that an error was encountered in processing.
The accumulator contains the number of the error.
STACK REQUIREMENTS: this is the actual number of stack bytes
used by the KERNAL routine.
REGISTERS AFFECTED: all registers used by the KERNAL routine
are listed here.
DESCRIPTION: a short tutorial on the function of the KERNAL
routine.

Section Three

3.11.2 USER CALLABLE KERNAL

NAME

ACPTR
CHKIN
CHKOUT
CHRIN
CHROUT
cIiouT
CINT
CLALL
CLOSE
CLRCHN

GETIN

IOBASE

IOINIT
LISTEN

LOAD
MEMBOT
MEMTOP
OPEN
PLOT
RAMTAS

RDTIM
READST
RESTOR
SAVE
SCNKEY
SCREEN

SECOND

SETLFS

SETMSG
SETNAM
SETTIM
SETTMO
STOP
TALK

TKSA

UDTIM
UNLSN

UNTLK
VECTOR ©s

0s

00

es

ee

es

ee

eb

es

se

ee

se

ae

90

65

46

00

66

00

08

00

0

00

co

se

8

Ge

66

60

40

G6

Ge

es

G8

G6

se

es

Ge

es

se

8

Ge

es

ee

es

se

se

ee

ADDRESS
HEX DECIMAL

SFFAS5 : 65445
SFFC6 : 65478
SFFC9 : 65481
SFFCF : 65487
$SFFD2 : 65490
SFFA8 : 65448
SFF81 : 65409
SFFE7 =: 65511
SFFC3 : 65475
SFFCC : 65484

SFFE4 : 65508

SFFF3 : 65523

SFF84 : 65412
SFFB1 : 65457

SFFD5 : 65493
SFF9C : 65436
SFF99 : 65433
SFFCd : 65472
SFFF@ : 65520
SFF87 : 65415

SFFDE : 65502
SFFB7 : 65463
SFF8A : 65418
SFFD8 : 65496
SFF9F =: 65439
SFFED : 65517

$FF93 : 65427
SFFBA : 65466

SFF9@ : 65424
SFFBD : 65469
SFFDB : 65499
SFFA2 : 65442
SFFElL : 65505
SFFB4 : 65460

SFF96 : 65430

SFFEA : 65514
SFFAE : 65454

SFFAB : 65451
SFF8D : 65421

46

se

os

es

es

se

es

se

ee

ee

Programming Machine Code

ROUTINES

©0

80

06

00

65

Se

05

Ss

66

S8

66

48

46

Se

00

G0

es

G0

0s

ee

es

ee

Ge

se

eo

es

se

ee

So

eo

6s

se

ss

se

68

FUNCTION

Input byte from serial port
Open channel for input
Open channel for output
Input character from channel
Output character to channel
Output byte to serial portInitialize screen editor
Close all channels and files
Close specified logical file
Close input and outputchannels
Get character from keyboard
queue (keyboard buffer)
Returns base address of I/0
devices
Initialize input/output
Command devices on serial bus
to LISTEN
Load RAM from a device
Read/set the bottom of memory
Read/set the top of memory
Open a logical file
Read/set X,Y cursor positionInitialize RAM, allocate tapebuffer, set screen $0400
Read real time clock
Read 1/0 status word
Restore default I/0 vectors
Save RAM to device
Scan keyboard
Return X,Y organization of
screen
Send secondary address after
LISTEN
Set logical,addresses

Control KERNAL messages
Set file name
Set real time clock
Set timeout on serial bus
Scan stop key
Command serial
TALK
Send secondary
TALK

first and second

bus device to
address after

Increment real
Command serial
UNLISTEN
Command serial

time clock
bus to
bus to UNTALK

Read/set vectored I/0

3 - 24

Section Three Programming Machine Code

3.11.3 KERNAL ROUTINE DESCRIPTIONS

Function name: ACPTR

Purpose: Get data from the serial bus
Call address: $FFAS5 (hex) 65445 (decimal)
Communication registers: A

Preparatory routines: TALK, TKSA
Error returns: See READST
Stack requirements: 13
Registers affected: A, X

Description: Use this routine when you require information
from a device, e.g. disk, on the serial bus. This routine
gets a byte of data from the serial bus using full
handshaking. The data is returned in the accumulator. To
prepare for this routine the TALK routine must be called to
command the device on the serial bus to send data through the
bus. If the input device needs a secondary command, it must
be sent, before calling this routine, using the TKSA KERNAL
routine. Errors are returned in the status word which is read
using the READST routine.
How to use:
1. Command a device on the serial bus to prepare to send data
to your Cl6 or PLUS/4, (use the TALK and TKSA KERNAL
routines).
2. Call this routine (using JSR).
3. Store or otherwise use the data.
EXAMPLE:

7 GET A BYTE FROM THE BUS
JSR ACPTR
STA DATA

Function name: CHKIN

Purpose: Open a channel for input
Call address: SFFC6 (hex) 65478 (decimal)
Communication registers: X

Preparatory routines: (OPEN)
Error returns: See READST
Stack requirements: NONE

Registers affected: A, X

Description: Any logical file that has already been opened by
the KERNAL OPEN routine can be defined as an input channel by
this routine. The device on the channel must be an input
device, otherwise an error occurs and the routine aborts.

3-25

Section Three Programming Machine Code

If you are obtaining data from anywhere other than the
keyboard, this routine must be called before using either the
CHRIN or the GETIN KERNAL routines for data input. If you
wish to use the input from the keyboard, and no other inputchannels are opened, then the calls to this routine and to
the OPEN routine are not needed.
When this routine is used with a device on the serial bus, itautomatically sends the talk address, together with the
secondary address if one was specified by the OPEN routine,
over the bus.
How to use:
1. OPEN the logical file if necessary (see description
above).
2. Load the X register with the number of the logical file to
be used.
3. Call this routine (using a JSR command).

Possible errors are:
#3: File not open
#5: Device not present
#6: File not an input file
EXAMPLE:

; PREPARE FOR INPUT FROM LOGICAL FILE 2
LDX #$02
JSR CHKIN

Function name: CHKOUT

Purpose: Open a channel for output
Call address: SFFC9 (hex) 65481 (decimal)
Communication registers: X

Preparatory routines: (OPEN)
Error returns: 6,3,5,7 (See READST)
Stack requirements: 4+
Registers affected: aA, X

Description: Any logical file number that has been created by
the KERNAL OPEN routine can be defined as an output channel.
The device to which you intend opening a channel must be an
output device, otherwise an error occurs and the routine is
aborted.
This routine must be called before any data is sent to any
output device unless you wish to use the Cl6 or PLUS/4 screen
as your output device. If screen output is desired, and there
are no other output channels already defined, then calls to
this routine, and to the OPEN routine, are not required.

3 - 26

Section Three Programming Machine Code

When used to open a channel to a device on the serial bus,this routine automatically sends the LISTEN address specifiedby the OPEN routine, together with a secondary address ifspecified.
How to use:
1. Use the KERNAL OPEN routine to specify a logical filenumber, a LISTEN address, and a secondary address (ifneeded).
2. Load the X register with the logical file number used inthe OPEN statement.
3. Call this routine (by using the JSR instruction).
NOTE: This routine is NOT NEEDED to send data to the screen.
EXAMPLE:

LDX #$03 ; DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL
JSR CHKOUT

Possible errors are:
#3: File not open
#5: Device not present
#7: Not an output file

Function name: CHRIN

Purpose: Get a character from the input channel
Call address: SFFCF (hex) 65487 (decimal)
Communication registers: Ao
Preparatory routines: (OPEN, CHKIN)
Error returns: @ (See READST)
Stack requirements: 7+
Registers affected: A, X

Description: This routine gets a byte of data from a channel
already set up as the input channel by the KERNAL routine
CHKIN. If CHKIN has NOT been used to define another input
channel, then all the data is expected from the keyboard. The
data byte is returned in the accumulator and the channel
remains open after the call.
Input from the keyboard is handled in a special way. The
cursor is turned on, and blinks until a carriage return is
typed on the keyboard. All characters on the line, up to a
maximum of 88 characters, are then stored in the BASIC inputbuffer. These characters can be retrieved one at a time by
calling this routine once for each character. When the
carriage return is retrieved, the entire 1line has been
processed.

3 - 27

Section Three Programming Machine Code

How to use:
From the keyboard:
1. Retrieve a byte of data by calling this routine.
2. Store the data byte.
3. Check if it is the last data byte (is it a CR?).
4, If not, go to step 1.

EXAMPLE:

LDY #500 7 PREPARE THE Y REGISTER TO STORE THE DATA
RD JSR CHRIN
STA DATA,Y ; STORE THE YTH DATA BYTE IN THE YTH

; LOCATION IN THE DATA AREA
INY
CMP #$0D 7; IS IT A CARRIAGE RETURN?
BNE RD ; NO, GET ANOTHER DATA BYTE

From other devices:
1. Use the KERNAL OPEN and CHKIN routines.
2. Call this routine (using a JSR instruction).
3. Store the data.
EXAMPLE:

JSR CHRIN
STA DATA

Function name: CHROUT

Purpose: Output a character
Call address: SFFD2 (hex) 65490 (decimal)
Communication registers: A

Preparatory routines: (CHKOUT, OPEN)
Error returns: @ (See READST)
Stack requirements: 8+
Registers affected: A

Description: This routine outputs a character to an already
opened channel. Use the KERNAL OPEN and CHKOUT routines to
set up the output channel before «calling this routine. Ifthis call is omitted, data is sent to the default output
device, i.e. number 3, the screen. The data byte to be outputis loaded into the accumulator, and the CHROUT routine is
called. The data is then sent to the specified output device.
The channel is left open after the call.
NOTE: Care must be taken when using this routine that you
send data to a specific serial device, as data is sent to all
open output channels on the bus. Unless this is desired, all
open output channels on the serial bus, other than the
intended destination channel, must be closed by a call to the
KERNAL CLRCHN routine.

3 - 28

Section Three Programming Machine Code

How to use:
1. Use the CHKOUT KERNAL routine if necessary (seedescription above).
2. Load the data to be output into the accumulator.3. Call this routine.
EXAMPLE:

7 DUPLICATE THE BASIC INSTRUCTION CMD 4,"a";LDX #$04 ; LOGICAL FILE #4
JSR CHKOUT ; OPEN CHANNEL OUT
LDA #S41 ; HEX CODE FOR ASCII "a"
JSR CHROUT ; SEND CHARACTER

Function name: CIOUT

Purpose: Transmit a byte over the serial busCall address: $FFA8 (hex) 65448 (decimal)
Communication registers: A

Preparatory routines: LISTEN, [SECOND]
Error returns: See READST
Stack requirements: 5
Registers affected: None

Description: This routine is used to send information todevices on the serial bus. A call to this routine puts a databyte onto the serial bus using full serial handshaking.Before this routine is called, the LISTEN KERNAL routine mustbe used to command a device on the serial bus to get ready toreceive data. If a device needs a secondary address, it mustalso be sent by using the SECOND KERNAL routine. Theaccumulator is loaded with a byte to handshake as data on theserial bus. A device must be listening or the status wordreturns a timeout. This routine always buffers one character,i.e. the routine holds the previous character to be sentback. This means that when a call to the KERNAL UNLSN routineis made to end the data transmission, the buffered characteris sent with an End Or Identify (EOI) set. The UNLSN commandis then sent to the device.
How to use:
1. Use the KERNAL LISTEN routine (and the SECOND routine ifneeded).
2. Load the accumulator with a byte of data.
3. Call this routine to send the data byte.
EXAMPLE:

SEND AN X TO THE SERIAL BUSi
LDA #$58 ; HEX CODE FOR ASCII "Xx"
JSR CIOUT ; SEND IT

3-29

Section Three Programming Machine Code

Function name: CINT

Purpose: Initialize screen editor
Call address: $FF81 (hex) 65409 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: None
Stack requirements: 4

Registers affected: A, X, Y

Description: This routine initializes the KERNAL screeneditor.
NOTE: On the COMMODORE 64 the CINT KERNAL routine also resets
the (6567) video chip. CINT does not alter the state of the
video chip on the Cl6 and PLUS/4.

