C1le and PLUS/4

PROGRAMMER"' s

| GUIDE

Copyright (C) 1985 COMMODORE BUSINESS MACHINES (U.K.) LTD.

Table of Contents
TABLE OF CONTENTS

SECTION ONE - INTRODUCTION

1l«l IO troduCt o s wie ¢ i ¢ ® 805 808 506 sse 056 8 8 @ 66 v &
1.2 What is Included:css snes oo eis oo s sssiss
SECTION TWO - PROGRAMMING BASIC

IntroductioNeeeeececececccosccsccsancaes
.Command and Statement Format.icececescecaes
BASIC ComMaANASc: ss s s e e o oie oie wis s s 6 o 8 918 o
AUTO G s 5.6 a0 06 576 360 6 00 508 5.6 9% 66,006 9.6 5 6% 58 86 o
BACKUP :eeoooooooocccacssosscosccsscsscsscscnsscs
COLLECT o o6 5.6 s wre 0 0 0 o8 696 o8 wia @6 @7 ¢ 87 6 8; $.8; 66 &

CONT.......o.oo-o.oo..o.ooocooo...coocc

COPY..Q...o...o.oo‘u...ovooo-ooc..o'.oo

DELETE.........O.l..ll.‘.......‘...‘...
DIRECTORY.Q..oo....l...ooo..o.oo....o..

DLOAD.O..........Ooocl....ooo..n..ooooc

. L] e o ® e o

DSAVE. ® © 0 0 0 0 0 0 00 0 00 0000000 00000000000 00
HEADER-. ©® 0 0000000 000000000 0000080000000
HELP....O ® © 0 06000 0 00000 000000000000 000000

KEY.....Q..........o..o.ooooo....--....

LIST.......-......--...Q.o.ooo.octc.oc.
LOAD.....no.o-..oo-.c.noo..o.o-c-.--..c

NEW-.-...-....-.-...-c.c-oco...oo.-....

RENAME..-.--......oooooocoo.on.o'tno-..
RENUMBER..OO.......I.....O.......OO.‘..

RUN.....-.........'oo.oo-.ooo.-.toooo-.

NNHFHEHFEFHRHERFEHEREEHEWOONOOU S WN -
HFRQRWOUONOAULEWNHS

B b DB DR R RE R PRRWLWLLWWWWWWWWWWWWLWWWLWWLWWWWWND -

SAVE..'....Ql..II..................O...

SCRATCH‘ ® © 060 00 0 0060 00 006000000000 000000000
VERIFY. ® © © 00 0 0 0000000 9 000" 000000 0OC SISO SO
BASIC Statements. ®© 0 0606060606000 080000000000

Box..oooo..o.oo.00...0.0.........---...

CHAR:cooosscessesscssccsssssssssccccsces
CIRCLE:cceeecesssccsccsscsscsscssssscscccscccs
CLOSE:ceecesecsscsasscssscssscscscsscssscacss
CLRucecoecocccsoccscsscscsscccssccsaccscscocsnsse
CMDevesoesecsacsscccsscsccscscsssscscscssssss
COLOR:ceeecescccccccssscssccssscccsosocsos
DATA.cceeeseccscscecsoscsssssssscscccccsnsns
DEF FNecoeeooesoseosescscscssssosscscsscsncsns
DIM.cceecsosoccscsooscscscsscscsccssssccsccs
DO (LOOP) WHILE (UNTIL EXIT) eeeesccccsos
DRAW. ceceecooccscccsosccscscsscsccscccsccscs
ENDoeceeooecsoosccoscccscscsccoscccccscscsscsscscs
FOR ¢¢¢ TO see STEPccccceccccccoccscnsnse
GET:eeeeoccscscccscscoscescsasscsccssccccccsns
GETKEY . ¢ o cav00niessacsesosossasecsssnsssi
GET#cocsevcscesssessesssscasccsnssssscsos

GOSUB..-.OOQOOoo..‘o.oooooo.o.oo.'oo‘oo

GOTO or GO To. ® 6 ® 00 0000000000000 000000 e
GRAPHIC. © ® 0 0 © 6 0000 0600 000008000 0000000
GRAPHIC CLR. ® ® © 00000 000000000 000000 O Oee

NNONNNDNONNNDNNNNNNODNNNNNNNNONNDNONNONDNODNNDNNDNNDNNNDNNNNODNDNNODNODNDNODNDNDNDNDNDNDND

NNHHEHEEHERHERFRHHFEWOONOU S WN

HFRQROVOJOWTUV & WNHSR

NNNNONNNDNDNNONNNODNDNODNNDNNNONDNNDNDNDNODNODNNDNODNNNNNNDNDNNDNONNDNNDNDNDNDNDNDNDNDNDNDN

e

VWCoOOoOdIJdJoOOUTUIdEe b WWWHRF

Table of Contents

IE gae THEN “sws BLSEBwswva o o6 s o6 @ 00 0 o
INPUT s s sid 56 5 o 56 i 90 s 0 cecesee cecsccne
INPUTH . o6 o0 ace wis w se g oo 78 05 8 8 crescccsssnne
LET e sowompmuumomenmsomom go s em s s ¥ssess
LOCATE v s v oiw o0 %6 5% 5 058 578 508 5.8 0 6% 959 w06 % 6 i a8
MONTITOR: s o wid 55 % aia o cesecs cececccceccn

NExT.-..ooo.....-o!nb.o.-.ooc.-.oolo.o.

ON'sw wn w0 w8 0 w0 w0 w6 @0 8 8 08 906 W6 B4 5 678 909 W06 % 8.6 §
OPEN a:a w:a 5 8 @ 95 908 508 % 6 9 5 @ 87 404 410 % .6 od 008 B 8% »
PRINTG 5.6 %4 6 656 66 2:6 020 o 00 o0 w00 0 10 050w wig 100 0 oo
PORE o 0 s:0 00e 0 00 o0 wie 9500 83 00 90 98 0 8 8 070 98 058 81 5

PRINT.......-Qvoolooooooooo.to.o.'o...o

PRINT#Q.....o..l.uo.o.ooo ®e o0 0000
PRINT USING.'....ooooo-.o.c.oooo.co..t.

PUDEF-.............O..oo..oo..o.cc.oo.t
READ.................-......l..........

REM...Q....Q..--0‘.00..0..0......00.-.-

RESTORE....IQo.no....0..0...0.0..0...00
RESUME0.0.......Q............O..l..‘.l'

RETURN:ceocossocccsecccscsssccscvsossscnsnee
SCALE:ccccccccccccccscscsccscccsossosccscces
SCNCLRsssssuwswsnsssswsimen oo oowanoseses
SOUNDcseeccesossosssssssnscsossssscssccnnsnae
SSHAPE/GSHAPE . ¢ o0 00 655 0 6105 sie 59 70w o0 sia o0
STOP . s owsmemmomamom o we o smomssnssss on s
SYSeeececccecsccoeccccsccssssccsccccsssscs
TRAPc.cooecccocccccssssccscssccscscncccsoccs
TRONI..C....O....'.‘.I.l......l...’.l.‘
TROFFcccccccccccecssssscscccccnsscsscnscs

VOL..O'..Q.'..OQQ.Q...C.............C'.

NUTUTLE B Db e WWWWWWWWWWARMNNDNDMNDNDNDN
NHEFQOUWONMTMNMEWNHFHFROVUONOOATUERWNHQOUONOAWMEWN

WAIT.Q.........................OQ.Q....

Additional Graphic Statement

INEOTMALTION w wn vvs v 3 65 o6 06 506 & 4 60 a0 16 o6 o8
FUNCTIONS.ceeeeeaccccecscssascscsccscsssscscse
Numeric FancElons ...« «m 5w on o m vm 5w ww 550 1w #8
ABS (X) (absolute value)ecececeececocccococscs
ASC (XS) o wom vim e wis v o0 608 ave a6 6 @ 40 e 0.6 @ 8.8
ATN (X) (arctangent) .cecceeee oii6 @ 0ie eie aue » e
COS(X) (cOSiNe) ceecececcecccccccns I
DEC (hexadecimal-string).cecececceecccceces
EBXPi(X)is svs wis o o o5 w06 5.6 5 600 906 906 58 & 608 66 6 W o8
ENXX (X) 56 6w e o0 i 86 o o9 506 906 & 8 16 58 &0 5.6 @ o6
INSTR s 56 o o4 556 518 %06 B85 o6 4% 546 @ 8 o ore ous o0e cee
INT(X) (integer) .ccccececses o ioiie 0! e S iwkin 9; @i
JOY (1) o mie wow o0 oo w8 076 i 070 w8 #50 @ie 8} &8 816 916 %-8 0
LOG(X) {(logarithm) e es ee e ess i o oe e
PEEK (X) csneaieviasieacossonassioasesessen
RCLR (N) o0 50 0 sie ace w0 0 s o 070 00 078 wtia @ o8 ava wis si'e @
RDOT(N)........................r.......
RGBU(X) s vos o om o6 5.4 % o0 o769 916 % o0 978 96 9.6 6
RLUM(N) cececceeccccecocccccccsccssce o oo oo ®
RND (X) (random NUMDEr) ccececcccccoccccses
SGN(X) (S319N) 6w mwe oswew o i nis 5as ok 68 663
SINUX) (S1NE) w svs sis 5.6 6.6 66 ois 926 06 & % a6 56 &
SQR(X) (square root).ecececececcscecccccecacsse
TAN(X) (tangent) ceceececececcceccccccccce

USR(X)..ooo--oooo-ooc--oo-.oooooooooooo

NN NPODNONDNDNDNODNDNDNODNNNDNDNDNDNDMDNDNNDNDNDNDNDNDNDNDNDN
LS LI S R Y ST Y A Y ST S S SOV S S O O SO SOV S

® o e o o o o o e o o e o o o & e o o p e e o e »

NRNRONRNRONNRONNONNRNNNNNONRNNNNNNDNNNN
L] L] L] L] L] L] L] L] L[] L] ® L] L] L] L] . L] . L] L] L] L] L] L]
ARG AN G GG G A G G G A A
L] . . L] L] [] L] L] L] L] L] L] . L[] L] L] L] . . L] L] . L]
N e e e e el el el el el el i e e e

. L[] L] L] L] L] L] L] L] . L] . L] L] . L] . . . L] . L]

NNNNHFEFHMFEFEMFEFHEHEFEHEFODONOOESWN -

NHHEFQUOUWOdOATUVMIEWINNDH®

ii

DNDNNNDNNNDNNONDNNNDNDNODNNDNNNNODNDNDNNDNNODNDNDNDNDNDNDNNDND

NNNMNNODNONDNDNNODNODNNDNDNDNONNDNNNDNNDNNDNDNDN

Table of Contents

.
N
w

WWWWWWNONRNDNDNDNDNDNDNF-

O NI IOV OO OO OO

.
. . L] L] . e e o

L]
O JOoOUL bW+

e o o o o
Ve WN -

. . L .

NRONRNRONNNONNNNNONRNMDNNONRNNNNNONNDNDNDRN
. . L] .
N
L] L]
[N

.