How to use:
1. Call this routine.
EXAMPLE:

JSR CINT
JMP RUN ; BEGIN EXECUTION

Function name: CLALL

Purpose: Close all files
Call address: SFFE7 (hex) 65511 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: None
Stack requirements: 11
Registers affected: a, X

Description: This routine closes all previously OPENed files.
When this routine is called, the pointers into the open file
table are reset, closing all files. The CLRCHN routine is
also automatically called to reset the I/O channels.
How to use:
1. Call this routine.
EXAMPLE:

JSR CLALL ; CLOSE ALL FILES AND SELECT DEFAULT I/O CHANNELS
JMP RUN ; BEGIN EXECUTION

Section Three Programming Machine Code

Function name: CLOSE

Purpose: Close a logical fileCall address: $FFC3 (hex) 65475 (decimal)
Communication registers: A

Preparatory routines: None
Error returns: @, 240 (See READST)
Stack requirements: 2+
Registers affected: A, X, Y

Description: This routine is used to close a logical fileafter all I/O operations have been completed on that file. Itis called after the accumulator is loaded with the number ofthe logical file to be closed, this must be the same number
used when the file was opened using the OPEN routine.
How to use:
1. Load the accumulator with the number of the logical fileto be closed.
2, Call this routine.
EXAMPLE:

; DUPLICATE THE BASIC INSTRUCTION CLOSE 15
LDA #$0F ; LOAD ACCUMULATOR WITH HEX OF 15
JSR CLOSE ; CLOSE THE FILE

Function name: CLRCHN

Purpose: Clear 1/0 channels
Call address: $FFCC (hex) 65484 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: See READST
Stack requirements: 9
Registers affected: A, X

Description: This routine is «called to clear all openchannels and restore the 1I/0 channels to their originaldefault values. It is usually called after opening other 1/0
channels, such as a tape or disk drive, and using them for
input/output operations. The default input device is 0, i.e.the keyboard, and the default output device is 3, i.e. the
screen.

Section Three Programming Machine Code

If one of the channels to be closed is on the serial port, an
UNTALK signal must first be sent to clear the input channel
or an UNLISTEN sent to clear the output channel. If the
UNLISTEN routine is not called, thus leaving listeners active
on the serial bus, several devices can receive the same data
from the Cl6 or PLUS/4 at the same time. One way to take
advantage of this is to command the printer to LISTEN and the
disk to TALK. In this way, with the aid of a routine to get
data bytes from the disk drive and send them to the printer,
you can print a disk file directly.
This routine is automatically called when the KERNAL CLALL
routine is executed.
How to use:
1. Call this routine using the JSR instruction.
EXAMPLE:

JSR CLRCHN

Function name: GETIN

Purpose: Get a character
Call address: SFFE4 (hex) 65508 (decimal)
Communication registers: a
Preparatory routines: CHKIN, OPEN
Error returns: See READST
Stack requirements: 7+
Registers affected: A (X, Y)

Description: If the channel is the keyboard, this subroutine
removes one character from the keyboard queue and returns it
in the accumulator as an ASCII value. If the queue is empty,
the value returned in the accumulator is zero. Characters are
put into the queue automatically by an interrupt driven
keyboard scan routine which calls the SCNKEY routine. The
keyboard buffer can hold up to ten characters. If the buffer
is full, additional characters are ignored until at least one
character has been removed from the queue. If the channel is
RS-232, then only the A register is used and a single
character is returned. See READST to check validity. If the
channel is serial, cassette, or screen, then call the CHRIN
routine.

Section Three Programming Machine Code

How to use:
1. Call this routine using a JSR instruction.
2. Check for a zero in the accumulator (empty buffer).3. Process the data.
EXAMPLE:

WAIT FOR A CHARACTER
GET A CHARACTER
COMPARE IT WITH ZERO
IT'S A ZERO! GO BACK AND GET ANOTHER

WAIT JSR GETIN
CMP #$00
BEQ WAIT Ne

Se

we

we

Function name: IOBASE

Purpose: Return location of start of I/0Call address: S$FFF3 (hex) 65523 (decimal)
Communication registers: X, Y

Preparatory routines: None
Error returns: See READST
Stack requirements: 2
Registers affected: X, Y

Description: This routine sets the X and Y registers to theaddress of the memory section where the memory mapped 1I/0
devices are located. This address can then be used with anoffset to access the memory mapped I/0 devices in the Cl6 and
PLUS/4. The offset is the number of locations from the
beginning of the page on which the required I/O register islocated. The X register contains the low order address byte,and the Y register contains the high order address byte.
This routine exists to provide compatibility between
COMMODORE machines. If the I/0 locations for a machine
language program are set by a call to this routine, theyremain compatible with other versions of the KERNAL and
BASIC.

How to use:
1. Call this routine by using the JSR instruction.
2. Store the X and Y registers in consecutive page zero
locations.
3. Load the Y register with the offset.
4, Access that I/0 location.
EXAMPLE:

JSR IOBASE
STX POINT ; SET BASE REGISTERS
STY POINT + 1 ;
LDY #502 ; LOAD Y WITH OFFSET
LDA #$00 ; LOAD A WITH DATA

rSTA (POINT),Y ACCESS MEMORY MAPPED I/O

3-33

Section Three Programming Machine Code

Function name: IOINIT

purpose: Initialize I/O devices
Call address: $FF84 (hex) 65412 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: See READST
Stack requirements: None
Registers affected: a, X, Y

Description: This routine initializes all input/output
devices and routines.
EXAMPLE:

JSR IOINIT

Function name: LISTEN

Purpose: Command a device on the serial bus to listen
Call address: SFFBl (hex) 65457 (decimal)
Communication registers: A

Preparatory routines: None
Error returns: See READST
Stack requirements: None
Registers affected: A

Description: This routine commands a device on the serial bus
to receive data. The accumulator must be loaded with a device
number between @ and 31 before calling the routine. LISTEN
ORs the number bit by bit to convert it to a listen address,
then transmits this data as a command on the serial bus. The
specified device then goes into listen mode ready to accept
information.
How to use: \

1. Load the accumulator with the number of the device to be
commanded to LISTEN.
2. Call the LISTEN routine using the JSR instruction.
EXAMPLE:

; COMMAND DEVICE #8 TO LISTEN
LDA #$08 ; LOAD ACCUMULATOR WITH DEVICE NO.
JSR LISTEN ; SEND COMMAND

Section Three Programming Machine Code

Function name: LOAD

Purpose: Load RAM from device
Call address: $FFD5 (hex) 65493 (decimal)
Communication registers: a, X, Y

Preparatory routines: SETLFS, SETNAM
Error returns: @, 4, 5, 8, 9 (See READST)
Stack requirements: None
Registers affected: A, X, Y

Description: This routine LOADs data bytes from any inputdevice directly into the memory of the Cl6 and PLUS/4. It canalso be used to perform a verify operation, comparing datafrom a device with the data already in memory, while leavingthe data stored in RAM unchanged.
The accumulator (A) must be set to @ for a LOAD operation, or
1 for a verify. If the input device is OPENed with a
secondary address (SA) of 0, the header information from thedevice is ignored. In this case, the X and Y registers mustcontain the starting address for the load. If the device isaddressed with a secondary address of 1, then the data isloaded into memory starting at the location specified by theheader. This routine returns the address of the highest RAM
location loaded.
Before this routine can be called, the KERNAL SETLFS and
SETNAM routines must be called.
NOTE: You can NOT LOAD from the keyboard (8), RS-232 (2), orthe screen (3).
How to use:
1. Call the SETLFS and SETNAM routines. If a relocated loadis desired, use the SETLFS routine to send a secondaryaddress of 4.
2. Set the A register to @ for load, 1 for verify.3. If a relocated load is desired, the X and Y registers must
be set to the start address for the load.
4. Call the routine using the JSR instruction.

3-35

Section Three Programming Machine Code

EXAMPLE:

; LOAD A FILE FROM TAPE
LDA #$01 ; SET DEVICE NUMBER (1 FOR TAPE)
LDX #FILENO ; SET LOGICAL FILE NUMBER
LDY #SA ; SET SECONDARY ADDRESS
JSR SETLFS

LDA #NAMEl - NAME LOAD A WITH NUMBER OF CHARACTERS
IN FILE NAME
LOAD X WITH LOW ORDER BYTE OF
FILE NAME ADDRESS
LOAD Y WITH HIGH ORDER BYTE OF
FILE NAME ADDRESS

LDX #<NAME

LDY #>NAME
Ne

Ne

Ne

Ne

Ne

Se

we

JSR SETNAM

NAME .ASC "FILE NAME"
NAME1l NOP

FILE NAME IN ASCII BYTES
LENGTH OF FILENAME (NAMEl - NAME)

’
LDA #500 ; SET FLAG FOR A LOAD
LDX #SFF ; ALTERNATE START
LDY #S$FF ; (NOT REQUIRED FOR THIS LOAD)
JSR LOAD ; LOAD FILE

’
STX VARTAB ; STORE ENDING ADDRESS IN POINTER
STY VARTAB + 1 ; FOR START OF BASIC VARIABLES
JMP START ; BEGIN EXECUTION

;
;
’

Function name: MEMBOT

Purpose: Read/set bottom of memory
Call address: SFF9C (hex) 65436 (decimal)
Communication registers: X, Y

Preparatory routines: None
Error returns: None
Stack requirements: None
Registers affected: X, Y

Description: This routine is used to set the bottom of
memory. If the accumulator carry bit is set when this routine
is called, a pointer to the lowest byte of RAM is returned in
the X and Y registers. On the Cl6 and PLUS/4 the initial
value of this pointer is $1000, i.e. 4096 in decimal. If the
accumulator carry bit is clear, i.e. = @, when this routine
is called, the values of the X and Y registers are
transferred to the low and high bytes respectively of the
beginning of RAM pointer.

3 - 36

Section Three Programming Machine Code

How to use:
TO READ THE BOTTOM OF RAM

1. Set the carry.
2. Call the MEMBOT routine.
TO SET THE BOTTOM OF RAM
1. Clear the carry.2. Call the MEMBOT routine.
EXAMPLE:

; MOVE BOTTOM OF MEMORY UP 1 PAGE
SEC ; SET CARRY
JSR MEMBOT ; READ MEMORY BOTTOM
INY ; INCREMENT Y (HIGH ORDER BYTE OF POINTER)
CLC ; CLEAR CARRY
JSR MEMBOT ; SET MEMORY BOTTOM TO NEW VALUE

Function name: MEMTOP

Purpose: Read/set top of memory
Call address: $FF99 (hex) 65433 (decimal)
Communication registers: X, Y

Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: X, Y

Description: This routine is used to set the top of RAM. When
this routine is called with the carry bit of the accumulator
set, the pointer to the top of RAM is loaded into the X and Y

registers. When this routine is called with the accumulator
carry bit clear, i.e. = @, the contents of the X and Y

registers are loaded into the top of memory pointer, changing
the top of memory.