VAL [X9) o5 v wis 50 516 54 6 & 89 58 £ 878 056 ®5% 8% 9
SEring PUNCEIONSisswsmeniaawils via adms i v
CHRS(X) coevvocssnveonenssssoesesnsesesanaes
BRRO N s siw sin' nw mw w8 w5 0t 8 19 38 wo% 978 w8 608 % 8 8§56
HEXS (M) is v 5s vs w6 w5 6 6 5 6 65 w7w 038 956 56 % § 3 o
LEETS (X8 5% 5w o6 w6 50 500 % 6 & 6 6% 818 508 04 6 & 97958
LEN(XS) ceeeeeeceosccocccscssossccncscnas
MIDS (XS , N oK) v siw wis nrs 506 5 6 3 8 5 858 mie w6 08 05 8 0 o
RIGHTS (XS yX) s sie o/s s 56 06 & 69 678 608 76 508 .5 & b 36
STRE IR o & 5wial 5ok Sk ok e B & 16 5 000 @ B e 008 6 600
DEREE PUHCELIONS vou wis wrs w7 10 8 19w wew woe fow wn &

FRE(X)'Qcloo'c.ouo.oo-..oo.u-..o..olou00

POS(X)........--.......................

SPC(X)O..oooo.oo.no.o...o.oo'.coooo.o'o

TAB(X)C...o..o...u..t.o..ooc.-oc...oooo

R (BT o s 0l 5 w00 o s 5 W 05 @ 5 30 B8 B8 65 50 4 8
VARIABLES AND OPERATORS ccceoocecenococes
VariableS.iceeeeceeecceosoccsscccccconssosns
VARIABLE NAMES ¢ o0 o5 o0 o0 wis s as oie o7% oi's '8 86
RESERVED VARIABLE NAMES . e eceeocccccesces
BASIC OPERATORS i isssssnescossscesesess
BASIC Abbreviation and Reference Chart.

SECTION THREE - PROGRAMMING MACHINE CODE

wWwww
. o e
> w N -

e o o o o o o
N de W -

. e o e o o o o L]

H WO 000N WUIUI LU &b DD

=

o o
(S I S I]

°« o
N -

WWWWWWWLWWWLWWWWWLWWLWWwWwwwwww
* o o
wN -

wWwww
L] L] L[] L]

el
e
L] . .

W N

What is Machine Language?....cceececeeces
What does Machine Code Look Like?......

Simple Memory Map of the Cl6 and PLUS/4

The Registers Inside the 7501
MiCTODPTOCESSOL ve v s 54 56 & 56 o &8 W5 §le 5.5 & &
ACCUMULATORC.O'.................Ol.

THE
THE
THE
THE
THE
THE
THE

X INDEX
Y INDEX

REGISTER.0.0...oo-o...-.-oo
REGISTER.-....-.oc.o.oco..o

STATUS REGISTER.:eeccecccccacccncase
PROGRAM COUNTER: w:s v w6 5 o5 win e 6.4 5.0
STACK POINTER:cceeesccccccoccccccase
INPUT/OUTPUT PORT.. wre ws a6 3 s » piw oiw wis 5
Writing Machine Language ProgramS......
TEDMON COMMANDS ¢ sa o5 o 4o o 58 0.4 # 8.8 o 008 o0s
USIRG. PEDMON . o ¢ « oco s0m 0um 0o win wig wvs @ 8 @ w0 wisss wic
COMMAND DESCRIPTIONS o5 siw s wie 96 w16 o% 855 438
HEXADECIMAL NOTATION. s sis o0 a6 56 5ia 5 &% 958 66
ADDRESSING MODES..ceccescecesoscccccssas
ZERD PRGOE S 516 s s 566 6 0 50 s s was e wsce w ») o5
THE ‘STACK .« o:n o0 00 w00 5 00 wie wie v 058 siao 88w
INDEXING s oo vio 50 wie 9o wio 03 55 56 65 6 516 8068 § 5
INDIRECT INDEXED: s mamem s bt 5o a5 a6 bos ni s
INDEXED INDIRECT.eccccccccccccccccsansne
BRANCHES AND TESTING. oo oo v oo sis 50 o8 o6 516 @
SUBROUTINES casessscosoocsssssssssssssss
7501 MICROPROCESSOR INSTRUCTION SET -

ALPHABETIC SEQUENCE. . ceesecascccsescccscs
THE KERNALccocssssvssssssncsassccscccss
HOW TO USE THE KERNAL.:eeoeooocoeccaccccs
USER CALLABLE KERNAL ROUTINES.:ececccose
KERNAL ROUTINE DESCRIPTIONS.c.ccceccccces

iii

NN NDNDNODNDNDNNDMNDNDNDMNDNDNDMNDND NN

WWWWWLWWWLwWLwWwWwWwWwWwwwwwwwww

Wwwww

44
44
44
44
44
44
45
45
45
45
45
45
46
46
46
46
46
46
47
47
48
50

N

OB PRWWWWWW

Table of

3.11.4
312

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

Contents

ERROR CODES..---....--.-'coooooooooooo- 3-52
Cls AND PLUS/4 MEMORY MAP......:....... 3 - 53

A - SCREEN DISPLAY CODES

B - ASCII AND CHRS CODES

C - SCREEN AND COLOUR MEMORY MAPS

D - DERIVING MATHEMATICAL FUNCTIONS

E - MUSICAL NOTE TABLE

F - ERROR MESSAGES AND DOS ERROR MESSAGES

G - C1l6 AND PLUS/4 SCHEMATIC DIAGRAMS

iv

Section One Introduction

SECTION ONE

INTRODUCTION

1.1 Introduction

The Cl6 and PLUS/4 PROGRAMMER'S GUIDE has been developed as a
working tool and reference source for those who want to
maximize their use of the built-in capabilities of your C1l6
or PLUS/4. This manual contains the information you need for
your programs, it is designed so that everyone, from the
beginner to the professional experienced in 6502 machine
language, can find the information to develop his creative
programs. The Cl6 and PLUS/4 PROGRAMMER'S GUIDE also shows
you the capabilities, and limitations, of your C1l6 or PLUS/4.

This GUIDE is not designed to teach the BASIC programming
language or the 6502 machine language. If you do not already
have a working knowledge of BASIC and BASIC programming,
COMMODORE recommends that you study the Cl6 or PLUS/4 USER'S
GUIDE supplied with your computer. The USER'S GUIDE gives you
an easy-to-read introduction to the BASIC programming
language.

1.2 what is Included?

Section Two covers all aspects of programming in BASIC 3.5.
This "BASIC Encyclopaedia" gives Commodore BASIC 3.5 language
commands, statements and functions 1listed in alphabetical
order. Included in that section 1is a "quick 1list" which
contains all the words and their abbreviations.

The Cl6 or PLUS/4 computer has many powerful graphics
features. These are also covered in Section Two.

Section Three gives information about machine code
programming. :

The Appendices contain technical information. Their contents
are as follows:

Screen Display Codes

Appendix A

Appendix B ASCII and CHRS$ Codes

Appendix C Screen and Colour Memory Maps
Appendix D Deriving Mathematical Functions
Appendix E Musical Note Table

Appendix F Error Messages and DOS Error Messages
Appendix G Clé and PLUS/4 Schematic Diagrams

Section Two Programming Basic

SECTION TWO

PROGRAMMING BASIC

2.1 Introduction

This section provides formats, ‘brief explanations ‘and
examples of the BASIC 3.5 commands and statements.

Commands and statements are 1listed in separate sections.
Within each section, the commands and statements are 1listed
in alphabetical order. Commands are used mainly in direct
mode, while statements are most often used 1in programs. 1In
most cases, commands can be used as statements in a program
if they are prefixed by a line number. Many statements can be
used as commands by using them in direct mode, i.e., without
line numbers. If you are unsure where a term is located,
refer to the BASIC Abbreviation and Reference Chart (see
Section 2.8).

This chapter is organized as follows:

* COMMANDS: the commands used to work with programs, edit,
store, and erase them.

* STATEMENTS: the BASIC program statements used 1in numbered
lines of programs.

* FUNCTIONS: the string, numeric, and print functions.

* VARIABLES AND OPERATORS: the different types of variables,
legal variable names, and arithmetic and logical operators.

2.2 Command and Statement Format

For the sake of clarity, the commands and statements in this
section are presented in standard format conventions. In most
cases, there are several examples illustrating the command.
The following gives an example of the format conventions used
in the BASIC commands and statements in this manual:

EXAMPLE: LOAD "program name",D@,DS8

additional arguments
keywords argument (possibly optional)

The parts of the command or statement given in upper case
must be entered exactly as they appear in the format listing.
Other words, such as "program name", are printed 1in lower
case. When quote marks ("") appear, usually around a program
or file name, you include them in the command or statement,
as in the format example.

Section Two Programming Basic

KEYWORDS appear in upper case letters. YOU MUST ENTER THESE
WORDS EXACTLY AS THEY APPEAR. However, many keywords have
abbreviations (see the Reference Chart).

Keywords are part of the BASIC language that your computer
knows. They are the central part of a command or statement,
and tell the computer what kind of action you . want it to
take. These words cannot be used as variable names.

ARGUMENTS (also called parameters) appear in lower case
letters. Arguments are the parts of a command or statement
that you select; they complement keywords by providing
specific information about the command or statement. For
example, a keyword tells the computer to 1load a program,
while an argument tells the computer which specific program
to load and a second argument specifies which drive the
program disk is in. Arguments include filenames, variables,
line numbers, etc.

SQUARE BRACKETS [] show OPTIONAL arguments. Select any or
none of the arguments listed.

ANGLE BRACKETS <> indicate that you MUST choose one of the
arguments listed.

VERTICAL BAR | separates items in a list of arguments when
your choices are limited to those arguments listed. When
the vertical bar appears in a list which is enclosed in
SQUARE BRACKETS, your choices are limited to the items in
the list, but you still have the option not to use any
other arguments.

ELLIPSIS ..., a sequence of three dots, means that an
option or argument can be repeated.

QUOTATION MARKS " enclosing character strings, filenames,
and other expressions. When arguments are enclosed in
quotation marks in a format, yYou must include the quotation
"marks in your command or statement.

PARENTHESES () when arguments are enclosed in parentheses
in a format, you must include the parentheses in your
command or statement. Parentheses are also required when
they appear in a command or statement description.

VARIABLE refers to any valid BASIC variable name, such as
X, AS$, or T%.

EXPRESSION means any valid BASIC expression, such as A+B+2
or .5*(X+3)

Section Two Programming Basic
2.3 Basic Commands

2.3.1 AUTO
AUTO [line#]

Turns on the automatic line numbering feature. This eases the
job of entering programs by typing the line numbers for you.
As you enter each program line and press RETURN, the next
line number is printed on the screen, with the «cursor in
position to begin typing that 1line. The [line#] argument
refers to the increment between line numbers. AUTO with NO
ARGUMENT turns off auto line numbering, as does RUN. This
statement is executable only in direct mode.

EXAMPLES:
AUTO 10 automatically numbers lines in increments of ten
AUTO 50 automatically numbers lines in increments of fifty

AUTO turns OFF automatic line numbering

2.3.2 BACKUP
BACKUP Ddrive# TO Ddrive# [,ON Uunit#]
NOTE: This command can only be used with a dual disk drive.

This command copies all the files on a diskette to another
diskette on a dual drive system. You can copy onto a new
diskette without first using the HEADER command to format the
new diskette because the BACKUP command copies all the
information on the diskette, including the format. Always
BACKUP important diskettes in case the original 1is 1lost or
damaged.

Because the BACKUP command also HEADERS diskettes, it
destroys any information on the diskette onto which you are
copying information. So 1if you are backing up onto a
previously used diskette, make sure it contains no programs
you wish to keep. See also the COPY command.