EXAMPLE:

; BRING DOWN THE TOP OF MEMORY
SEC 7 SET CARRY
JSR MEMTOP ; READ TOP OF MEMORY
DEX ; DECREMENT X REGISTER
CLC ; CLEAR CARRY
JSR MEMTOP ; SET NEW TOP OF MEMORY

3 - 37

Section Three

Function name: OPEN

Purpose: Open a logical file
Call address: S$FFCO
Communication registers: None
Preparatory routines: SETLFS,
Error returns: 1, 2, 4, 5, 6,
Stack requirements: None
Registers affected: aA, X, Y

Description: This routine is used to
Once the logical file is
input/output operations. Most
require this routine to create
they operate. No arguments are
but both the SETLFS and SETNAM
using this routine.
How to use:
1.
2.
3.

Use the SETLFS routine.
Use the SETNAM routine.
Call this routine.

EXAMPLE:

The following routine
15,8, 15,"1/0"
LDA
LDX
LDY
JSR
LDA
LDX
LDY
JSR
JSR

#NAME1l - NAME ;
#<NAME
#>NAME ;
SETNAM
#S0OF
#508
#S0F
SETLFS
OPEN

ADDRESS OF

~~

NAME .ASC
NAME1l NOP

" 1/0 "

(hex) 65472

emulates

LENGTH OF FILE NAME FOR

Programming Machine Code

(decimal)
SETNAM
249 (See READST)

OPEN a logical file.set up, it can be used for
of the 1I/0 KERNAL routines
the logical files on which
needed to set up this routine,routines must be called before

the BASIC statement: OPEN

SETLFS

FILE NAME

3 - 38

Section Three Programming Machine Code

Function name: PLOT

Purpose: Read/set cursor location
Call address: $FFF@ (hex) 65528 (decimal)
Communication registers: A, X, Y

Preparatory routines: None
Error returns: None
Stack requirements: 2

Registers affected: aA, X, Y

Description: A call to this routine, with the accumulator
carry flag set, loads the current position of the screen
cursor, in X, Y coordinates, into the Y and X registers. The
Y register contains the column that the cursor is in (2-39),and the X register contains the row that the cursor in on
(6-24). A call with the carry bit clear positions the cursorat the X, Y location held in the Y and X registers.

How to use:
READING CURSOR LOCATION
1. Set the carry flag.
2, Call this routine.
3. Get the X and Y position from the Y and X registers,respectively.
SETTING CURSOR LOCATION
1. Clear the carry flag.
2. Set the Y and X registers to the desired cursor location.
3. Call this routine.
EXAMPLE:

; MOVE THE CURSOR TO ROW 14, COLUMN 5 (5,140)
LDX #$0A ; LOAD X REGISTER WITH 10
LDY #$65 ; LOAD Y REGISTER WITH 5
CLC ; CLEAR CARRY
JSR PLOT

Function name: RAMTAS

Purpose: Perform RAM testCall address: $SFF87 (hex) 65415 (decimal)
Communication registers: A, X, Y

Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: A, X, Y

Description: This routine is used to test RAM and set the top
and bottom of memory pointers accordingly.
EXAMPLE:

JSR RAMTAS

3 - 39

Section Three Programming Machine Code

Function name: RDTIM ®
Purpose: Read system clock
Call address: SFFDE (hex) 65502 (decimal)
Communication registers: A, X, Y

Preparatory routines: None
Error returns: None
Stack requirements: 2

Registers affected: A, X, Y

Description: This routine is used to read the system clock.
The clock's resolution is 1/6@th of a second. Three bytes arereturned by the routine. The accumulator contains the most
significant byte, the X index register contains the next most
significant byte, and the Y index register contains the leastsignificant byte.
EXAMPLE:

JSR RDTIM ®
STY TIME
STX TIME + 1
STA TIME + 2

Function name: READST

Purpose: Read status word
Call address: $FFB7 (hex) 65463 (decimal)
Communication registers: a
Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: A

Description: This routine returns the current status of the
I/0 devices in the accumulator. The routine is usually calledafter new communication to an I/O device. The routine gives ®
you information about device status, or errors that have
occurred during the I/O operation.

3 - 40 J

Section Three Programming Machine Code

The bits returned in the accumulator contain the followinginformation:
ST ST TAPE
BIT NUMERIC CASSETTE SERIAL/RW VERIFY
POSITION VALUE READ + LOAD

a 1 Time out
write

1 2 Time out
read

2 4 Short block Short block
3 8 Long block Long block
4 16 Unrecoverable Any

read error mismatch
5 32 Checksum Checksum

error error6 64 End of file EOI line
7 ~-128 End of tape Device not End of tape

present
How to use:
1. Call this routine.
2. Decode the information in the A register
EXAMPLE:

; CHECK FOR END OF FILE DURING READ
JSR READST
AND #$40 ; AND WITH 64 TO CHECK EOF (END OF FILE) BIT
BNE EOF ; BRANCH ON EOF

Function name: RESTOR

Purpose: Restore default system and interrupt vectorsCall address: $FF8A (hex) 65418 (decimal)
Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: A, X, Y

Description: This routine restores the default values of allsystem vectors used in KERNAL and BASIC routines and
interrupts (see the Memory Map in Section 3.12 for a list of
the vectors). The KERNAL VECTOR routine is used to read and
alter individual system vectors.
How to use:
1. Call this routine.
EXAMPLE:

JSR RESTOR

Section Three Programming Machine Code

Function name: SAVE

Purpose: Save memory to a device
Call address: SFFD8 (hex) 65496 (decimal)
Communication registers: A, X, Y

Preparatory routines: SETLFS, SETNAM
Error returns: 5, 8, 9 (See READST)
Stack requirements: None
Registers affected: A, X, Y

Description: This routine saves a section of memory to a
device. Memory is saved from an indirect address on page zero
specified by the accumulator contents, to the address stored
in the X and Y registers. It is then sent to a logical file
on an input/output device. The SETLFS and SETNAM routines
must be used before calling this routine. Note that a file
name is not required when saving to device 1, the cassetteunit. An attempt to save to any other device without using a
file name results in an error.
NOTE: You cannot SAVE to device 8 (the keyboard), device 2
(RS-232), or device 3 (the screen). If this is attempted, an
error occurs, and the SAVE is stopped.
How to use:
1. Use the SETLFS and SETNAM routines.
2. Load two consecutive locations in page zero with a pointer
to the start of the save, low byte first, high byte next.
3. Load the accumulator with the single byte page zero offset
to the pointer.
4, Load the X and Y registers with the low byte and high
byte, respectively, of the location of the end of the end of
the save.
5. Call the SAVE routine.
EXAMPLE:

LDA #$01 ; DEVICE = 1, CASSETTE
JSR SETLFS
LDA #$00 ; NO FILE NAME
JSR SETNAM
LDA PROG ; LOAD START ADDRESS OF SAVE
STA TXTTAB ; (LOW BYTE)
LDA PROG+1
STA TXTTAB+1 (HIGH BYTE)
LDX VARTAB LOAD X WITH LOW BYTE OF END OF SAVE
LDY VARTAB+1
LDA #<TXTTAB
JSR SAVE

LOAD Y WITH HIGH BYTE OF END OF SAVE
LOAD ACCUMULATOR WITH PAGE ZERO OFFSETwe

Ne

we

Ne

Section Three Programming Machine Code

Function name: SCNKEY

Purpose: Scan the keyboard
Call address: SFFI9F (hex) 65439 (decimal)
Communication registers: None
Preparatory routines: IOINIT
Error returns: None
Stack requirements: 5

Registers affected: A, X, Y

Description: This routine scans the Cl6 and PLUS/4 keyboard
and checks for pressed keys. This is the routine which iscalled by the interrupt handler. If a key is down, its ASCII
value is placed in the keyboard queue. This routine is called
only if the normal IRQ interrupt is bypassed.
How to use:
1. Call this routine.
EXAMPLE:

GET JSR SCNKEY SCAN KEYBOARD’
JSR GETIN ; GET CHARACTER
CMP #S00 ; IS IT NULL?
BEQ GET ; YES...SCAN AGAIN
JSR CHROUT ; PRINT IT

Function name: SCREEN

Purpose: Return screen format
Call address: SFFED (hex) 65517 (decimal)
Communication registers: X, Y

Preparatory routines: None
Stack requirements: 2
Registers affected: X, Y

Description: This routine returns the format of the screen,e.g., 40 columns in X and 25 lines in Y. The routine can be
used to determine what machine a program is running on. This
function has been included on the Cl6 and PLUS/4 to help
upward compatibility of your programs.
How to use:
1. Call this routine.
EXAMPLE:

JSR SCREEN
STX MAXCOL
STY MAXROW

Section Three Programming Machine Code

Function name: SECOND

purpose: Send secondary address for LISTEN
Call address: $FF93 (hex) 65427 (decimal)
Communication registers: A

Preparatory routines: LISTEN
Error returns: See READST
Stack requirements: 8

Registers affected: A

Description: This routine is used to send a secondary address
to an I/O device after a call to the LISTEN routine is made.
This routine can NOT be used to send a secondary addressafter a call to the TALK routine.
A secondary address is usually used to give setup information
to a device before I/0 operations begin. When a secondaryaddress is to be sent to a device on the serial bus, the
address must first be ORed with #$64.
How to use:
1. Load the accumulator with the secondary address to be
sent.
2. Call this routine.
EXAMPLE:

; ADDRESS DEVICE #8 WITH COMMAND
; (SECONDARY ADDRESS) #15

LDA #$08
JSR LISTEN
LDA #S$0F
JSR SECOND

Function name: SETLFS

Purpose: Set up a logical fileCall address: SFFBA (hex) 65466 (decimal)
Communication registers: A, X, Y

Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: None

Description: This routine sets the logical file number,
device address, and secondary address, i.e. command number,
for other KERNAL routines.

Section Three Programming Machine Code

The logical file number is used by the system as a key to thefile table created by the OPEN file routine. Device addresses
can range from @ to 31. The codes used by the Cl6 and PLUS/4
for the CBM devices are listed below:
ADDRESS DEVICE

Keyboard
Cassette unit
RS-232C device
CRT displaySerial bus printer
CBM serial bus disk drive

OWN

Device numbers greater than 3 automatically refer to devices
on the serial bus.
The device number is sent during the serial attention
handshaking sequence, then a command to the device is sent as
a secondary address on the serial bus. If no secondary
address is to be sent, the Y index register must be set to
255.

How to use:
1. Load the X index register with the logical file number.
2. Load the accumulator with the device number.
3. Load the Y index register with the command.

EXAMPLE:

; FOR LOGICAL FILE 32, DEVICE #4, NO COMMAND
LDA #$20 ; HEX FOR 32
LDX #$04
LDY #SFF ; HEX FOR 255
JSR SETLFS

Function name: SETMSG

Purpose: Control system message output
Call address: SFF9@ (hex) 65424 (decimal)
Communication registers: A

Preparatory routines: None
Error returns: None
Stack requirements: 2

Registers affected: A

Description: This routine controls the printing of error and
control messages by the KERNAL. Either error messages or
control messages can be selected by setting the accumulator
when the routine is called. FILE NOT FOUND is an example of
an error message, PRESS PLAY ON TAPE is an example of a
control message.

3 - 45

Section Three Programming Machine Code

Bits 6 and 7 of this value determine whether control or error
messages are displayed. If bit 7 is set, the KERNAL error
messages are printed. If bit 6 is set, control messages are
printed.
How to use:
1. Set accumulator to desired value.
2. Call this routine.
EXAMPLE:

LDA #$40
JSR SETMSG ; TURN ON CONTROL MESSAGES
LDA #$80
JSR SETMSG ; TURN ON ERROR MESSAGES
LDA #$00
JSR SETMSG ; TURN OFF ALL KERNAL MESSAGES

Function name: SETNAM

Purpose: Set file name
Call address: $FFBD (hex) 65469 (decimal)
Communication registers: A, X, Y

Preparatory routines: SETLFS
Stack requirements: None
Registers affected: A, X, Y

Description: This routine is used to set up the file name for
OPEN, SAVE, or LOAD routines. The accumulator must be loaded
with the length of the file name. The X and Y registers must
be loaded with the address of the file name, low byte first,high byte next. This address can be any valid memory address
in the system. If no file name is desired, the accumulator
must be set to @, representing a zero file length.
How to use:
1. Load the accumulator with the length of the file name.
2. Load the X index register with the low order address of
the file name.
3. Load the Y index register with the high order address of
the file name.
4. Call this routine.
EXAMPLE:

LDA #NAMEl - NAME ; LOAD LENGTH OF FILE NAME
LDX #<NAME ; LOAD ADDRESS OF FILE NAME
LDY #>NAME
JSR SETNAM

Ne

we

NAME .ASC "FILENAME"
NAME1l NOP

FILE NAME IN ASCII FORMAT

Section Three

Function name: SETTIM

Purpose: Set the system clock
Call address: S$FFDB (hex) 65499
Communication registers: aA, X, Y

Preparatory routines: None
Error returns: None
Stack requirements: 2

Registers affected: None

Programming Machine Code

(decimal)

Description: A system clock is maintained by an interruptroutine that updates it every 1/60th of a second, i.e. one"jiffy". The clock is three bytes long, which gives it thecapability of counting up to 5,184,000 jiffies, i.e. 24
hours, at which point the clock resets to zero. Before
calling this routine ensure that the accumulator contains the
most significant byte, i.e. MSB, the X index register the
next most significant byte, and the Y index register theleast significant byte, i.e. LSB, of the initial time
setting. These values must be in jiffies.
How to use:
1. Load the accumulator with the MSB of the 3-byte number toset the clock.
2. Load the X register with the next byte.
3. Load the Y register with the LSB.
4. Call this routine.
EXAMPLE:

; SET THE CLOCK TO 10 MINUTES = 36000 JIFFIES
LDA #$00 ; MOST SIGNIFICANT
LDX #$8C
LDY #S$A0Q ; LEAST SIGNIFICANT
JSR SETTIM

Function name: SETTMO

Purpose: Set IEEE bus card timeout flagCall address: SFFA2 (hex) 65442 (decimal)
Communication registers: A

Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: None

NOTE: This routine can only be used if you have an IEEE
add-on card.

3 - 47

Section Three Programming Machine Code

Description: This routine sets the timeout flag for the IEEE
bus. When the timeout flag is set, the Cl6é or PLUS/4 waits
for 64 milliseconds for a response from a device on the IEEE
port. If the device does not respond to the Data Address
valid, i.e. DAV, signal within that time, the computer
recognizes an error condition and aborts the handshake
sequence. To enable timeouts, call this routine with bit 7 of
the accumulator clear. To disable timeouts, call this routine
with bit 7 of the accumulator set.
How to use:
TO SET THE TIMEOUT FLAG
1. Clear bit 7 of the accumulator.
2. Call this routine.
TO RESET THE TIMEOUT FLAG
1. Set bit 7 of the accumulator.
2, Call this routine.
EXAMPLE:

DISABLE TIMEOUT~

LDA #500
JSR SETTMO

Function name: STOP

Purpose: Check if STOP key is pressed
Call address: SFFEl (hex) 65505 (decimal)
Communication registers: A

Preparatory routines: None
Error returns: None
Stack requirements: None
Registers affected: a, X

Description: If the STOP key is pressed during a UDTIM call,
a call to the STOP routine returns with the Zz flag set. In
addition, the channels are reset to their default values. All
other flags remain unchanged. If the STOP key is not pressed
then the accumulator returns a byte representing the last row
of the keyboard scan.
How to use:
1. Call UDTIM routine.
2. Call this routine.
3. Test for the zero flag.
EXAMPLE:

JSR UDTIM
JSR STOP ; SCAN FOR STOP
BNE NO ; KEY NOT DOWN
JMP READY ; STOP

3 - 48

Section Three Programming Machine Code

Function name: TALK

Purpose: Command a device on the serial bus to TALK
Call address: SFFB4 (hex) 65460 (decimal)
Communication registers: a
Preparatory routines: None
Error returns: See READST
Stack requirements: 8

Registers affected: A

Description: To use this routine the accumulator must firstbe loaded with a device number between 9 and 31. The device
number is ORed bit by bit to create a talk address. The datais then transmitted as a command on the serial bus.
How to use:
1. Load the accumulator with the device number.
2. Call this routine.
EXAMPLE:

; COMMAND DEVICE #4 TO TALK
LDA #$04
JSR TALK

Function name: TKSA

Purpose: Send secondary address to device commanded to TALK
Call address: $FF96 (hex) 6543@ (decimal)
Communication registers: A

Preparatory routines: TALK
Error returns: See READST
Stack requirements: 8
Registers affected: A

Description: This routine transmits a secondary address for a
TALK device on the serial bus. It must be called with a
number between # and 31 in the accumulator, the routine thensends this number as a secondary address over the serial bus.
TKSA can only be called after a call to the TALK routine, itdoes not work after a LISTEN.

How to use:
1. Use the TALK routine.
2. Load the accumulator with the secondary address.
3. Call this routine.
EXAMPLE:

; TELL DEVICE #4 TO TALK WITH COMMAND #7
LDA #$04
JSR TALK
LDA #307
JSR TKSA

3 - 49

Section Three Programming Machine Code

Function name: UDTIM

purpose: Update the system clock
Call address: $FFEA (hex) 65514 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: None
Stack requirements: 2

Registers affected: A, X

Description: This routine updates the system clock. This
routine is usually called by the normal KERNAL interruptroutine every 1/60th of a second. However, if your program
processes its own interrupts, this routine must be called to
update the time. In addition, the STOP routine must be calledif the STOP key is to remain functional.
How to use:
1. Call this routine.
EXAMPLE:

JSR UDTIM

Function name: UNLSN

Purpose: Send an UNLISTEN command
Call address: SFFAE (hex) 65454 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: See READST
Stack requirements: 8
Registers affected: A

Description: This routine commands all devices on the serial
bus to stop receiving data. A call to this routine sends an
UNLISTEN command on the serial bus, only devices previously
commanded to LISTEN are affected. This routine should be used
when you have finished semding data to external devices.
How to use:
1. Call this routine.
EXAMPLE:

JSR UNLSN

Section Three Programming Machine Code

Function name: UNTLK

Purpose: Send an UNTALK command
Call address: SFFAB (hex) 65451 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: See READST
Stack requirements: 8

Registers affected: aA

Description: This routine transmits an UNTALK command on theserial bus. All devices previously set to TALK stop sendingdata when this command is received. -
How to use:
1. Call this routine.
EXAMPLE:

JSR UNTALK

Function name: VECTOR

Purpose: Manage RAM vectors
Call address: SFF8D (hex) 65421 (decimal)
Communication registers: X, Y

Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: A, X, Y

Description: This routine manages all system vector jump
addresses stored in RAM. Calling this routine with the
accumulator carry bit set, causes the current contents of the
RAM vectors to be stored in a list pointed to by the X and Y

registers. When this routine is called with the carry bit
clear, the user list pointed to by the X and Y registers is
transferred to the system RAM vectors. The RAM vectors arelisted in the memory map (see Section 3.12).
NOTE: Use this routine with caution. COMMODORE recommend that
you use it by transferring the entire vector contents into
the user area, altering the desired vectors, and then copying
the contents back to the system vectors.

3 - 51

Section Three Programming Machine Code

How to use:
READ THE SYSTEM RAM VECTORS
1. Set the carry bit.
2. Set the X and Y registers to the required address.
3. Call this routine.
LOAD THE SYSTEM RAM VECTORS
1. Clear the carry bit.
2. Set the X and Y registers to the address of the vectorlist in RAM.
3. Call this routine.
EXAMPLE:

; CHANGE THE INPUT ROUTINES TO NEW SYSTEM
LDX #<USER
LDY #>USER
SEC
JSR VECTOR READ OLD VECTORS

~e

we

LDA #<MYINP
STA USER+10
LDA #>MYINP
STA USER+11
LDX #<USER
LDY #>USER
CLC
JSR VECTOR

CHANGE INPUT

ALTER SYSTEM~

USER

3.11.4 ERROR CODES

The following is a list of error messages which can occur
when using the KERNAL routines. If an error occurs during a
KERNAL routine, the carry bit of the accumulator is set and
the number of the error message is returned in the
accumulator.
NOTE: some KERNAL I/O routines do not use these codes for
error messages. Instead, errors are identified using the
KERNAL READST routine. *

NUMBER MEANING
Routine terminated by the STOP key
Too many open files
File already openFile not openFile not found
Device not presentFile is not an input fileFile is not an output fileFile name is missing
Illegal device number
Top of memory change RS-232 buffer allocation/deallocation

NOOO

WNHF®R

[3 =

3 - 52

Section Three

3.12 C16 AND PLUS/4 MEMORY MAP

LABEL

PDIR

PORT

SRCHTK

ZPVEC1
ZPVEC2
CHARAC
ENDCHR

TRMPOS

VERCK
COUNT

DIMFLG
VALTYP

INTFLG

DORES

SUBLFG

INPFLG

TANSGN

CHANNL
LINNUM
TEMPPT

LASTPT
TEMPST

INDEX1
INDEX2
RESHO
RESMOH
RESMO
RESLO

TXTTAB

VARTAB

ARYTAB

STREND

HEX
ADDRESS

$0000

$0001

$0002

$0003-0004
$0005-0006
$0097
$0008

$0009

$000A
$000B

s$g@agac

$090D

$O00E

$Q00F

$0010

$0911

$0012

$0913
$0014-0015
$0016

$0017-04018
$0019-0021

$0022-0023
$0024-0025
$0026
$0827
$0028
$0029
$@@a2a
$@@2B-602C

$002D-002E

$S@02F-0030

$0031-0032

DECIMAL
LOCATION

a

1

0
J

uw

Oo

19
11

12
13

14

15

16

17

18

19
20-21
22

23-24
25-33

34-35
36-37
38
39
490

41
42
43-44

45-46

47-48

49-50

3-53

Programming Machine Code

DESCRIPTION

7510 on-chip data-
direction register (DDR)
7510 on-chip 8-bit
input/output register
Token 'search' looks for
(run-time stack)

Temp (renumber)
Temp (renumber)
Search character
Flag: scan for quote at
end of string
Screen column from last
TAB
Flag: @ = load 1 = verify
Input buffer pointer /No. of subscripts
Default array DIMension
Data type: S$FF = string
$00 = numeric
Data type: $80 = integer
$00 = floating
Flag: DATA scan/LIST
quote/garbage collect
Flag: subscript ref /user function call
Flag: $00 = INPUT,
$40 = GET, $98 = READ
Flag: TAN sign /comparison result
Flag: INPUT prompt
Temp: integer value
Pointer: temporary
string stack
Last temp string address
Stack for temporary
strings
Utility pointer area
Utility pointer area

Pointer: start of BASIC
text
Pointer: start of BASIC
variables
Pointer: start of BASIC
arraysPointer: end of BASIC
arrays (+1)