EXAMPLES:

BACKUP D@ TO D1 Copies all files from the disk in
drive @ to the disk in drive 1

BACKUP D@ TO D1, ON U9 Copies all files from drive @ to
drive 1 in disk drive unit 9

Section Two

2.3.3 COLLECT

COLLECT ([Ddrive#][,ON Uunit#]
Use this command to free up
directory.

EXAMPLE:

COLLECT D@

2.3.4 CONT

CONT (Continue)

This command is used to re-start the execution of a
that has been stopped either by using the STOP
statement
program will resume execution where it left
not work if you have changed the program or
it, if the program stopped due to an error, or if you
an error before trying to re-start the

statement, or an END

space
closed files and delete references to these

Programming Basic

allocated to
files

improperly
from the

program

key, a STOP

within the program. The
off. CONT does

added 1lines to

caused

program. The error

message in this case is CAN'T CONTINUE ERROR. Even moving the

cursor to a program line and hitting RETURN without

changing

anything causes CONT to not work.

2.3.5 COPY

COPY [Ddrive#,] "source file" TO [Ddrive#,] "other file"

Uunit#]

COPYs a file on the disk in one drive (the
the disk in the other drive on a dual disk drive, or
same

a copy of a file on the
different file name.

EXAMPLES:

COPY D@, "NOON" TO D1,"NIGHT"

COPY D@,"STUFF" TO Dl1,"STUFF"

COPY D@ TO D1

COPY "CATS"™ TO "DOGS™"“

[,ON

source file) to

Creates

drive giving the copy a

Copies NOON from drive 0 to
drive 1, renaming it NIGHT

Copies STUFF from drive @
to drive 1

Copies all files from drive
@ to drive 1

Copies CATS to the same
drive giving it the name
DOGS

Section Two Programming Basic

2.3.6 DELETE
DELETE [first line#] [-last line#]

Deletes lines of BASIC text. This command can be executed
only in direct mode.

EXAMPLES:

DELETE 75 Deletes line 75
DELETE 10-50 Deletes lines 10 through 58 inclusive
DELETE -50 Deletes all lines from the beginning of

the program up to and including line 50

DELETE 75- Deletes all lines from 75 on to the end
of the program

2.3.7 DIRECTORY
DIRECTORY [Ddrive#][,Uunit#][,"filename"]

Displays a disk directory on the screen. Use <CTRL/S> to
pause the display and any other key to restart the display
after a pause. Use the <C=> key, the Commodore key, to slow
it down. The DIRECTORY command cannot be used to print a hard
copy. To do that you must LOAD the disk directory destroying
the program currently in memory.

EXAMPLES:

DIRECTORY List all files on the disk

DIRECTORY D1,U9,"WORK" Lists the file on disk drive unit
9 (8 is the default), drive 1,
named WORK

DIRECTORY "AB*" Lists all files starting with the
letters "AB", like ABOVE, ABOARD,
etc.

DIRECTORY D@,"FILE?.BAK" The ? is a wild-card that matches

any single character in that
position: FILEl1l.BAK, FILE2.BAK,
FILE3.BAK all match the string.

NOTE: To print out the DIRECTORY of drive @, unit 8, use the
following:

LOAD"SO",8

OPEN4,4:CMD4:LIST
PRINT#4:CLOSE4

2 -5

Section Two Programming Basic

2.3.8 DLOAD
DLOAD "filename" [,Ddrive#] [,Uunit#]
This command loads a program from disk into current memory.

Use LOAD to 1load programs from tape. You must supply a
program name.

EXAMPLE:

DLOAD "DTRUCK™" Searches the disk for the program "DTRUCK"
and LOADs it

DLOAD (AS) LOADs a program from disk whose name is
the variable AS. vou get an error if AS is
empty

The DLOAD command can be used within a BASIC program to find
and RUN another Program on disk. This is called chaining.
2.3.9 DSAVE

DSAVE "filename" [,Ddrive#] [,Uunit#]

This command stores a program on disk. Use SAVE to store
brograms on tape. You must supply a program name.

EXAMPLES:
DSAVE "ppay" SAVEs the program "DDaAY" to disk
DSAVE (AS) SAVEs to disk the program whose name

is in the variable AS

DSAVE "PROG3",D@, U9 SAVEs the program "PROG3" to the disk
drive with a unit number of 9

Section Two Programming Basic

2.3.19 HEADER
HEADER "diskname" ,Ddrive#[,Iid#][,ON Uunit#]

Before you can use a new disk for the first time you must
format it with the HEADER command. If you want to erase an
. entire disk for re-use, you can use the HEADER command. This
command divides the disk into sections called blocks, and
creates on the disk a table of contents, called a directory
or catalog. The diskname can be any name up to 16 characters
long. The id number is any 2 characters. Give each disk a
unique id number.

WARNING: Be careful when you HEADER a disk because the HEADER
command erases all data previously stored on that disk.

Giving no id number allows you to perform a quick header. The
old id number is used. You can only use the quick header
method if the disk was previously formatted, since the quick
header only clears out the directory rather than formatting
the disk.

EXAMPLES:

HEADER "“MYDISK",123,D@

HEADER "THEBALL",I145,D1,U8

2.3.11 HELP
HELP

The HELP command is used when you get an error in your
program. When you type HELP, the 1line where the error
occurred is listed, with the portion containing the error
displayed in flashing characters.

Section Two Programming Basic

2.,3.12 REY
KEY [key#,string]

There are eight (8) function keys available to the user on
the Commodore 16 and Plus/4 computers, four unshifted and
four shifted. You can define what each key does when pressed.
KEY without any parameter specified gives a listing
displaying all the current KEY assignments. The data you
assign to a key is typed out when that function key is
pressed. The maximum length for all the definitions together
is 128 characters. Entire commands or a series of commands
can be assigned to a key. For example:

KEY 7,"GRAPHIC@"+CHRS$ (13)+"LIST"+CHRS (13)

causes the computer to select text mode and list your program
whenever the "F7" key is depressed, in direct mode. The
CHRS$ (13) is the ASCII character for RETURN. Use CHRS (34) to
incorporate a double quote into a KEY string.

The keys may be redefined in a program. For example:
19 KEY 2,"TESTING"+CHR$(34):KEY3,“NO"
10 FORI=1TO8:KEYI,CHRS (I+132) :NEXT

To restore all function keys to their default values, reset
your computer by turning it off and on, or press the RESET
button.

2.3.13 LIST
LIST [first line][-[last line]]

The LIST command lets you look at lines of a BASIC program
that have been typed or LOADed into memory. When LIST is used
alone (without any numbers following it), you get a complete
LISTing of the program on your screen. This may be slowed
down by pressing the <C=> key, paused by <CTRL-S> and
unpaused by pressing any other key, or STOPped by pressing
the <RUN/STOP> key. If you follow the word LIST with a 1line
number, only that line is displayed. If you type LIST with
two numbers separated by a dash, all the lines from the first
to the second number are shown. If you type LIST followed by
a number and just a dash, it shows all the 1lines from that
number to the end of the program. And if you type LIST, a
dash, and then a number, you get all the 1lines from the
beginning of the program to that 1line number. Using these
variations, you can examine any portion of a program, or
bring lines onto the screen for modification.

Section Two Programming Basic

EXAMPLES:

LIST Shows entire program

LIST 100- Shows from line 100 until the end of the
program

LIST 10 Shows only line 10

LIST -100 Shows lines from the beginning until line 100

LIST 10-200 Shows lines from 10 to 200, inclusive

2.3.14 LOAD
LOAD ["filename" [,device#][,relocate flag]]

Use this command when you want to use a program stored on
cassette tape or on disk. If you just type LOAD and press the
<RETURN> key. Press PLAY on your cassette unit, and the
computer starts looking for a program on the tape. When it
finds one, the message FOUND "filename" is displayed on the
screen. Press the <C=> key to LOAD that program. If you do
not press that key, after a brief interval the computer
resumes searching on the tape. Once the program 1is LOADed,
you can RUN, LIST, or change it.

You can also type the word LOAD followed by a program name,
which is either a name in quotes or a string variable. The
name may be followed by a comma (outside of the quotes) and a
number, or numeric variable, which 1is the number of the
device where the program is stored, i.e., disk or tape. 1If
there is no number given, your computer assumes device number
l, which is the cassette unit.

The other device commonly used with the LOAD command 1is the
disk drive, which is device number 8.

EXAMPLES:
LOAD Reads in the next program on tape

LOAD "BASES" Searches tape for a program called
BASES, and LOADS it if it is found

LOAD AS Looks for a program whose name is in the
variable called AS

LOAD "BRIDGES",S8 Looks for the program called BRIDGES on
the disk drive, and LOADS it if found

The LOAD command can be used within a BASIC program to find
and RUN the next program on a tape. This is called chaining.

Section Two Programming Basic

The RELOCATE FLAG determines where in memory a program is
loaded. A relocate flag of 0 tells the computer to LOAD the
program at the start of the BASIC program area, and a flag of
1 tells it to LOAD from the point where it was SAVEd. The
default value of the relocate flag is @. This is generally
used only when LOADing machine language programs.

2.3.15 NEW

NEW

This command erases the program in memory and clears any
variables that have been used. Be careful when you use this
command. Unless the program was stored on disk or cassette,
it is lost until you type it in again.

The NEW command can also be used as a statement in a BASIC
program. When this command is executed, the program is erased
and execution stops.

2.3.16 RENAME

RENAME [Ddrive#,]"old name"TO"new name" [,Uunit#]

Used to rename a file on a diskette.

EXAMPLE:

RENAME D@,"ASSET" TO "LIABILITY" Changes the name of the
file from ASSET to
LIABILITY

2.3.17 RENUMBER

RENUMBER [new starting line#[,increment[,o01d starting

line#]]]

The new starting line is the number of the first line in the
program after renumbering. It defaults to 14.

The increment is the spacing between line numbers, i.e., 14,
20, 30 etc. It also defaults to 14.

The old starting line number 1is the 1line number in the
program where renumbering is to begin. This allows you to
renumber a portion of your program. It defaults to the first
line of your program.

This command can only be executed from direct mode.

2 - 10

Section Two Programming Basic

EXAMPLES:

RENUMBER 20,20,1 Renumbers the program, starting at
line 1. Line 1 becomes line 20, and
other lines are numbered in increments
of 20

RENUMBER, ,65 Renumbers in increments of 10, starting
at line 65. Line 65 becomes line 140,
unless there are already lines numbered
19-64, in which case the command is not
carried out

2.3.18 RUN
RUN [line#]

Once a program has been typed into memory or LOADed, the RUN
command causes it to be executed. This command clears all
variables before starting program execution. If there 1is no
number following this command, the computer starts at the
lowest numbered program line. If there is a number following
the RUN command, execution starts at that line. RUN may be
used within a program.

EXAMPLES:
RUN Starts program working from lowest line number

RUN 100 Starts program from line 100

2.3.19 SAVE
SAVE ["filename"[,device#[,EOT flag]]]

This command stores on cassette tape or disk a program
currently in the computer's memory. If you just type the word
SAVE and press <RETURN>, your computer attempts to store the
program on the cassette. It has no way of checking if there
is already a program on the tape in that 1location, so be
careful with your tapes. If you type the SAVE command
followed by a name in quotes or a string variable name, the
computer gives the program that name when it SAVEs it. 1In
this way the program is more easily located and retrieved 1in
the future. '

2 - 11

Section Two Programming Basic

If you want to specify a device number for the SAVE, place a
comma after the quotes following the name. Then type a number
or numeric variable. Device number 1 is the cassette unit,
and number 8 is the disk. After the number on a tape command,
there can be a comma and a second number, which is between g
and 3. If this number is 2, the computer puts an END-OF-TAPE
marker, i.e. EOT flag, after your program. If you are trying
to LOAD a program and the computer finds one of these markers
rather than the required program, you get a FILE NOT FOUND
ERROR.

EXAMPLES:

SAVE Stores program to tape without a name
SAVE "MONEY" Stores on tape with the name MONEY

SAVE AS Stores on tape with name in variable AS

SAVE "YOURSELF",S8 Stores on disk with name YOURSELF

SAVE "GAME",1,2 Stores on tape with name GAME and
pPlaces an END-OF-TAPE marker after the
program

2.3.20 SCRATCH
SCRATCH "filename"[,Ddrive#] [,Uunit#]

Deletes a file from the disk directory. As a precaution, you
are asked "Are you sure?" before the operation is carried
out. Type a Y to perform the SCRATCH or type N to cancel the
operation. Use this command to erase unwanted files in order
to create more space on the disk.

EXAMPLE:

SCRATCH "MY BACK",D@ Erases the file MY BACK from the disk
in drive @

2.3.21 VERIFY
VERIFY "filename"[,device#][,relocate flag]

This command checks a program on tape or disk against the one
in memory. Use VERIFY after saving a program to ensure that
nothing went wrong with the SAVE. This command can also be
used to position a tape so that your computer resumes writing
following the end of the last program on the tape. To do
this, tell the computer to VERIFY the name of the last
program on the tape. It does so, and tells you that the
programs do not match. The tape 1is then positioned for
storing the next program erasing an old one.

2 - 12

Section Two Programming Basic

VERIFY with no arguments checks the next program on tape,
regardless of its name, against the program currently in
memory. VERIFY followed by a program name, in quotes, or a
string variable, searches the tape for that program and then
checks it against the one in memory. VERIFY followed by a
name, a comma, and a number checks the program on that device
number, 1 for tape, 8 for disk. The relocate flag is the same
as in the LOAD command.

EXAMPLE:

VERIFY Checks the next program on the tape

VERIFY "REALITY" Sea;ches for REALITY on tape, checks
against memory

VERIFY "ME",8,1 Searches for ME on disk, then checks

2.4 Basic Statements

2.4.1 BOX
BOX [colour source#],al,bl,[a2,b2][,angle][,paint]

colour source Colour source (@-3), default is 1
(foreground colour)

al, bl Corner coordinate (scaled)

a2, b2 Corner opposite al, bl (scaled), default is
the PC

angle Rotation in clockwise degrees, default is 0
degrees

paint Paint shape with colour (@=o0ff, l=on),

default is @

This command allows you to draw a rectangle of any size
anywhere on the screen. To get the default value, include a
comma without entering a value. Rotation 1is based on the
centre of the rectangle. The Pixel Cursor (PC) is left at a2,
b2 after the BOX statement is executed.

EXAMPLES:

BOX 1,10,10,60,60 Draws the outline of a rectangle

B0OX,190,10,60,60,45,1 Draws a filled, rotated box, i.e. a
diamond

BOX,30,90,,45,1 Draws a filled, rotated polygon

2 - 13

Section Two Programming Basic

2.4.2 CHAR
CHAR [colour source#] ,x,y,"string"[,reverse flag]

colour source Colour source (@-3)

X Character column (8-39)

Yy Character row (0-24)

"string" Text to be printed

reverse Reverse field flag (@=off, l=o0n)

Text, i.e. alphanumeric strings, can be displayed on any
screen at a given location using the CHAR command. Character
data is read from the character ROM area. You supply the x
and y coordinates of the starting position and the text
string you wish to display. Colour source and reverse imaging
are optional.

The string is continued on the next line if it prints past
the right hand edge of the screen. When used in TEXT mode,
the string printed by the CHAR command works in the same way
that a PRINT string works, including reverse field, cursors,
flash on/off, etc. These control functions inside the string
do not work when the CHAR command is used to display text in
a GRAPHIC mode.

2.4.3 CIRCLE
CIRCLE ICSJ.[a,b],xr[,[yr][,[sa][,[ea][.[angle][,inCJ]]]]

Ccs Colour source (@-3)

a,b Centre coordinate (scaled), defaults to the Pixel
Cursor (PC)

Xr X radius (scaled)

yr Y radius, default is xr

sa Starting arc angle, default g

ea Ending arc angle, default 360

angle Rotation in clockwise degrees, default is @ degrees
inc Degrees between segments, default is 2 degrees

2 - 14

Section Two Programming Basic

The CIRCLE command can be used to draw a circle, ellipse,
arc, triangle or an octagon. The final coordinate is on the
circumference of the circle at the ending arc angle. Any
rotation is about the centre. Arcs are drawn clockwise from
the starting angle to the ending angle. The segment increment
controls the coarseness of the shape, with lower values for
inc creating rounder shapes.

EXAMPLES:

CIRCLE, 160,100,65,10 Draws an ellipse
CIRCLE,160,100,65,50 Draws an oval
CIRCLE,60,40,20,18,,,,45 Draws an octagon
CIRCLE, 260,406,20,,,,.,90 Draws a diamond

CIRCLE,60,140,20,18,,,,120 Draws a triangle

2.4.4 CLOSE
CLOSE file#

This command completes and <closes any previously OPENned
files. The number following the CLOSE command 1is the file
number to be closed.

EXAMPLE:

CLOSE 2 Logital file 2 is closed

2.4.5 CLR

This command erases any variables in memory, but leaves the
program itself intact. This command is automatically executed
when a RUN or NEW command 1is given, or any editing is
performed.

2.4.6 CMD
CMD file#[,write list]

CMD sends the output which usually goes to the screen, e.g.
PRINT statements, LISTs, to another device. Note that this
does not include POKEs onto the screen. The other device can
be a printer, or a data file on tape or disk. This device or
file must be OPENed first. The CMD command must be followed
by a number or numeric variable referring to the file.

2 = 15

Section Two Programming Basic

EXAMPLE:

OPEN 1,4 OPENs device #4, i.e. the printer

CMD 1 All normal output now goes to the printer

LIST The LISTing goes to the printer, not the screen.
This includes the word READY.

PRINT#1 Set output back to the screen

CLOSE1l Close the file

2.4.7 COLOR
COLOR source#,colour#[,luminance#]

Assigns a colour to one of the 5 colour sources:

Number Source

"] background

L foreground

2 multicolour 1
3 multicolour 2
4 border

The colours you can use are in the range 1-16. These are from
your keyboard colour keys, i.e. 1 is black, 2 is white, 9 is
orange, etc. As an option, you can include the luminance
level 0-7, with @ being lowest and 7 being highest. Luminance
defaults to 7. This lets you select from eight levels of
brightness for any colour except black.

2.4.8 DATA
DATA list of constants separated by commas

This statement is followed by a list of items to be used by
READ statements. The items may be numbers or words, and are
separated by commas. Words need not be enclosed in quotation
marks, unless they contain a SPACE, colon, and/or comma. If
two commas have nothing between them, the value is READ as a
zero for a number, or an empty string depending on the type
of wvariable that you are READing data into. The DATA
statement must be part of a program, otherwise it is not
recognized. See also the RESTORE statement, which allows your
computer to reread data.

EXAMPLE:

DATA lGG,ZGB,FRED,"WILMA",,3,14,ABC123

2 - 16

Section Two Programming Basic

2.4.9 DEF FN
DEF FN name (variable)=expression

This command allows you to define a complex calculation as a
function. In the case of a long formula that is used several
times within a program, this command can save a lot of space.

The name you give the numeric function begins with the
letters FN, followed by any 1legal numeric variable name.
First define the function by using the DEF statement followed
by the name you have given the function. Following the name
is a set of parentheses () enclosing a numeric variable. 1In
the following example this is X. After the parentheses is an
equal sign, followed by the formula you wish to define. You
can "call" the formula, substituting any number for X, using
the format shown in line 20 of the example below:

EXAMPLE:
10 DEF FNA(X)=12*(34.75-X/.3)+X
20 PRINT FNA(7)

The number 7 is inserted each place X 1is 1located in the
formula given in the DEF statement.

NOTE: DEF FN can only be used with standard numeric
functions, not integer or string functions.

2.4.10 DIM
DIM variable(subscripts) [,variable (subscripts)]...

Before you can use an array of variables with more than 11
elements, that array must first be DIMensioned. The DIM
statement is followed by the name of the array, which may be
any legal variable name. After the variable name, enclosed in
parentheses, you put the number, or numeric variable, of
elements in each dimension. An array with more than one
dimension is called a matrix. You may wuse any number of
dimensions. Note that the whole list of variables you are
creating takes up space in memory, and it is easy to run out
of memory. To calculate the number of variables created with
each DIM statement, multiply the total number of elements in
each dimension of the array together, remembering that each
array starts with element 0.

NOTE: Integer, i.e. single-digit, arrays take up 2/5ths of
the space of floating point arrays.

2 - 17

Section Two Programming Basic

EXAMPLE:
19 DIM AS(40),B7(15),CC%(4,4,4)
41 Elements 16 Elements 125 Elements

You can DIMension more than one array with a DIM statement by
separating the arrays with commas. If a program attempts to
execute a DIM statement for any array more than once, a
re'DIMed array error message is displayed. It is good
programming practice to place DIM statements near the
beginning of a program.

2.4.11 DO (LOOP) WHILE (UNTIL EXIT)

DO[UNTIL boolean argument | WHILE boolean argument]
statements [EXIT]

LOOP [UNTIL boolean argument | WHILE boolean argument]

Performs the statements between the DO statement and the LOOP
statement. An example of a boolean argument is A=l or H>=57.
If no UNTIL or WHILE modifies either the DO or the LOOP
statement, execution of the 1nterven1ng statements continues
indefinitely. If an EXIT statement is encountered in the body
of a DO loop, execution is transferred to the first statement
following the LOOP statement. DO loops may be nested,
following the rules defined for FOR-NEXT loops (see Sections
2.4.14, and 2.4.28).

If the UNTIL parameter is used, the program continues looping
until the boolean argument is satlsfled i.e. becomes TRUE.
The WHILE parameter is basically the opposite of the UNTIL
parameter, i.e. the program continues looping as long as the
boolean argument is TRUE.

EXAMPLE:
DO UNTIL X=0 OR X=1
REM

LOOP
DO WHILE A$="":GET AS$:LOOP

2 - 18

Section Two Programming Basic

2.4.12 DRAW
DRAW [colour source#][,al,bl][,TO a2,b2,]1[...]

With this command you can draw individual dots, 1lines, and
shapes. You supply colour source (9-3), starting (al, bl) and
ending points (a2, b2).

EXAMPLES:

A dot: DRAW 1,100,590 No endpoint specified, defaults to
al,bl value for a2,b2 to create a
dot

Lines: DRAW ,10,10 TO 100,60
DRAW TO 25,30

A shape: DRAW ,10,10 TO 10,60 TO 106,60 TO 14,10

2.4.13 END
END

When a program encounters an END statement, it stops RUNning
immediately. You may use the CONT command to re-start the
program at the statement following the END statement (see
Section 2.3.4).