Section Three

FRETOP

FRESPC
MEMSIZ

CURLIN
TXTPTR
ENDPNT
DATLIN
DATPTR

INPPTR
VARNAM

VARPNT

FORPNT

OPPTR
OPMASK
DEFPNT
DSCPNT

HELPER
JMPER
SIZE
OLDOV
TEMPF1
HIGHDS
HIGHTR

LOWDS
LOWTR
EXPSGN
FACEXP

FACHO

FACMOH
FACMO
FACLO
FACSGN
SGNFLG

BITS

ARGEXP

ARGHO

ARGMOH
ARGMO
ARGLO
ARGSGN
ARISGN

$0033-0034

$0035-0036
$0037-0038

$0039-003a
$0¢3B-0d3C
$@03D-G03E
SOQ@3F-0040
$0041-0042

$0043-0044
$0045-09346

$0047-0048

$0049-004A

$004B-004C
$004D
$O0QG4E-QI4F
$0050-0051
$0052
$0053
$0054
$0055
$0056
$0957
$0058-0059
$005A-005B
$@a5C
$@@5D-005SE
S@O5F
$0060
$0061

$0062

$0063
$0064
$0065
$0066
$0067

$0068

$0069

$gd6a

$0068
s$age6c
$006D
SO@O6E
S@06F

51-52

53-54
55-56

57-58
59-60
61-62
63-64
65-66

67-68
69-780

71-72

73-74

75-76
77
78-79
89-81
82
83
84
85
86
87
88-89
9@¢-91
92
93-94
95
96
97

98

99
100
101
192
103

104

105

106

107
108
199
110
11d

3 - 54

Programming Machine Code

Pointer: bottom of
string storage
Utility string pointer
Pointer: highest address
used by BASIC
Current BASIC line number

Current DATA line number
Pointer: current DATA
item address
Vector: INPUT routine
Current BASIC variable
name
Pointer: current BASIC
variable data
Pointer: index variable
for FOR/NEXT

Floating-point
accumulator #l: exponent
Floating accum. #1:
mantissa

Floating accum. #1: sign
Pointer: series
evaluation constant
Floating accum. #1:
overflow digit
Floating-point
accumulator #2: exponent
Floating accum. #2:
mantissa

Floating accum. #2: sign
Sign comparison result:
accum. #1 vs #2

Section Three

FACOV

FBUFPT
AUTINC

MVDFLG

KEYNUM
KEYSIZ
SYNTMP

DSDESC
TOS
TMPTON

VOICNO
RUNMOD
POINT
GRAPHM
COLSEL
MC1
FG
SCXMAX
SCYMAX
LTFLAG
RTFLAG
STOPNB

GRAPNT
VTEMP1
VTEMP2
STATUS

STKEY
SPVERR
VERFCK
C3pO

BSOUR

YSAV
LDTND

DFLTN
DFLTO

MSGFLG

SAL
SAH
EAL
EAH
Tl
T2
TIME

$0070

$0071-0072
$0073-0074

$0075

$0076
$0877
$0078

$0@79-007B
$007C-207D
$0@7E-0GB7F

$0080
$0081
$0982
$0083
$0084
$0085
$0086
$0087
$0088
$0989
$0g8a
$008B

$008C-008D
$O0@8E
SO08F
$0090

$0691
$0092
$0093
$0094

$0095

$0096
$0097

$0098
$0099

$04d9a

$S009B
$@d9C
$669D
S@A9E
SO09F-0G0OAQ
$00A1-00A2
$00A3-00A5

112

113-114
115-116

117

118
119
120

121-123
124-125
126-127

128
129
130
131
132
133
134
135
136
137
138
139

140-141
142
143
144

145
146
147
148

149

150
151

152
153

154

155
156
157
158
159-164
161-162
163-165

Programming Machine Code

Floating accum. #1
low order (rounding)
Pointer: cassette buffer
Increment value for AUTO
(8 = off)
Flag if 10K hires
allocated

Used as temp for indirect
loads
Descriptor for ds$
Top of run-time stack
Temps used by music
(tone and volume)

Current graphic mode
Current colour selected
Multicolourl
Foreground colour
Maximum # of columns
Maximum # of rows
Paint-left flag
Paint-right flag
Stop paint if not BG
(not same colour)

Kernal I/0 status word:
ST
Flag: STOP key / RVS key
Temp
Flag: @ = load 1 verify
Flag: serial bus - outputchar buffered
Buffered character for
serial bus
Temp for basin
of open files / index
to file table
Default input device (0)
Default output (CMD)
device (3)
Flag: $80 = direct mode
$08 = program
Tape pass 1 error log
Tape pass 2 error log

Temp data area
Temp data area
Real-time jiffy clock
(approx) 1/68 sec

Section Three Programming Machine Code

R2D2 $00A6 166 Serial bus usage
TPBYTE $oea7 167 Byte to be written/read

on/off tapeBSOURL S@dA8 168 Temp used by serialroutine
FPVERR $00a9 169
DCOUNT $@dAA 170
FNLEN $g@AB 171 Length of current file

name
LA $@aac 172 Current logical file

number
SA $@@aD 173 Current secondary address
FA ~$00AE 174 Current device number
FNADR $@O0AF-00BO 175-176 Pointer: current file

name
ERRSUM $@0B1 177
STAL $00B2 178 I/0 start address
STAH $90B3 179
MEMUSS $00B4-0G0BS 189-181 Load RAM base
TAPEBS $00B6-00B7 182-183 Base pointer to cassettebase
TMP2 $00B8-00B9 184-185
WRBASE $@0BA-G0OBB 186-187 Pointer to data for tapewrites
IMPARM $@@BC-00BD 188-189 Pointer to immediate

string for primms
FETPTR $O0OBE-Q@BF 199-191 Pointer to byte to be

fetched in bank f routine
SEDSAL $00Ca-gaCcl 192-193 Temp for scrollingRVS $@ac2 194 RVS field flag on
INDX $@9C3 195
LSXP $@ac4 196 X position at startLSTP $@08CS 197
SFDX $00C6 198 Flag: shift mode for

print
CRSW s$gac? 199 Flag: INPUT or GET from

keyboard
PNT $90C8-048C9 209-201 Pointer: current screenline address
PNTR $gaca 202 Cursor column on currentline
QTSW $00cCB 203 Flag: editor in quote

mode $dd = no
SEDT1 $@acc 204 Editor temp use
TBLX $@4CD 205 Current cursor physicalline number
DATAX S@0CE 206 Temp data area
INSRT $G6CF 207 Flag: insert mode,

>3 = # INSTs
$@0D0-90D7 208-215 Area for use by speechsoftware
$@@D8-P0ES 216-232 Area for use by

application software
CIRSEG $O0E9 233 Screen line link table /editor temps
USER SOOEA-GOEB 234-235 Screen editor colour IP

3 - 56

Section Three

KEYTAB
TMPKEY
NDX
STPFLG
TO
CHRPTR
BUFEND
CHKSUM

LENGTH
PASS

TYPE
USEKDY

XSTOP

CURBNK

XON
XOFF
SEDT2
LOFBUF

FBUFR
SAVEA
SAVEY
SAVE
COLKEY

SYSSTK

BUF
OLDLIN
OLDTXT

XCNT
FNBUFR
DOSFIL
DOSDS1
DOSF1lA

DOSF2L
DOSDS2
DOSF2A

DOSLA
DOSFA
DOSsA

DOSDID
DIDCHK

$OOEC-QGQED
SOOEE
$GOEF
S@OFQ
$O0F1-00F2
SOOF3
SO0F4
$@QF5

$OOF6
S@OF7

SO0F8
$O0F9

SOdFa

SO@OFB

$@OFC
$@FFD
S@OFE
$@OFF

$0100-010F
$0110
$0111
$0112
$0113-0122

$0124-01FF

$0200-0258
$0259-025A
$025B-025C

$025D-082AC
$@25D
$@25E-026D
SO26E
$@26F
$0270-0271

$0272
$@273
$0274-0275

$8276
$0277
$0278

$0279-0827A
$0278

236-237
238
239
240
241-242
243
244
245

246
247

248
249

258

251

252
253
254
255

256-271
272
273
274
275-289

291-511

512-600
601-602
603-604

605-684

3 - 57

Programming Machine Code

Key scan table indirect
Index to keyboard queue
Pause flag
Monitor ZP storage

Temp for checksum
calculation
Which pass we are doingstr
Type of block
(B.7=1)=> for wr,
(B.6=1)=> for rd
Save xreg for quick
stopkey test
Current bank
configuration
Char to send for a x-on
Char to send for a x-off
Editor temporary use

Temp locations for......5ave...restore
Colour/luminance table
in RAM

System stack
BASIC/monitor buffer
BASIC storage
BASIC storage
BASIC/DOS INTERFACE AREA
DOS loop counter
Area for filename
DOs
DOS
DOS

DOs
DOs
DOS

DOS
DOS
DOS

DOS
DOS

filename 1
disk drive
filename 1

filename 2
disk drive
filename 2

length
1
addr

length
2
addr

logical address
physical addr
secondary address
disk identifier
DID flag

Section Three Programming Machine Code

DOSSTR $@27C DOS output string buffer
DOSSPC $027D-92AC Area used to build DOS

string
Graphics Variables

XPOS $@2AD-@2AE 685-686 Current x position
YPOS S$@2AF-02B0 687-688 Current y position
XDEST $@2B1-02B2 689-690 X coordinate destination
YDEST $@2B3-02B4 691-692 Y coordinate destination
XABS $@2B5-02B6 693-694
YABS $02B7-02B8 695-696
XSGN $@2B9-02BA 697-698
YSGN $@2BB-0@2BC 699-7400
FCT1 $02BD-@2BE 701-702
FCT2 $@2BF-02CQ 703-704
ERRVAL $@2Cl-02C2 705-706
LESSER $@2C3 707
GREATR $02C4 708

ANGSGN $@2Ccs 789 Sign of angle
SINVAL $02C6-02C7 718-711 Sine of value of angle
COSVAL $@2C8-02C9 712-713 Cosine of value of angle
ANGCNT $02CA-02CB 714-715 Temps for angle distance

routines
Start of multiply defined
area #1

s$g2cc 716 Placeholder
BNR $@2cD 717 Pointer to begin no.
ENR $@2CE 718 Pointer to end no.
DOLR $@2CF 719 Dollar flag
FLAG $8209 728 Comma flag
SWE $@2D1 721 Counter
USGN $@2D2 722 Sign exponent
UEXP $@2D3 723 Pointer to exponent
UN $@2D4 724 # of digits before

decimal point
CHSN $@2D5 725 Justify flag
VF $0206 726 # of pos before decimal

point (field)
NF $@2D7 727 # of pos after decimal

point (field)
POSP $02D8 728 +/- flag (field)
FESP $0209 729 Exponent flag (field)
ETOF $02DA 730 Switch
CFORM $@2DB 731 Char counter (field)
SNO $@2DC 732 Sign no.
BLFD $02DD 733 Blank/star flag
BEGFD S$@2DE 734 Pointer to beginning of

field
LFOR $02DF 135 Length of format
ENDFD $@2EQ 736 Pointer to end of field

3-58

Section Three

XCENTR
YCENTR
XDIST1
YDISTL
XDIST2
YDIST2

COLCNT
ROWCNT
STRCNT

XCORD1
YCORD1
BOXANG
XCOUNT
YCOUNT
BXLENG
XCORD2
YCORD2

XCIRCL

YCIRCL

XRADUS
YRADUS
ROTANG
ANGBEG
ANGEND
XRCOS

YRSIN

XRSIN

YRCOS

KEYLEN
KEYNXT
STRS2
GETTYP
STRPTR
OLDBYT
NEWBYT

$@2CC-92CD
$@2CE-@2CF
$02D0-92D1
$62D2-902D3
$02D4-02D5
$02D6-02D7
$02D8-02D9

$@2DA
$@2DB
$@2DC

$02CC-082CD
$O02CE-02CF
$02Dp@g-92D1
$02D2-62D3
$02D4-02D5
$02D6-92D7
$02D8-82D9
$02DA-@2DB

$@2CC-@2CD

$02CE-@2CF

$02D@-082D1
$02D2-082D3
$02D4-02D5
$02D8-02D9
$@02DA-02DB
$62DC-62DD

$@2DE-@2DF

$O02E@-G2EL

$@2E2-02E3

s@2cc
$@2CD
$Q2CE
$@2CF
$0200
$d2D1
$02D2
$02D3

$02D4

716-717
718-719
720-721
722-723
724-725
726-727
728-729

730
731
732

716-717
718-719
720-721
722-723
724-725
726-727
728-729
736-731

716-717

718-719

728-721
722-723
724-725
728-729
730-731
732-733

734-735

736-737

738-739

716
717
718
719
720
721
722
723

724

3-59

Programming Machine Code

Placeholder
Characters column counter
Characters row counter

Start of multiply defined
area #2

Rotation angle

Length of a side

Circle center,
x coordinate
Circle center,
y coordinate
X radius
Y radius
Rotation angle
Arc angle start
Arc angle end
X radius * cos
(rotation angle)