2,4,14 FOR ... TO ... STEP
FOR variable=start value TO end value [STEP increment])

This statement is used in conjunction with the NEXT statement
to set up a section of the program that repeats for a set
number of times. This is wuseful if you want to pause a
program, or perform an operation, e.g. printing, a certain
number of times. ’

The loop variable is added to or subtracted from during the
FOR/NEXT loop. The start value and the end value are the
beginning and ending counts for the loop variable.

The logic of the FOR statement is as follows. First, the loop
variable is set to the start value. When the program reaches
a line with the command NEXT, it adds the STEP increment to
the value of the loop variable. The default value of the STEP
increment is 1. The program then checks the loop variable to
see if it is higher than the end of the loop value. If it is
not higher, the next 1line executed is the statement
immediately following the FOR statement. If the loop variable
is larger than the end of the 1loop number, then the next
statement executed is the one following the NEXT statement. A
STEP value can be positive or negative. See also the NEXT
statement (see Section 2.4.28).

2 - 19

Section Two Programming Basic

EXAMPLE:

18 FOR L=1T020¢

20 PRINT L

30 NEXT L

40 PRINT "BLACKJACK! L="L

This program prints the numbers from one to twenty on the
screen, followed by the message BLACKJACK! L=21.

The end of the loop value may be followed by the word STEP
and another number or variable. 1In this case, the value
following the STEP is added to the loop variable each time.
This allows you to, for example, count backwards, or by
fractions.

You can set up loops inside one another, i.e. nested loops.
Note, you must ensure you nest loops so that the last loop to
start is the first one to end.

EXAMPLE OF NESTED LOOPS:
18 FOR L=1TO01l00

20 FOR A=5TOllSTEP2 This FOR ... NEXT loop is "nested"
inside the larger one
30 NEXT A

40 NEXT L

2.4.15 GET
GET variable list

The GET statement is a way to get data from the keyboard one
character at a time. When it is executed, the character typed
is received. If no character is typed, then a null, i.e.
empty, character is returned, and the program continues
without waiting for a key. The <RETURN> key is not pressed as
that key can be received with a GET.

The word GET is followed by a variable name, usually a string
variable. If a numeric variable were used and any key other
than a number was hit, the program would stop with an error
message. The GET statement may also be put into a 1loop,
checking for an empty result, which waits for a key to be
struck to continue. The GETKEY statement (see Section 2.4.16)
could also be used in this case. This command can only be
executed within a program.

2 - 20

Section Two Programming Basic

EXAMPLE:

10 GET AS<>"A"THEN1@

This line causes the program to wait for the "A" key to be
pressed before continuing.

2.4.16 GETKEY

GETKEY variable list

The GETKEY statement is very similar to the GET statement.
Unlike the GET statement, GETKEY waits for the user to type a
character on the keyboard.

This command can only be executed within a program.

EXAMPLE:

19 GETKEY AS

This line waits for a key to be struck. Typing any key will
continue the program.

2.4.17 GET#

GET#file number,variable list

Used with a previously OPENed device or file to input one
character at a time. Otherwise, it works 1like the GET
statement.

This command can only be executed within a program.

EXAMPLE:

GET#1,AS

2.4.18 GOSUB
GOSUB line#

This statement is similar to the GOTO statement, except that
the program jumps back to the statement immediately following
the GOSUB when a line with a RETURN statement is encountered.
The target of a GOSUB statement is called a subroutine. A
subroutine is useful if a particular routine 1is used at
several different places 1in the program. Instead of
duplicating the section of program, you can set it up as a
subroutine, and GOSUB to it from the different parts of the
program. See also the RETURN statement (see Section 2.4.41).

2 - 21

Section Two Programming Basic

EXAMPLE:

20 GOSUB 800 Means go to the subroutine beginning at line
: 800 and execute it

800 PRINT "HI THERE":RETURN

2.4.19 GOTO or GO TO

GOTO linet

When a GOTO statement is encountered, the program execution
jumps to the line number specified. When used in direct mode,
GOTO line# allows you to start execution of the program at
the given line number without clearing the variables.
EXAMPLE:

10 PRINT "REPETITION IS THE MOTHER OF LEARNING"

20 GOTO 1@

The GOTO in line 20 causes line 10 to be executed until the
<RUN/STOP> key is pressed.

2.4.20 GRAPHIC

GRAPHIC mode|[,clear option]

This statement puts your computer into one of the 5 graphic
modes :

Mode Description

normal text

high-resolution graphics
high-resolution graphics, split screen
multicolour graphics

multicolour graphics, split screen

> whhHHS

When executed, GRAPHIC 1-4 allocates a 10K bit-mapped area of
memory for graphics, and moves the BASIC text area below the
hi-res area. This area remains allocated even if you return
to TEXT mode (GRAPHIC @). If 1 1is given as the second
argument in the GRAPHIC statement, the screen is also
cleared.

EXAMPLES:

GRAPHIC 1,1 Selects hi-res graphic mode and clears the
screen

GRAPHIC 4,0 Selects multi-colour graphics with an area
for text, without clearing the screen

2 - 22

Section Two Programming Basic
2.4.21 GRAPHIC CLR
GRAPHIC CLR

This is a form of the GRAPHIC statement. This statement
clears the 10K of memory allocated to the graphic area, and
that memory space becomes available for BASIC once again.

2,4.22 IF ... THEN ... ELSE
IF expression THEN then-clause [:ELSE else-clause]

IF ... THEN allows you to analyse the BASIC expression
preceded by IF and take one of two possible courses of
action. If the expression is true, the statement following
THEN is executed. This statement may be any BASIC statement.
If the expression is false, the program goes directly to the
next line, unless an ELSE clause is present. The expression
being evaluated may be a variable or formula, in which case
it is considered true if non-zero, and false if zero. In most
cases, it is an expression involving relational operators,
i.e. =, <, >, <=, >=, <>, AND, OR, NOT.

The ELSE clause, if present, must be in the same line as the
IF-THEN clause. When an ELSE clause 1is present, it is
executed when the IF expression is FALSE.

EXAMPLE:

50 IF X>0 THEN PRINT"OK":ELSE END

Checks the value of X. If X 1is greater than @, the THEN
clause is executed, and the ELSE clause is not. If X 1is not

greater than @, the ELSE clause 1is executed and the THEN
clause is not.

2.4.23 INPUT
INPUT ["prompt string";]variable list

The INPUT statement allows the computer to ask for data and
place it 1into a variable or variables. When an INPUT
statement 1is encountered, the program stops, prints a
question mark, i.e. ?, on the screen, and waits for the user
to type the answer and press the <RETURN> key.

2 - 23

Section Two Programming Basic
The word INPUT is followed by a variable name or list of
variable names separated by commas. There may be a message
inside quotes before the list of variables to be input. If
this message (called a prompt) is present, there must be a
semicolon (;) after the closing quote of the prompt. If
several variables are to be INPUT, they should be separated
by commas when typed in. If not, the computer asks for the
-remaining values by printing two question marks (??). If you
press the <RETURN> key without INPUTing values, the INPUT
variables retain the values previously held for those
variables. This statement can only be executed within a
program.

EXAMPLE:

10 INPUT"WHAT'S YOUR NAME";AS

2¢ INPUT"AND YOUR FAVOURITE COLOUR";BS

30 INPUT"WHAT'S THE AIR SPEED OF A SWALLOW"; A

2.4.24 INPUT#

INPUT#file number,variable list

This works like INPUT, but takes the data from a previously
OPENed file or device. No prompt string 1is allowed. This
command can only be used in program mode.

EXAMPLE:

INPUT#2,AS,C,DS

2.4.25 LET

[LET] variable=expression

The word LET is hardly ever used in programs, since it is not
necessary, but the statement itself is the heart of all BASIC
programs. Whenever a variable is defined or given a value,
LET is always implied. The variable name which is to receive
the result of a calculation is on the left side of the equal
sign, and the number or a formula is on the right side.
EXAMPLE:

10 LET A=5

20 B=6

30 C=A*B+3

49 DS="HELLO"

LET is implied (but not necessary) in lines 20, 3¢ and 490.

2 - 24

Section Two Programming Basic

2.4.26 LOCATE
LOCATE x-coordinate, y-coordinate

The LOCATE command lets you put the pixel cursor (PC)
anywhere on the screen. The PC is the current location of the
starting point of the next drawing. Unlike the regular
cursor, you can't see the PC, but you can move it with the
LOCATE command. For example:

LOCATE 160,100

positions the PC in the centre of the high resolution screen.
You do not see anything until you use one the graphics
commands to draw something. You can find out where the PC is
at any time by wusing the RDOT(@) function to get the
X-coordinate and RDOT(l) to get the Y-coordinate. The colour
source of the dot at the PC can be found by PRINTing RDOT(2).

NOTE: In all drawing commands where a colour option is
available, you may select a value from @ to 3, corresponding
to the background, foreground, multicolour 1, or multicolour
2 as the colour source.

2.4.27 MONITOR
MONITOR

This command takes you out of BASIC into the built-in machine
language monitor program. The monitor 1lets you develop,
debug, and execute machine language programs more easily than
in BASIC. See the section on monitor commands for more
information. When in the monitor, typing an "X" and pressing
<RETURN> returns you to BASIC.

2.4.28 NEXT
NEXT [variable,...,variable]

The NEXT statement is used with the FOR statement. When the
computer encounters a NEXT statement, it goes back to the
corresponding FOR statement and checks the 1loop variable,
(see Section 2.4.14 for more detail). If the 1loop is
finished, execution proceeds with the statement after the
NEXT statement. The word NEXT may be followed by a variable
name, a list of variable names separated by commas, or no
variable names. If there are no names listed, the 1last 1loop
started is the one being completed. If the variables are
given, they are completed in order from left to right.

EXAMPLE:
18 FOR L=1 TO 1@:NEXT

20 FOR L=1 TO 1l@:NEXT L
30 FOR L=1 TO 1@:FOR M=1] TO 1l0:NEXT M,L

2 - 25

Section Two Programming Basic
2.4.29 ON
ON expression <GOTO/GOSUB> line#l [,line#2,...]

This command makes the GOTO and GOSUB statements into special
versions of the IF statement. The word ON is followed by a
formula, then either GOTO or GOSUB, then a 1list of 1line
numbers separated by commas. If the result of the calculation
of the formula, i.e. expression, is 1, the first line number
in the list is executed. If the result is 2, the second 1line
number is executed, and so on. If the result is @, or larger
than the number of line numbers on the list, the next 1line
executed is the statement following the ON statement. If the
number is negative, an ILLEGAL QUANTITY ERROR results.

EXAMPLE:

10 INPUT X:IF X<@ THEN 10

20 ON X GOTO 50,30,30,70

25 PRINT"FELL THROUGH":GOTO 10
30 PRINT"TOO HIGH":GOTO 10

50 PRINT"TOO LOW":GOTO 18

70 END

When X=1, ON sends control to the first line number in the
list, i.e. 50. When X=2, ON sends control to the second line,
i.e. 30, etc. When X is greater the 4, execution "falls
through" to line 25.

OPEN file#[,device#[,secondary
address[,"filename,type,mode"]]]

The OPEN statement allows your computer to access devices
such as the Datassette recorder, the disk unit, a printer, or
even the monitor screen. The word OPEN is followed by a
logical file number, which is the number to which all other
BASIC statements refer. This number is from 1l to 255. There
is normally a second number after the first called the device
number. Device number ¢ is the computer keyboard, 3 is the
screen, 1 is the Datassette recorder, 4 is the printer, 8 is
usually the disk unit. A zero, i.e. @, may be included in
front of the device number digit, e.g. 68 for 8. The default
value is 1. COMMODORE recommend that you use the same file
number as the device number.

2 - 26

Section Two Programming Basic

Following the second number may be a third number called the
secondary address. In the case of the cassette, this can be g
for read, 1 for write and 2 for write with an end-of-tape
marker at the end. In the case of the disk unit, the number
refers to the channel number. With the printer, the secondary
addresses are used to set the mode of the printer. See your
printer manual for more information on secondary addresses.
There may also be a string following the third number, which
could be a command to the disk drive or the name of the file
on tape or disk. The type and mode refer to disk files only.
File types are prg, seq, rel and usr. Modes are read and
write.

EXAMPLES:

1d OPEN 3,3 OPENs the SCREEN as a device

19 OPEN 1,0 OPENs the keyboard as a
device

20 OPEN 1,1,d,"UP" OPENs the cassette for
reading, file to be searched
for is named UP

OPEN 4,4 OPENs a channel to use the
printer

OPEN 15,8,15 OPENs the command channel on
the disk

5 OPEN 8,8,2,"TEST,SEQ,WRITE" creates a sequential disk
file for writing

See also: CLOSE, CMD, GET#, INPUT# and PRINT# statements and
system variables ST, DS and DS$ (see Sections 2.4.4, 2.4.6,
2.4.17, 2.4.24, 2.4.34, and 2.7.1.2).

2.4.31 PAINT

PAINT [colour source][,[a,b][,mode]]

Colour source @-3 (default is 1, foreground colour)

a,b starting coordinate, scaled (default is at
the PC)
mode @ = paint an area defined by the colour

source selected
1l = paint an area defined by any non-
background source

The PAINT command lets you fill an area with colour. It fills
in the area around the specified point until a boundary of
the same colour or any non-background colour, depending on
which mode you have chosen, 1is encountered. The final
position of the PC will be at the starting point (a,b).

Section Two Programming Basic

NOTE: If the starting point is already the colour source you
name, or any non-background colcur when mode 1 is used, the
area to be PAINTed does not change colour.

EXAMPLE:

19 CIRCLE ,160,100,65,50 draws outline of circle
20 PAINT ,168,1090 fills in the circle with colour

2.4.32 POKE
POKE address,value

The POKE command allows you to change a value in the
computer's RAM, and lets you modify many of the Input/Output
registers. POKE 1is always followed by two numbers or
equations. The first number, i.e. the address, is a location
inside the computer's memory. This can have any value from @
to 65535. The second number is a value from @ to 255. This is
placed in the location given by the address, replacing any
value currently in that location. This command can be used to
control anything displayed on the screen, e.g. placing a
character at a particular location and changing the colour at
that location.

EXAMPLE:

13 POKE 166049,8 Sets the value at location 160088 to 8

20 POKE 16*100@,27 Sets the value at location 16068 to 27
NOTE: PEEK, a function related to POKE, 1is listed under
FUNCTIONS (see Section 2.6.1.12).

2.4.33 PRINT

PRINT printlist

The PRINT statement is the major output statement in BASIC.
While the PRINT statement is the first BASIC statement most
people learn to use, there are many subtleties to be mastered
here as well. The word PRINT can be followed by any

combinations items in the printlist. The printlist 1is as
follows:

Characters inside quotes ("text lines")
Variable names (A, B, AS$, X$)
Functions (SIN(23), ABS (33))
Punctuation marks (7,)

2 - 28

Section Two Programming Basic

The characters 1inside quotes are often called literals
because they are printed exactly as they appear. Variable
names have the value they contain, either a number or a
string, printed. Functions also have their number values
printed. Punctuation marks are used to help format the data
neatly on the screen. The comma divides the screen into 4
columns for data, while the semicolon doesn't add any spaces.
Either of these punctuation marks can be used as the last
symbol in the statement. This results in the next PRINT
statement acting as if it is continuing the current PRINT
statement.

EXAMPLES:
RESULT
13 PRINT "HELLO" HELLO
20 A$="THERE":PRINT "HELLO,"AS HELLO,THERE
30 A=4:B=2:PRINT A+B 6
5@ J=41:PRINT J; :PRINT J-1 41 490
630 C=A+B:D=A-B:PRINT A;B;C,D 4 2 6 2

See also: POS(), SPC() and TAB() FUNCTIONS (see Sections
2.6.3.2, 2.6.3.3, and 2.6.3.4).

2.4.34 PRINT#
PRINT# file#,printlist

The PRINT# statement 1is similar to the PRINT statement,
except that while PRINT 1is used to display data on the
screen, PRINT# is used to send data to a device or file. The
word PRINT# is followed by a number, which refers to the
device or data file previously OPENed. The number is followed
by a comma, and a list of things to be PRINTed. The comma
sends 10 spaces to most printers and can be used as a
separator for disk files. Some devices may not work with TAB
and SPC. The semicolon acts in the same manner for spacing as
it does in the PRINT statement.

EXAMPLE:

160 PRINT#1,"HELLO THERE!",AS$,BS,

2 - 29

Section Two Programming Basic
2.4.35 PRINT USING
PRINT ([#filenumber,]USING format list;printlist

These statements allow you to define the format of string and
numeric items you wish to print to the screen, printer, or
another device. Put the format you require in quotes. This is
the format list. Then add a semicolon and a list of items you
want printed in the format, this is the print list. The 1list
can be variables or the actual values you require printed.
For example:

5 X=32:Y=100.23:A8="CAT"
10 PRINT USING "S##.##";13.25,X,Y
2@ PRINT USING "###>#";"CBM",AS

When you RUN this program, line 1@ prints out:
$13.25 $32,.00 Shkrrx

NOTE: it prints ***** jnstead of the Y value because Y has 5§
digits and does not conform to the format list, as explained
below in this section.

Line 20 prints this:

CBM CAT leaves three spaces before printing "CBM" as
defined in format list

CHARACTER NUMERIC STRING
Hash sign (#) X
Plus (+)

Minus (-)

Decimal point (.)
Comma (,)
Dollar sign (S$)
Four carets (°°
Equal sign (=) X
Greater than sign X

R

AA)

2 - 30

Section Two Programming Basic
The hash.sign (#) reserves room for a single character in the
output field. If the data item contains more characters than
the number of # in your format field, the following occurs:

For a numeric item, the entire field is filled with asterisks
(*) . No numbers are printed.

For example:
10 PRINT USING "####";X

For these values of X, the format displays:

X=12.34 12
X=567.89 568
X=123456 R RN

For a STRING item, the string data is truncated at the bounds
of the field. Only as many characters are printed as there
are hash signs (#) in the format item. Truncation occurs on
the right.

The plus (+) and minus (-) signs can be used 1in either the
first or last position of a format field but not both. The
plus sign is printed if the number 1is positive. The minus
sign is printed if the number is negative. If you use a minus
sign and the number is positive, a blank is printed in the
character position indicated by the minus sign.

If you use neither a plus nor minus sign in your format field
for a numeric data item, a minus sign is printed before the
first digit or dollar symbol if the number is negative and no
sign is printed if the number is positive. This means that
you can print one character more if the number 1is positive.
If there are too many digits to fit into the field specified
by the # and +/- signs, then an overflow occurs and the field
is filled with asterisks (*).

A decimal point symbol (.) designates the position of the
decimal point in the number. You can only have one decimal
point in any format field. If you do not specify a decimal
point in your format field, the wvalue 1is rounded to the
nearest integer and printed without any decimal places.

When you specify a decimal point, the number of digits
preceding the decimal point, including the minus sign, if the
value is negative, must not exceed the number of # before the
decimal point. If there are too many digits an overflow
occurs and the field is filled with asterisks (*).

2 - 31

Section Two Programming Basic

A comma (,) allows you to place commas in numeric fields. The
position of the comma in the format 1list 1indicates the
position of the comma in the printed number. Only commas
within a number are printed. Unused commas to the left of the
first digit appear as the filler character. At 1least one #
must precede the first comma in a field.

If you specify commas in a field and the number is negative,
then a minus sign is printed as the first character even 1if
the character position is specified as a comma.

EXAMPLES:

FIELD EXPRESSION RESULT COMMENT

##.#+ -.01 g.01- Leading zero added

4.8- 1 1.0 Trailing zero added

iR 2 3 -1006.5 -101 Rounded to no decimal
. places

#in# -1009 *hkd Overflow because four

digits and minus sign

cannot fit in field
Bh# 19 19. Decimal point added
#S## 1 S1 Leading $ sign

A dollar sign ($) shows that a dollar sign will be printed in
the number. If you want the dollar sign to float (always be
placed before the number), you must specify at least one #
before the dollar sign. If you specify a dollar sign without
a leading #, the dollar sign is printed in the position shown
in the format field.

If you specify commas and/or a plus or minus sign in a format
field with a dollar sign, your program prints a comma or sign
before the dollar sign.

The four up arrows or carets ("°"") are used to specify that
the number is to be printed in E+ format. You must use # 1in
addition to the “""" to specify the field width and the ~°**°
must appear after the #.

You must specify four carets ("°"") when you want to print a
number in E-format, i.e. scientific notation. If you specify
more than one but fewer than four carets, you get a syntax
error. If you specify more than four carets only the first
four are wused. The fifth, and subsequent, carets are
interpreted literally as no text symbols.

An equal sign (=) is used to centre a string in the field.
You specify the field width by the number of characters in
the format field, the = is included in this count. If the
string contains fewer characters than the field width, the
string is centred in the field. If the string contains more
characters than can fit in the field, the right-most
characters are truncated and the string £fills the entire
field.

2 - 32

Section Two Programming Basic

A greater than sign (>) is used to right justify a string in
a field. You specify the field width by the number of
characters in the format field. The = is included in this
count. If the string contains fewer characters than the field
width, the string is right justified in the field. If the
string contains more characters than can fit into the field,
the right-most characters are truncated and the string fills
the entire field.

2.4.36 PUDEF

PUDEF "1 through 4 characters"

PUDEF lets you redefine up to 4 symbols in the PRINT USING
statement. You can change blanks, commas, decimal points and
dollar signs into some other character by placing the new
character in the correct position in the PUDEF control
string.

Position 1 is the filler character. The default is a space.
Place a new character here when you want another character to
appear in place of spaces.

Position 2 is the comma character. Default is a comma.

Position 3 is the decimal point. Default is a decimal point.

Position 4 is the dollar sign. Default is a dollar sign.

EXAMPLES:

13 PUDEF "=*" PRINTs * in the place of blanks

2@ PUDEF " &" PRINTs & in place of commas

36 PUDEF " .," PRINTs decimal points in place of commas,
and commas in place of decimal points

40 PUDEF " .,P" PRINTs English pound sign in place of §,

decimal points in place of commas, and
commas in place of decimal points

2.4.37 READ
READ variable list

This statement is used to place information contained in DATA
statements into the variables 1in the wvariable 1list. This
allows the program to manipulate the data or perform
calculations on it. The READ statement variable 1list may
contain both strings and numbers. Care must be taken to avoid
reading strings where the READ statement expects a number.
This produces an ERROR message.