Y radius * sin
(rotation angle)

X radius * sin
(rotation angle)

Y radius * cos
(rotation angle)
Start of multiply defined
area #3
Placeholder

String length
Replace string mode
String position counter
01d bit map byte
New string or bit map
byte
Placeholder

Section Three Programming Machine Code

XSIZE $@2D5-02D6 725-726 Shape column length
YSIZE $02D7-62D8 727-728 Shape row length
XSAVE $@2D9-32DA 729-730 Temp for column length
STRADR $02DB-@2DC 731-732 Save shape string

descriptor
BITIDX $@2DD 733 Bit index into byte
SAVSIZ $@2DE-G2E1 734-737 Temporary work locations
CHRPAG SO2E4 740 High byte addr of char

ROM for CHAR
BITCNT $@2ES5 741 Temp for gshape
SCALEM $O2E6 742 Scale mode flag
WIDTH S$S@2E7 743 Double width flag
FILFLG $S@2ES8 744 Box fill flag
BITMSK $@2E9 745 Temp for bit mask
NUMCNT $@2EA 746
TRCFLG $@2EB 747 Flags trace mode

T3 $@2EC 748
T4 $@2ED-@2EE 749-750
VTEMP3 $O2EF 751 Graphic temp storage
VTEMP4 $@2F0 752
VTEMPS $@2F1 753

ADRAY1 S@2F2-02F3 754-755 Ptr to routine: convert
float to integer

ADRAY2 $02F4-02F5 756-757 Ptr to routine: convert
integer to float

BNKVEC $@2FE-J2FF 766-767 Vector for function
cartidge users

IERROR $03060-90301 768-769 Indirect Error (output
error in X)

IMAIN $0302-034@3 778-771 Indirect Main (systemdirect loop)
ICRNCH $0304-0305 772-773 Indirect Crunch

(tokenization routine)
IQFLOP $0306-0307 774-775 Indirect List (char list)
IGONE $@308-2309 776-777 Indirect Gone (character

dispatch)
IEVAL $030A-030B 778-779 Indirect Eval (symbol

evaluation)
IESCLK $@309C-@30D 780-781 Escape token crunch
IESCPR $S@30E-G30F 782-783
IESCEX $0310-0311 784-785
ITIME $0312-0313 786-787
CINV $0314-0315 788-789 IRQ RAM vector
CBINV $0316-0317 790-791 Brk instr RAM vector
IOPEN $0318-0319 792-793 Indirects for code
ICLOSE $@31A-@31B 794-795
ICHKIN $@31C-@31D 796-797
ICKoUuT $031E-031F 798-799
ICLRCH $03209-0321 800-801
IBASIN $0322-9323 802-803
IBSOUT $0324-0325 804-805
ISTOP $0326-0327 806-807

3 - 64

Section Three

IGETIN
ICLALL
USRCMD
ILOAD
ISAVE

TAPBUF
WRLEN

RDCNT

INPQUE
ESTAKL
ESTAKH

CHRGET
CHRGOT
QNUM

INDSUB
ZERO

INDTXT
INDIN1
INDIN2
INDST1
INDLOW
INDFMO

PUFILL
PUCOMA
PUDOT
PUMONY

TMPDES

ERRNUM
ERRLIN
TRAPNO
TMTTRP
ERRTXT
OLDSTK

TMPTXT
TMPLIN

MTIMLO

MTIMHI
USRPOK
RNDX

$0328-0329
$032A-032B
$032C-032D
$@32E-G32F
$0330-0331

$0333-03F2
SO3F3-03F4

$@3FS5-03F6

$O3F7-0436
$0437-0454
$0455-0472

$0473-0478
$0479-0484
$0485-0493

$0494-04A1
$04A2-0424

$G4A5-F4AF
$04BO-04BA
$@4BB-04CS
$04C6-04D@
$04D1-04DB
$04DC-G4E6

S@4E7
SO4ES
S@4E9
SO@4EA

SO4EB-G4EE

$PAEF
$04F@-04F1
S@4F2-04F3
$O4F4
$@4F5-04F6
S@4F7

S@4F8-04F9
S@4FA-04FB

$@4FC-B4FD

SO4FE-04FF
$0500-0502
$0503-0507

808-809
810-811
812-813
814-815
816-817

819-1910
1911-1012

1013-1014

1015-1078
1079-1108
1109-1138

1139-1144
1145-1156
1157-1171

1172-1185
1186-1188

1189-1199
1200-1210
1211-1221
1222-1232
1233-1243
1244-1254

1255
1256
1257
1258

1259-1262

1263
1264-1265
1266-1267
1268
1269-1270
1271

1272-1273
1274-1275

1276-1277

1278-1279
1280-1282
1283-1287

3 - 61

Programming Machine Code

Cassette tape buffer
Length of data to be
written to tape
Length of data to be read
from tape
RS-232 input queue

Shared ROM fetch sub
Numeric constant for
BASIC

Txtptr
Index & Indexl
Index2
Strngl
Lowtr
Facmo

Print using fill symbol
Print using comma symbol
Print using D.P. symbol
Print using monetary
symbol

Temp for instr
Last error number
Line # of last error
Line to go on error
Hold trap no. temporarily

Table of pending jiffies(2's comp)

Section Three Programming Machine Code

DEJAVU $0508 1288 'Cold' or 'warm' startstatus
LAT $@509-0512 1289-1298 Logical file numbers
FAT $0513-051C 1299-1308 Primary device numbers
SAT $@51D-@526 1399-1318 Secondary addresses
KEYD $0@527-0530 1319-1328 IRQ keyboard buffer
MEMSTR $0531-08532 1329-1330 Start of memory
MSIZ $0533-0534 1331-1332 Top of memory
TIMOUT $0535 1333 IEEE timeout flag
FILEND $8536 1334 File end reached = 1,

otherwise @

CTALLY $0537 1335 # of chars left in buffer
(for R & W)

CBUFVA $9538 1336 # of total valid chars in
buffer (R)

TPTR $0539 1337 Ptr to next char in
buffer (for R & W)

FLTYPE $@53a 1338 Contains type of current
cass file

COLOR $053B 1339 Active attribute byte
FLASH $@53C 1340 Character flash flag

$853D 1341 FREE
HIBASE S@S3E 1342 Base location of screen

(top)
XMAX $@53F 1343
RPTFLG $0540 1344 Key repeat flag
KOUNT $0541 1345
DELAY $0542 1346
SHFLAG $0543 1347 shift flag byte
LSTSHF $9544 1348 Last shift pattern
KEYLOG $0545-0546 1349-1350 Indirect for keyboard

table setup
MODE $0547 1351
AUTODN $0548 1352 Auto scroll down flag

(8 = on, 8 <> off)
LINTMP $0549 1353
ROLFLG $054A 1354

FORMAT $054B 1355 Monitor non-zpage storage
MSAL $054C-054E 1356-1358
WRAP $@54F 1359
TMPC $0550 1360
DIFF $@551 1361
PCH $0552 1362
PCL $8553 1363
FLGS $0554 1364
ACC $@555 1365
XR $0556 1366
YR $8557 1367
SP $0558 1368
INVL $0559 1369
INVH $@55A 137¢

3 - 62

Section Three

CMPFLG

BAD

KYNDX

KEYIDX
KEYBUF
PKYBUF

KDATA

KDYCMD

KDYNUM
KDYPRS

KDYTYP

SAVRAM

PAT
LNGJMP
FETARG
FETXRG
FETSRG

AREAS

ASPECH

STKTOP

WROUT

PARITY
TTL
TT2
RDBITS

ERRSP

FPERRS

DSaMPl
DSAMP2
ZCELL

SRECOV

DRECOV

TRSAVE
RDETMP

$0558

$055C

$@55D

$955E
$@55F-0566
$@567-85E6

$@5E7

SO@SES

S@S5E9
S@SEA

$SOSEB

SOSEC-@6EB

S@5EC-05EF
$@5F@-05F1
$@5F2
$@5F3
SG5F4

$@5F5-065D

S065E-G6EB

SG6EC-@7AF

$0784

$@7B1
$0782
$07B3
$@7B5

$0786

$@7B7

$@7B8-07B9
S@7BA-G7BB
$@7BC-07BD

$@7BE

$S@7BF

$@7C@-07C3
$87C4

1371

1372

1373

1374
1375-1382
1383-15140

1511

1512

1513
1514

1515

1516-1771

1516-1519
1520-1521
1522
1523
1524

1525-1629

1630-1771

1772-1967

1968

1969
197@
1971
1973

1974

1975

1976-1977
1978-1979
1980-1981

1982

1983

1984-1987
1988

3-63

Programming Machine Code

Used by various monitor
routines

Used for programmable
keys
Table of P.F. lengths
P.F. key storage area
Temp for data write to
kennedy
Select for kennedy read
or write
Kennedy's dev#
Kennedy present = $FF,
else $00
Temp for type of open for
kennedy
1 page used by banking
routines
Physical address table
Long jump address
Long jump accumulator
Long jump x register
Long jump status register
RAM areas for banking
RAM area for speech
BASIC run-time stack
Byte to be written on
tape
Temp for parity calc
Temp for write-header
Temp for write-header
Local index for READBYTE
routine
Pointer into the error
stack
Number of first passerrors
Time constant
Time constant
Time constant
Stack marker for stopkey
recover
Stack marker for dropkey
recover
Params passed to RDBLOK
Temp stat save for RDBLOK

Section Three

LDRSCN

CDERRM

VSAVE
T1PIPE
ENEXT

UouTQ
UQUTFG
50UTQ
SOUNFG
INQFPT

INQRPT

INQCNT
ASTAT
AINTMP
ALSTOP
ARSTOP
APRES

KLUDES

SCBOT
SCTOP
SCLF
SCRT
SCRDIS
INSFLG
LSTCHR
LOGSCR
TCOLOR
BITABL

SAREG
SXREG
SYREG
SPREG

LSTX
STPDSB

RAMROM

COLSW

FFRMSK
VMBMSK

LSEM

$47C5

$@7C6

$07C7
$87C8-07CB
$@7cc

$@7CD
$@7CE
$@7CF
$@700
$@7D1

$@7D2

$g7D3
$0704
$@7D5
$8706
$67D7
$07D8

$87D9-07E4

S@7ES
$@7E6
S@7E7
S@7ES
$@7E9
SO7EA
S@7EB
$@7EC
S@7ED
$S@7EE-@7F1

$O7F2
$@7F3
$S@7F4
STFS
$S@7F6
$@7F7

S@7F8

$SO7F9

SOFA
$37FB

$@7FC

1989

1999

1991
1992-1995
1996

1997
1998
1999
2000
2001

2002

2003
2004
2005
2006
20087
2008

2009-2029

2021
2022
2023
2024
2025
2026
2927
2028
2029
2030-2033

2034
2035
2036
2037

2038
2039

2049

2041

2042
2043

2044

3 - 64

Programming Machine Code

consec shorts to find
in leader
4 errors fatal in RD
countdown
Temp for VERIFY command
Pipe temp for T1
Read error propagate
For RS=-232
User character to send
g = empty, 1 = full
System character to send
gd = empty, 1 = full
Pntr to front of input
queue
Pntr to rear of input
queue
of chars in input queue
Temp status for ACIA
Temp for input routine
FLG for local pause
FLG for remote pause
FLG to indicate presenceof ACIA

Indirect routine
downloaded

Registers for SYS command

Key scan index
Flag to disable CTL-S
pause
MSB for monitor fetches
from RAM = @, ROM = 1
MSB for colour/luminance
table in RAM = @#, ROM = 1
ROM mask for split screen
VM base mask for split
screen
Motor lock semaphore for
cassette

Section Three

PALCNT

TEDATR

TEDSCN

BASBGN

GRBASE

BMLUM

BMCOLR

CHRBAS

$37FD

$0800-0BFF

$S@COQ-GFFF

$1000-

$2000~

$1800-1BFF

$1CO0-1FFF

$D@dd

BANKING JUMP TABLE

UNOFFICIAL JUMP TABLE

SFCF1

SFCF4
SFCF7
SFCFA
SFCFD

$FF49

SFF4C
SFF4F
SFF52

SFF80

KERNAL JUMP TABLE

CINT
IOINIT
RAMTAS
RESTOR

VECTOR
SETMSG
SECND
TKSA
MEMTOP
MEMBOT
SCNKEY

SFF81
SFF84
SFF87
SFF8A

$FF8D
SFF90
$FF93
$FF96
SFF99
$FFIC
$FFIF

2045

2048-3071

3072-4095

4096-

8192-

6144-7167

7168-8191

53248

64753

64756
64759
64762
64765

65353

65356
65359
65362

65408

65409
65412
65415
65418

65421
65424
65427
65430
65433
65436
65439

3 - 65

Programming Machine Code

PAL tod
TED attribute bytes
(colour)
TED character pointers
(screen)
Start of BASIC text area
Start of BASIC when HIRES
is on

Luminance for bit map
screen
Colour for bit map

Beginning of character
ROM

JMP to cartridge IRQ
routine
JMP to PHOENIX routine
JMP to LONG FETCH routine
JMP to LONG JUMP routine
JMP to LONG IRQ routine

JMP to define function
key routine
JMP to PRINT routine
JMP to PRIMM routine
JMP to ENTRY routine
Release # of KERNAL
(MSB @ = NTSC, 1 = PAL)

Initialize screen editorInitialize I/O devices
RAM test
Restore vectors toinitial values
Change vectors for user
Control 0.S. messages
Send SA after LISTEN
Send SA after TALK
Set/read top of memory
Set/read bottom of memory
Scan keyboard

Section Three

SETTMO
ACPTR

CcIOoUT

UNTLK

UNLSN

LISTN

TALK

READST
SETLFS
SETNAM
OPEN
CLOSE
CHKIN
CHKOUT
CLRCH
BASIN
BSoUT
LOADSP
SAVESP
SETTIM
RDTIM
STOP
GETIN
CLALL
UDTIM
SCRORG
PLOT

IOBASE

SFFA2
SFFAS

SFFAS8

$FFAB

$FFAE

SFFBL

$FFB4

SFFB7
SFFBA
SFFBD
SFFC@
$FFC3
SFFC6
SFFC9
SFFCC
SFFCF
SFFD2
SFFD5
SFFD8
SFFDB
SFFDE
SFFE1l
SFFE4
SFFE7
SFFEA
SFFED
SFFF@

SFFF3

65442
65445

65448

65451

65454

65457

65460

65463
65466
65469
65472
65475
65478
65481
65484
65487
65490
65493
65496
65499
65502
65505
65508
65511
65514
65517
65528

65523

3 - 66

Programming Machine Code

Set timeout in DMA disk
Handshake serial bus or
DMA disk byte in
Handshake serial bus or
DMA disk byte out
Send UNTALK out serial
bus or DMA disk
Send UNLISTEN out serial
bus or DMA disk
Send LISTEN out serial
bus or DMA disk
Send TALK out serial bus
or DMA disk
Return I/O STATUS byte
Set LA, FA, SA
Set length and FN address
Open logical file
Close logical file
Open channel in
Open channel out
Close I/0 channels
Input from channel
Output to channel
Load from file
Save to file
Set internal clock
Read internal clock
Scan STOP key
Get character from queue
Close all files
Increment clock
Screen org
Read/set X,Y coord of
cursor
Return location of startof 1/0

Appendix A Screen Display Codes

APPENDIX A

SCREEN DISPLAY CODES

The following chart lists all of the characters built into
the C16 and PLUS/4 character sets. It shows which numbers
should be POKEd into screen memory, locations 3072 to 4471,
to display a desired character.
Two character sets are available, but only characters from
one set can be displayed at any one time. The sets areswitched by holding down the <SHIFT> key and pressing the
<C=> key.
From BASIC, PRINT CHR$ (142) switches to upper-case/graphicsmode, and PRINT CHR$ (14) switches to upper/lower-case mode.

Any character on the chart may also be displayed in reverse.The reverse character code is obtained by adding 128 to thevalues shown.

Screen Display CodesAppendix A

SET2 POKESET1

40
41

42

45

46
47

48

49

St
. 52

53

: 54

57
58

S89

SET2 POKESET?

20

21

23

24

25

26

27

28

30

31

32

33
SPACE

35

36

37
38

39

SET? SET2 POKE

(«

tT 10

1
“12
.13

. 14

15

16

17

18

19

Appendix A Screen Display Codes

SET1 SET2 POKE SET? SET2 POKE SET? SET2 POKE

< so] O 7 a| 3 108

= st|(Ad uv 8s] [© 109

> e2| BX wv | BH] 110

? a| QQ w eo} © 111

8 sa| # x e| [3 12
@ a es| OD vy ef BH 13
Mm = 6] @ z | H 114]

H c¢ e| HB ow|A 115

B o «| 2 O 1168 so|[0 al DO 17
OQ fr nlm 8 «| A 118

O G 4] NN 95 | 119

a = 72|SPACE 6|™ 1208 nl DID 97|Ga 121

MN + 7 = wl OF =ok is Od 9| § 123

Oo | OO wo [M 124N 7 O wr] H] 125

UY | 8 102) MM] 126

Oo o nl O =" 127

Og 7 = 104

a Q 81 ry 105
|

g r «| 03 106

®m s a&a| (B 107

Codes trom 128-255 are reversed images of codes 0-127.

Appendix B ASCII and CHRS$ Codes

APPENDIX B

ASCII AND CHRS$ CODES

This appendix shows the characters that appear if you PRINT
CHRS$ (X) for all possible values of X. It also shows the
values obtained by typing PRINT ASC("X"), where X is a
character. This is useful for evaluating the character
received in a GET statement, converting upper/lower-case, and
printing character based commands, like switch to
upper/lower-case, that can not be enclosed in quotes.

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS

0 ' 17 - 34 3 51

1 w 18 # 35 4 52

2 Foy 19 s 36 5 53

3 aE 20 % a7 6 sa
4 21 & 38 7 55

wir 5 2 ¢ 39 8 56

6 23 (40 9 s7
7 24) 41 s8

pusasLes 8 25 - 42 : 359

ENABLES 9 26 + 43 < 60

WC 0 scare 27 i 4 - 61

1 a 28 - 45 > 62

12 —_— 29 . 4% ? 63

RETURN 13 crm 30] 47 @ 64aI 1d ww a1 Q 48 A 85

15 acc 32 1 49 8 66

16 ' 33 2 50 c 67

Appendix B ASCII and CHRS Codes

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS

D 68 [4] 97 mm 126 LroreeN 155

E 69 ad 8 [127 em 156

F 70 HH 99 128 -— 157

G 7 5 100 omancz 129 vm 158

H 72 8 101 THASH 130 ow 159
1 73 = 102 131 sPacz 160 ;

J 74 O 103 Tor 132|1) 161

K 75 a 104 133 md 162

L 76 &1 105 1a [J 163

M 7 Mm 06 13s OJ es
N 78 Fl oor 16 [0 es
o) O 108 ww Bee
P 80 N 109 18 J er
Q 81 A 110 139 E168
R 82 OC 111 wo PI 169

S 83 | 112 SHIFT RETURN 141 3d 170

T 84 ® 113 Gerencase 142 (PB 171

u 8s Od 114 143 (u 172
i

v 86 M5 me waa [8 173

w 87 Od 116 t 1s a) rs
Xx - 88 2 nM ous asv 89 xX ne BEE wr [@ us
z 9% a ne BF. as BE 177

| 91 = 120 sown 149 FB 178

£ 92 | 121 ver/creen 150 q 179

I 93 @ 122 wx 151 [J 1e0

t 9 /# 123 seooreew 152 LJ 181

- 95 Tf 124 rTBLUE 153 a 182

= 96 @ 125 sue 154 | 183

Appendix B ASCII and CHRS Codes

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS

™- 184 a 166 (W 188 MW] 190

= 185 2 87 HJ] es Eg»
CODES 192-223 SAME AS 96-127
CODES 224-254 SAMEAS 160-190
CODE 255 SAME AS 126

Appendix C Screen and Colour Maps

APPENDIX C

SCREEN AND COLOUR MEMORY MAPS

The following charts show the memory locations used by the
screen, and the locations used to change individual character
colours. A list of the character colour codes is also given
in this appendix.

SCREEN MEMORY MAP

arn

912

Appendix C Screen and Colour Maps

C COLOUR MEMORY MAP

2

® The values to change a character's colour are:
@ BLACK 8 ORANGE
1 WHITE 9 BROWN
2 RED 10 YELLOW-GREEN
3 CYAN 11 PINK
4 PURPLE 12 BLUE-GREEN
5 GREEN 13 LIGHT BLUE
6 BLUE 14 DARK BLUE
7 YELLOW 15 LIGHT GREEN

The luminance of the colour is selected by multiplying the
luminance value (#-7) by 16, and adding it to the colour
number. To make a character flash, increase the colour
by 128.

value

Appendix D Deriving Mathematical Functions

APPENDIX D

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not
calculated as follows:
FUNCTION

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

intrinsic to BASIC V3.5 may be

BASIC EQUIVALENT

SEC (X)=1/COS (X)
CSC (X)=1/SIN(X)
COT (X)=1/TAN (X)
ARCSIN (X)=ATN (X/SQR (-X*X+1))
ARCCOS (X) ==ATN (X/SQR (-X*X+1))
+PI/2
ARCSEC (X) =ATN (X/SQR (X*X-1))
ARCCSC (X) =ATN (X/SQR (X*X-1))
+ (SGN (X)-1*PI/2)
ARCOT (X) =ATN (X)+PI/2
SINH (X)= (EXP (X)-EXP (-X))/2
COSH (X) = (EXP (X) +EXP (-X)) /2
TANH (X) =EXP (-X) / (EXP (X)
+EXP (-X)) *2+1
SECH (X)=2/(EXP (X) +EXP (-X))
CSCH (X)=2/ (EXP (X) -EXP (=X))