EXAMPLE:

READ AS$,GS,Y
DATA XXX,YYY,19

2 - 33

Section Two Programming Basic

2.4038 REM
REM message

The REMark statement allows notes and comments to be included
in the program without affecting the operation of the
program. Note that this statement adds to the program's
length and, therefore, slows it down. It may be followed by
any text, although use of graphic characters may produce
strange results.,

EXAMPLE:

19 NEXT X:REM THIS LINE IS UNNECESSARY

2.4.39 RESTORE
RESTORE ([line#]

This command resets the pointer to the first item in a DATA
statement list. This allows you to re-READ the information in
a DATA statement(s). If a [line#] follows the RESTORE
statement, the pointer is set to that 1line. Otherwise the
pointer is reset to the first DATA statement in the program,

EXAMPLE:

RESTORE 200

2.4.40 RESUME
RESUME ([line# | NEXT]

This is used to return to execution after TRAPping an error
(see Section 2.4.48). With no arguments, RESUME attempts to
re-execute the line in which the error occurred. RESUME NEXT
resumes execution at the next statement following the
statement containing the error. RESUME line# will GOTO the
specific line and begin execution there.

2.4.41 RETURN
RETURN

This statement is always used with the GOSUB statement (see
Section 2.4.18). When the program encounters a RETURN
statement, it goes to the statement immediately following the
last GOSUB command executed. If no GOSUB was previously
issued, then a RETURN WITHOUT GOSUB ERROR message is
displayed, and program execution is stopped.

2 - 34

Section Two Programming Basic
2.4.42 SCALE

SCALE <1/18>

The scaling of the bit maps in multicolour and high
resolution modes can be changed with the SCALE command.
Entering:

SCALE 1

turns scaling on. Coordinates may then be scaled from @ to
1923 in both X and Y. The normal scale values when scaling is

not turned on, are:

@ to 159 ¥

g to 199

multicolour mode X

g to 199

@ to 319 Y

high resolution mode X

Scaling can be turned off by entering "SCALE @".

2.4.43 SCNCLR
SCNCLR

Clears the current screen, whether graphics, text, or both,
i.e. split screen.

2.4.44 SOUND
SOUND voice#,frequency control,duration

This statement produces a SOUND using one of three voices
with a frequency control in the range @¢-1023 for a duration
of 0-65535 60ths of a second.

\'4 Voice

1 Voice 1 (tone)
2 Voice 2 (tone)
3 Voice 2 (white noise)

If a SOUND for voice N is requested, and the previous SOUND
for the same N is still playing, BASIC waits for the previous
SOUND to complete. SOUND with a duration of @ is a special
case. It causes BASIC to turn off the current SOUND for that
voice immediately, regardless of the time remaining on the
previous SOUND. See the MUSIC NOTE TABLE in the appendix for
the frequency control values corresponding to real notes.

EXAMPLE:

SOUND 2,800,3600 Plays a note using voice 2 with
frequency set at 800 for one minute

2 - 35

Secticn Two Programming Basic
2.4.45 SSHAPE/GSHAPE

SSHAPE and GSHAPE are used to save and restore rectangular
areas of multicolour or high resolution screens using BASIC
string variables. The command to save an area is:

SSHAPE string variable,al,bl [,a2,b2]

string variable String name is which data is saved

al,bl Corner coordinate (scaled)

a2,b2 Corner coordinate opposite (al,bl)
(default is the PC)

Because BASIC limits string lengths to 255 characters, the
size of the area you may save is limited. The string size
required can be calculated using one of the following
(unscaled) formulae: :

L (mcm) INT ((ABS (al-a2)+1)/4+.99)* (ABS (bl-b2)+1)+4

L (h-r) INT ((ABS (al-a2)+1)/8+.99)* (ABS (bl-b2)+1)+4

(mcm) refers to multi-colour mode; (h-r) is high resolution
The shape is saved row by row. The last four bytes of the
string contain the column and row lengths less one, i.e.
ABS (al-a2) in low/high byte format. If scaled, divide the
lengths by 3.2 (X) and 5.12 (Y).

The command to display a saved shape on any area of the
screen is:

GSHAPE string variable name [,[a,b][,mode]]

string Contains shape to be drawn

a,b Top left coordinate of the position where the
shape is to be drawn (scaled - default is the PC)
mode Replacement mode:

@ - place shape as is (default)
- place field inverted shape
- OR shape with area

- AND shape with area

- XOR shape with area

> WwN -

EXAMPLES:

SSHAPE "VARIABLES",3,0 Saves screen area from the upper
left corner to where the cursor is
positioned. The saved area is given
the name VARIABLES

GSHAPE “VARIABLES",,,l Displays VARIABLES$ shape with
background and foreground colours
reversed, with the top left of the
shape positioned at the cursor

Section Two Programming Basic

STOP

This statement halts the program. A message, BREAK IN LINE #,
where # is the line number containing the STOP, is displayed.
The CONT command can be used to re-start the program at the
statement following the STOP command. This statement is
usually used while debugging a program.

2.4.47 SYS
SYS address

The word SYS is followed by a decimal number or numeric
variable in the range @ to 65535. The program begins
executing the machine language program starting at that
memory location. This is similar to the USR function except
that SYS does not pass a parameter to the machine language
program. See Chapter 4 for more information about machine
language programs.

2.4.48 TRAP
TRAP [line#]

When turned on, TRAP intercepts all error conditions
including the <RUN/STOP> key, except "UNDEF'D STATEMENT
ERROR". In the event of an execution error, the error flag is
set, and execution is transferred to the line number named in
the TRAP statement. The 1line number in which the error
occurred can be found by using the system variable EL (see
Section 2.7.1.2). The specific error condition 1is contained
in system variable ER. The string function ERR$(ER) gives the
error message corresponding to any error condition ER.

NOTE: An error in a TRAP routine cannot be trapped. The
RESUME statement can be used to resume execution. TRAP with
no line# argument turns off error TRAPping.

2.4.49 TRON

TRON

TRON is used in program debugging. This statement begins

trace mode. When you are in trace mode, the 1line number of
that statement is printed as each statement is executed.

37

'S
|

Section Two Programming Basic

2.4.50 TROFF
TROFF

This statement turns trace mode, i.e. TRON, ofEf.

2.4.51 VOL
VOL volume level

Sets the current VOLume level for SOUND commands. VOLume may
be set from @ to 8, where 8 is maximum volume, and @ is off.
VOL affects both voices.

2.4.52 WAIT
WAIT address,value 1 [,value 2]

The WAIT statement is used to halt the program until the
contents of a location in memory changes in a specific way.
The address must be in the range from @ to 65535. Value 1 and
value 2 must be in the range from @ to 255.

The content of the memory location 1is first exclusive-ORed
with value 2 (if present), and then 1logically ANDed with
value 1. If the result is zero, the program checks the memory
location again. When the result 1is non-zero, the program
continues with the next statement.

2.5 Additional Graphic Statement Information

There are some concepts that apply to all of the bit map
graphics statements. First is the concept of the Pixel Cursor
(PC). The PC is similar to the cursor in text mode, it is the
position where the next dot is to be drawn. Unlike the text
cursor, the PC is invisible. All drawing commands use the PC.
In addition, the locate command allows you to reposition the
PC without drawing anything.

2 - 38

Section Two Programming Basic

Wherever you would use X,Y coordinates in a drawing command,

you can use RELATIVE coordinates instead. Relative
coordinates are based on the current location of the PC. To
use this system, place a + or - in front of the coordinates.

A plus sign before the X value moves the PC to the right. A
minus sign before the X value moves the PC to the left.
Similarly, a minus sign before the Y coordinate moves the PC
up, while a plus sign moves the PC down. For example:

LOCATE +10@,-25 moves the PC right 100 pixels and
up 25

DRAW 1,+10,+19T0100,100 draws a line 10 pixels right and
10 pixels below the current value
of the PC to the absolute point
190,100

You can also specify a distance and an angle relative to the
current PC by separating the two parameters by a semicolon.

For example:
LOCATE 50;45 moves the PC from its current location by a
distance of 50 dots at an angle of 45 degrees

2.6 FUNCTIONS

2.6.1 Numeric Functions

Numeric functions are classified as such because they return
numbers. The functions they perform range from calculating
mathematical functions to specifying a screen location.
Numeric functions follow the form:

FUNCTION (argument)

where the argument can be a numerical value, variable or
string.

2.6.1.1 ABS(X) (absolute value)

The absolute value function returns the magnitude of the
argument X.

2.6.1.2 ASC(XS)

This function returns the ASCII code, 1i.e. number, of the
first character of XS$.

2 - 39

Section Two Programming Basic

2.6.1.3 ATN(X) (arctangent)

Returns the angle, in radians, whose tangent is X.

2.6.1.4 COS(X) (cosine)

Returns the value of the cosine of (X), where X is an angle
measured in radians.

2.6.1.5 DEC (hexadecimal-string)

Returns decimal value of hexadecimal-string
(d<hexadecimal-string<FFFF)

EXAMPLE:

N=DEC ("F4")

2.6.1.6 EXP(X)

Returns the value of the mathematical constant e (2.71828183)
raised to the power of X.

2.6.1.7 FNxx(X)

Returns the value of the user-defined function xx created 1in
a DEF FNxx statement.

2.6.1.8 INSTR (string 1,string 2 [,starting position])
Returns position of string 2 in string 1 at or after the
[starting position]. The starting position defaults to the
beginning of string 2. If no match is found, a value of @ is
returned.

EXAMPLE:

PRINT INSTR("THE CAT IN THE HAT","CAT")

the result is 5, because CAT starts at the fifth character in
string 1.

2 - 490

Section Two Programming Basic

2.6.1.9 INT(X) (integer)

Returns the integer portion of X, with all decimal places to
the right of the decimal point removed. The result is always
less than or equal to X. Thus, a negative number with decimal
places becomes the integer less than its current value, e.g.
INT (-4.5)=-5.

If the INT function is to be used for rounding off, the form

EXAMPLE:

X=INT (X*100+.5)/100 rounds to the next highest number

2.6.1.10 JOY(n)

When n
n

1 position of joystick #1
2 position of joystick #2

Any value of 128 or more means the fire button 1is also
depressed. The direction is indicated as follows:
Fire = 128 + X

LEFT T) 3 RIGHT

EXAMPLE:

JOY (2) with a value of 135 fires joystick #2 to the the left

2.6.1.11 LOG(X) (logarithm)

This function returns the natural log of X. The natural 1log
is log to the base e (see EXP(X), Section 2.6.1.6). To
convert to log base 10, divide by LOG(l0).

2.6.1.12 PEEK (X)

This function gives the contents of memory location X, where
X is located in the range of @ to 65535, returning a result
from 4 to 255. PEEK is often used 1in conjunction with the
POKE statement.

2 - 41

Section Two Programming Basic

2.6.1.13 RCLR(N)

Returns current colour assigned to source N, where N 1is in
the range @=< N =<4,

@d=background, l=foreground, 2=multicolour 1, 3=multicolour 2,
4=border

2.6.1.14 RDOT(N)

Returns information about the current position of the pixel
cursor (PC) at XPOS/YPOS.

N = @0 for XPOS
1 for YPOS
2 colour source

2.,6.1.15 RGB (X)

Returns current graphic mode (X is a dummy argument and can
be any value).