COTH (X) =EXP (=X) / (EXP (X)
—EXP (-X)) *2+1
ARCSINH (X)=LOG (X+SQR (X*X+1))
ARCCOSH (X) =LOG (X+SQR (X*X-1))
ARCTANH (X)=LOG ((1+X)/(1-X))/2
ARCSECH (X)=LOG ((SQR (-X*X+1) +1)
/X)
ARCCSCH (X) =LOG ((SGN (X)
*SQR (X*X+1)/X))
ARCCOTH (X)=LOG ((X+1)/(X-1))/2

Appendix E Musical Note Table

APPENDIX E

MUSICAL NOTE TABLE

NOTE SOUND REGISTER VALUE ACTUAL FREQUENCY (HZ)
A 7 110
B 118 123.5
Cc 169 130.8
D 262 146.8
E 345 164.7
F 383 174.5
G 453 195.9
A 516 220.2
B 571 246.9
Cc 596 261.4
D 643 293.6
E 685 330
F 704 349.6
G 739 392.5
A 778 440.4
B 798 494.9
Cc 8l@ 522.7
D 834 588.7
E 854 658
F 864 699
G 881 782.2
A 897 880.7
B 911 989.9
Cc 917 1045
D 929 1177
E 939 1316
F 944 1398
G 953 1575

The above table contains the sound register values for four
octaves of notes. These values are used as the second
parameter of the SOUND command (see Section 2.4.44). To playthe first note in the table, use 7 as the second number in
the SOUND command, i.e. SOUND 1,7,30. Use VOL 8 first to turn
on sound.
The following formula allows you to calculate the sound
register values for frequencies other than those in thetable:
SOUND REGISTER VALUE = 1024-(111860.781/FREQUENCY)

Both the table of sound register values and the above formula
are for NTSC computers. This is the television standard used
throughout the United States and Canada. If you are in a
country where PAL is the television standard, use the
following formula to calculate new sound register values:
SOUND REGISTER VALUE = 1024-(111840.45/FREQUENCY)

Appendix F

These error messages are printed by BASIC. You can
these messages by using the ERRS()

ERROR#

1

10

11

Error Messages

APPENDIX F

ERROR MESSAGES

ERROR NAME

TOO MANY FILES

FILE OPEN

FILE NOT OPEN

FILE NOT FOUND

DEVICE NOT PRESENT

NOT INPUT FILE

NOT OUTPUT FILE

MISSING FILE NAME

ILLEGAL DEVICE NUMBER

NEXT WITHOUT FOR

SYNTAX

PRINT
function.

There is a limit of 10 files
OPEN at one time

Attempt made to OPEN a file
using the number of an
already OPEN file
The file number specified in
an I/0 statement must be
OPENed before use
Either no file with that
name exists (disk), or an
end-of-tape marker was read
(tape)
Required 1/0 device not
available
Attempt made to GET or INPUT
data from a file that was
specified as output only

Attempt made to send data to
a file that was specified as
input only
An OPEN, LOAD, or SAVE to
disk drive generally
requires a file name

Attempt made to use a device
improperly (SAVE to the
screen, etc.)
Either loops are nested
incorrectly, or the variable
in the NEXT statement does
not correspond with the one
in the FOR statement
Statement is unrecognizable
by BASIC. This could be
because of missing or extra
parentheses, misspelled
keywords, etc.

Appendix F

12

13

14

15

16

17

18

19

20

21

22

23

24

RETURN WITHOUT GOSUB

OUT OF DATA

ILLEGAL QUANTITY

OVERFLOW

OUT OF MEMORY

UNDEF 'D STATEMENT

BAD SUBSCRIPT

REDIM'D ARRAY

DIVISION BY ZERO

ILLEGAL DIRECT

TYPE MISMATCH

STRING TOO LONG

FILE DATA

Error Messages

RETURN statement encountered
when no GOSUB was active
READ statement encountered
with insufficient data in
the program
A number used as the
argument of a function or
statement is outside the
allowed range
The result of a computationis larger than the largestnumber allowed
(1.701411833E+38)

Either there is no more room
for the program and programvariables, or there are too
many DO, FOR, or GOSUB
statements in effect

A line number referenced
does not exist in the
program
The program tried to
reference an element of an
array out of the rangespecified by the DIM
statement
An array can only be
DIMensioned once. If an
array is referenced before
that array is DIM'd, an
automatic DIM (to 14) is
performed
Division by zero is not
allowed
INPUT or GET statements are
only allowed within a
program :

This occurs when a number is
used in place of a string orvice-versa
A string can contain up to
255 characters
Bad data read from a tapefile

Appendix F

25

26

27

28

29

30

31

32

33

34

35

36

FORMULA TOO COMPLEX

CAN'T CONTINUE

UNDEF 'D FUNCTION

VERIFY

LOAD

BREAK

CAN'T RESUME

LOOP NOT FOUND

LOOP WITHOUT DO

DIRECT MODE ONLY

NO GRAPHICS AREA

BAD DISK

Error Messages

Simplify the expression by
splitting it up, or using
fewer parentheses
The CONT command does not
work if the program was not
RUN, there was an error, or
a line has been edited
A user defined function
referenced does not exist in
the program
The program on tape or disk
does not match the programin memory

There was a problem loading.
Try again
The <STOP> key was pressed
to halt program execution
RESUME ‘statement encountered
with TRAP statement in
effect
The program has encountered
a DO statement and cannot
find the corresponding LOOP

LOOP statement encountered
without a DO statement
active
This command is allowed only
in direct mode, not from a
program
A graphics command (DRAW,
BOX, etc.) encountered
before the GRAPHIC command
was executed
An attempt failed to HEADER
a diskette, either because
no ID was specified, or
because the diskette is bad

Appendix F Error Messages

DESCRIPTION OF DOS ERROR MESSAGES

These error messages are returned
reserved variables. through the DS and DS$

NOTE: Error message numbers less than 20 should be ignored
with the exception of @1, which gives information about the
number of files scratched with the SCRATCH command.

20 READ ERROR The disk controller is unable to

21

22

23

24

25

(block header not
found)

READ ERROR
(no sync character)

READ ERROR
(data block not
present)

READ ERROR
(checksum error in
data block)

READ ERROR
(byte decoding
error)

WRITE ERROR
(write-verify error)

locate the header of the
requested data block. Caused by
an illegal sector number, or ifthe header has been destroyed.
The disk controller is unable to
detect a sync mark on the desired
track. Caused by misalignment of
the read/write head, if no
diskette is present, or an
unformatted or improperly sealed
diskette. Can also indicate a
hardware failure.
The disk controller has been
requested to read or verify a
data block that was not properlywritten. This error message
occurs in conjunction with the
BLOCK commands and indicates an
illegal track and/or sector
request.
This message indicates an error
in one or more of the data bytes.
The data has been read into the
DOS memory, but the checksum over
the data is wrong. This message
may also indicate grounding
problems.
The data or header has been read
into the DOS memory, but a hard-
ware error has occurred due to an
invalid bit pattern in the data
byte. This message may also
indicate grounding problems.
This message is generated when
the controller detects a mismatch
between the written data and the
data in the DOS memory.

Appendix F

26

27

28

29

30

31

32

33

WRITE PROTECT ON

READ ERROR
(checksum error in
header)

WRITE ERROR
(long data block)

DISK ID MISMATCH

SYNTAX ERROR
(general syntax)

SYNTAX ERROR
(invalid command)

SYNTAX ERROR
(invalid command)

SYNTAX ERROR
(invalid file name)

Error Messages

This message is generated when
the controller is requested to
write a data block while the
write protect switch is
depressed. Typically, this is
caused by using a diskette with a
write protect tab over the notch.
The controller has detected an
error in the header of the
requested data block. The block
has not been read into the DOS
memory. This message may alsoindicate grounding problems.
The controller attempts to detect
the sync mark of the next header
after writing a data block. If
the sync mark does not appearwithin a pre-determined time, the
error message is generated. The
error is caused by a bad diskette
format (the data extends into the
next block), or by hardware
failure.
This message is generated when
the controller is requested to
access a diskette which has not
been initialized. The message can
also occur if a diskette has a
bad header.
The DOS cannot interpret the
command sent to the command
channel. Typically, this is
caused by an illegal number of
file names or illegal patterns.
For example, two files names on
the left side of the COPY
command.

The DOS does not recognize the
command. The command must startin the first position.
The command sent is longer than
58 characters.
Pattern matching is used
incorrectly in the OPEN or SAVE
command.

Appendix F

34

39

50

51

52

69

61

62

63

SYNTAX ERROR
(no file given)

SYNTAX ERROR
(invalid command)

RECORD NOT PRESENT

OVERFLOW IN RECORD

FILE TOO LARGE

WRITE FILE OPEN

FILE NOT OPEN

FILE NOT FOUND

FILE EXISTS

Error Messages

The file name was left out of a
command or the DOS does not
recognize it as such. Typically,
a colon (:) has been left out of
the command.

This error may result if the
command sent to the command
channel, secondary address 15, is
not recognized by the DOS.

Result of disk reading past thelast record through INPUT#, or
GET# commands. This message also
occurs after positioning to a
record beyond the end of arelative file. If the intent is
to expand the file by adding the
new record with a PRINT# command,
the error message may be ignored.
INPUT or GET should not be
attempted after this error isdetected without first
repositioning.
PRINT# statement exceeds record
boundary. Information is
truncated. Since the carriagereturn which is sent as a record
terminator is counted in the
record size, this message occursif the total number of characters
in the record, including thefinal carriage return, exceeds
the defined size.
Record position within a relativefile indicates that disk overflow
will result.
This message is generated when an
attempt is made to OPEN an
unCLOSEed write file for reading.
This message is generated when an
attempt is made to access an
unOPENed file. Sometimes, a
message is not generated, the
request is simply ignored.
The requested file does not exist
on the specified drive.
The file name of the file being
created already exists on the
diskette.

Appendix F

64

65

66

67

70

71

72

FILE TYPE MISMATCH

NO BLOCK

ILLEGAL TRACK AND
SECTOR

ILLEGAL SYSTEM
T OR §

NO CHANNEL
(available)

DIRECTORY ERROR

DISK FULL

Error Messages

The file type does not match the
file type in the directory entryfor the requested file.
This message occurs in conjunc-
tion with the B-A command. Itindicates that the block has
already been allocated. The
parameters indicate the track and
sector available with the next
highest number. If the parameters
are zero (0), then all blocks
higher in number are in use.
The DOS has attempted to access
a track or block which does notexist in the format being used.
This may indicate a problem
reading the pointer to the next
block.
This special error messageindicates an illegal systemtrack or sector.
The requested channel is not
available, or all channels are in
use. A maximum of five sequentialfiles may be opened at one time
to the DOS. Direct access
channels may have six openedfiles.
The BAM does not match theinternal count. There is a
problem in the BAM allocation orthe BAM has been overwritten in
DOS memory. To correct this
problem, reinitialize the
diskette to restore the BAM in
memory. Some active file may be
terminated by this correctiveaction. NOTE: BAM is the Block
Availability Map.

Either the blocks on the diskette
have been used up, or the
directory is at its entry limit.
DISK FULL is sent when two blocks
are available on the 1541 to
allow the current file to be
closed.

3

Appendix F

73

74

DOS MISMATCH (73,
CBM DOS V2.6 1541)

DRIVE NOT READY

Error Messages

DOS 1 and 2 are read, but notwrite compatible. Disks may be
read with either DOS, but a disk
formatted on one version cannot
be written to with the other
version because the format isdifferent. This error is
displayed whenever an attempt is
made to write to a disk which has
been formatted in a non-
compatible format. This message
may also appear after power up.
An attempt has been made to
access the floppy disk drive
without a diskette present.

Appendix G Cl6 and PLUS/4 Schematic Diagrams

APPENDIX G

Cl6é AND PLUS/4 SCHAMATIC DIAGRAMS