2.,6.1.16 RLUM(N)

Returns current luminance level assigned to colour source N,

2.6,1.17 RND(X) (random number)

This function returns a random number between @ and 1. The X
is a dummy argument and can be any value. This is useful in
games, to simulate dice rolls and other elements of chance.
It is also used in some statistical applications. The first
random number should be generated by the formula RND(-TI), to
give a different random number each time the program is RUN.
After this, the number in X should be a 1, or any positive
number, (X represents the seed, or what the RaNDom number is
based on). If X is zero, RND is re-seeded from the hardware
clock every time RND is used. A negative value for X seeds
the random number generator using X and gives a random number
sequence. The use of the same negative number for X as a seed
results in the same sequence of random numbers. A positive
value gives random numbers based on the previous seed.

2 - 42

Section Two Programming Basic

To simulate the rolling of a die, use the formula
INT(RND(1)*6+1). First, a random number from g-1 is
multiplied by 6, this expands the range to @-6, i.e.
@ < n < 6. Then 1 is added, making the range 1 <= n < 7. The
INT function chops off the decimal places, leaving the result
as a digit from 1 to 6.

To simulate 2 dice, add together two of the numbers obtained
using the above formula.

EXAMPLE:

103 X=INT (RND(1l)*6)+INT (RND(1l)*6)+2 Simulates 2 dice
110 X=INT(RND(l)*10003)+1 ' Number from 1-100@
120 X+INT(RND(1)*15@)+104d Number from 1G8-249

2.6.1.18 SGN(X) (sign)

This function returns the sign, i.e. positive, negative, or
zero, of X. The result is +1 if positive, @ if zero, or -1 if
negative.

2.6.1.19 SIN(X) (sine)

This is the trigonometric sine function. The .result 1is the
sine of X, where X is an angle in radians.

2.6.1.20 SQR(X) (square root)

This function returns the square root of X, where X 1is a
positive number or @. If X is negative, an ILLEGAL QUANTITY
ERROR results.

2.6.1.21 TAN(X) (tangent)

This gives the tangent of X, where X is an angle in radians.

2.6.1.22 USR(X)

When this function is used, the program jumps to a machine
language program whose starting point is contained in memory
locations 1281 and 1282. The parameter X 1is passed to the
machine language program in the floating point accumulator.
Another number is passed back to the BASIC program through
the calling variable. In other words, this allows you to
exchange a variable between machine code and BASIC. See
Chapter 4 for more information on the USR function.

2 - 43

Section Two Programming Basic

2.6.1.23 VAL (XS$)

This function converts the string X$ into a number, and is
essentially the inverse operation from STR$. The string is
examined starting at the left-most character, converting only
characters which are in recognizable number format. If your
computer finds any illegal characters, i.e. which it does not
recognize as being in number format, it converts only the
portion of the string up to that character.

EXAMPLE:

13 X=VAL("123.456") X=123,456
20 X=VAL ("3E@3") X=3000

30 X=VAL("12A13B") X=12

4@ X=VAL ("RIUOL17*") X=0

50 X=VAL("-1.23.23.,23") X=-1.23
60 AS$S="123":X=VAL (AS) X=123

NOTE: 3E@3 is scientific notation for 30049.

2.6.2 String Functions

String functions differ from numeric functions in that they
return characters, graphics or numbers from a string instead
of a number. A string is a group of characters enclosed in
quotation marks.

2.6.2.1 CHRS (X)

This function returns a string character whose ASCII code is
X.

2.6.2.2 ERRS(N)

Returns the string describing error condition N (see TRAP).

2.6.2.3 HEXS(N)

Returns a four character string containing the hexadecimal
representation of value N, where N is in the range
@< N <65535.

2.6.2.4 LEFTS$(X$,X)

This returns a string containing the leftmost X characters of
XS.

2 - 44

Section Two Programming Basic

2.6.2.5 LEN(XS)

Returns the number of characters (including spaces and other
symbols) in the string XS$.

2.6.2.6 MID$ (X$,N,X)

This returns a string containing X characters, starting with
the Nth character in X$. MIDS$ can also be used on the left
side of an assignment statement as a pseudo-variable. MIDS$
(string variable, starting position, length) = source string,
see the example below.

This function reassigns values of positions (starting
position) through (starting position + 1length) of source
string to the characters of string variable in corresponding
locations. Length defaults to the length of string variables,
and an error results 1if (starting position + 1length) |is
greater than the length of the source string.

EXAMPLE:

13 AS="THE LAST GOODBYE"

2@ PRINT AS Prints "THE LAST GOODBYE"
36 MIDS(AS,6,3)="ONG"

43 PRINT AS Prints "THE LONG GOODBYE"

2.6.2.7 RIGHTS (X$,X) .

This returns the right most X characters in XS$.

2.6.2.8 STRS (X)

This returns a string which 1is 1identical ¢to the PRINTed
version of X.

EXAMPLE:
X=123
AS$=STRS (X)

2.6.3 Other Functions

2.6.3.1 FRE(X)

This function returns the number of unused bytes available in
memory. X is a dummy argument.

2 - 45

Section Two Programming Basic

2.6.3.2 POS(X)

This function returns the number of the column (0-39) where
the next PRINT statement begins on the screen. X is a dummy
argument.

2.6.3.3 SPC(X)

This is used in the PRINT statement. It allows you to skip
over X spaces. X can have a value from 3-255.

2.6.3.4 TAB (X)

This is used in the PRINT statement. The next item to be
printed is in column number X. X can have a value from @ to
255

2.6.3.5 TX (PI)

The PI symbol, when used in an equation, has the value of
3.14159265.

2.7 VARIABLES AND OPERATORS

2.7.1 Variables .
Your computer uses three types of variables in BASIC. These
are normal numeric, integer numeric and string (consisting of
alphanumeric and other characters) variables.

Normal NUMERIC VARIABLES, also called floating point
variables, can have any value from 10°-38 to 10°+38, with up
to nine digits including the decimal point. When a number
becomes larger than nine digits can show, as in 180°-14 or
16°+10, the computer displays it in scientific notation, with
the number normalized to 1 digit and eight decimal places,
followed by the letter E and the power of ten by which the
number is multiplied. For example, the number 12345678961 is
displayed as 1.23456789E+140.

INTEGER VARIABLES can be used when the number is in the range
-32768 thru +32767, with no fractional portion, i.e. no
decimal places. An integer variable is a number like 5, 1a,
or -100. Integers take up less space than floating point
variables when used in an array.

STRING VARIABLES are those used for character data. They can
contain numbers, letters and any other character that the
computer can display. An example of a string variable is
"COMMODORE PLUS/4".

2 - 46

Section Two Programming Basic

2.7.1.1 VARIABLE NAMES

VARIABLE NAMES may consist of a single letter, a letter
followed by a number, or two letters. Although variable names
may be longer than 2 characters, only the first two are
significant.

An integer variable is specified by using the percent (%)
sign after the variable name. A string variable has the
dollar sign ($) after its name.

EXAMPLES:

Numeric variable names: A AS BZ

Integer variable names: A% AS5% BZS$
String variable names: AS$ AS5$ BZS

ARRAYS are lists of variables with the same name using an
extra number (or numbers) to specify an element of the array.
Arrays are defined using the DIM statement, and may be
floating point, integer, or string variable arrays. The array
variable name is followed by a set of parentheses ()
enclosing the number of variables in the list.

EXAMPLES: A(7), BZ2%(1l), AS$(87)

Arrays may have more than one dimension. A two-dimensional
array may be viewed as having rows and columns, with the
first number identifying the column and the second number in
the parentheses identifying the row, as if specifying a
certain grid location on a map.

EXAMPLES: A(7,2), B2%(2,3,4), 2$(3,2)

2.7.1.2 RESERVED VARIABLE NAMES

There are seven variable names which are reserved for use by
your computer, and may not be used for another purpose. These
are the variables DS, DS$, ER, EL, ST, TI and TIS. You also
cannot use KEYWORDS such as TO and IF, or any names that
contain KEYWORDS, e.g. SRUN, RNEW or XLOAD are not allowed as
variable names. :

ST is a status variable for input and output (except normal
screen/keyboard operations). The value of ST depends on the
results of the last input/output operation. See the READST
KERNAL routine (Section 4.11.3) for more information on
STATUS.

2 - 47

Section Two Programming Basic

TI and TI$ are variables that relate to the real-time claek
built into your computer. The system clock is updated every
1/60th of a second. It starts at @ when your machine is
turned on, and is reset only by changing the value of TIS.
The variable TI gives you the current value of the clock in
1/60ths of a second.

TIS$ is a string that reads the value of the real-time clock
in 24-hour format. The first two characters of TIS$S contain
the hour, the 3rd and 4th characters are the minutes, and the
5th and 6th characters are the seconds. This variable can be
set to any required numeric value, and is automatically
updated as a 24 hour clock.

EXAMPLE: TIS$="1Q0153@g" Sets the clock to 10:15 and 3¢
seconds (AM)

The value of the clock is lost when your computer 1is turned
off. It starts at zero when your computer is turned on and is
reset to zero when the value of the clock exceeds 235959,
i.e. 23 hours, 59 minutes and 59 seconds.

The variable DS reads the disk drive command channel, and
returns the current status of the drive. To display the disk
drive status, PRINT DSS. These status variables are used
after a disk operation, like a DLOAD or DSAVE, to find out
why the red error light on the disk drive is blinking.

ER, EL and ERR§ are variables used in error trapping
routines. They are usually only useful within a program. ER
returns the last error encountered since the program was RUN.
EL is the line where the error occurred. ERR$ is a function
which allows your program to print one of the BASIC error
messages. PRINT ERR$(ER) prints out the proper error message.

2.7.2 BASIC OPERATORS
The ARITHMETIC operators include the following signs:

addition

subtraction

multiplication

division

raising to a power (exponentiation)

N % |+

2 - 48

Section Two Programming Basic

In a statement containing more than one operator, there is a
set order in which the operations are carried out - first,
exponentiation, then multiplication and division, and last,
addition and subtraction. If two operations have the same
priority, then calculations are performed in the order they
occur in the statement, from left to right. If you want these
operations to occur in a different order, BASIC 3.5 allows
you to give a calculation a higher prlorlty by placing
parentheses around it. Operations enclosed in parentheses are
calculated before any other operation. You must ensure that
your equations have the same number of left parentheses as
right parentheses or a SYNTAX ERROR message is displayed when
you RUN your program., -~

There are also operators for equalities and inequalities,
these are called RELATIONAL operators. They are listed below.
Arithmetic operators always take priority over relational
operators.

= is equal to
< is less than
> is greater than

= or =< is less than or equal to

= or => is greater than or equal to
<> or >< is not equal to

Finally, there are three LOGICAL operators, with lower
priority than both arithmetic and relational operators:

AND
OR
NOT

These are used most often to Jjoin multiple formulas in
IF...THEN statements. When they are used with arithmetic
operators, they are evaluated last, i.e. after + and -.

EXAMPLES:

IF A=B AND C=D THEN 100 requires both A=B and C=D to
be true

IF A=B OR C=D THEN 100 allows either A=B or C=D to
be true

A=5:B=4:PRINT A=B displays a value of @

A=5:B=4:PRINT A>B displays a value of -1

PRINT 123 AND 15:PRINT 5 OR 7 displays 11 and 7

2 - 49

Section Two

Programming Basic

2.8 BASIC Abbreviation and Reference Chart

KEYWORD

ABS
ASC

ATN
AUTO
BACKUP
BOX
CHAR
CHRS
CIRCLE
CLOSE
CLR

CMD
COLLECT
COLOR
CONT
COPY
cos
DATA
DEC

DEF FN
DELETE
DIM
DIRECTORY
DLOAD
DO

DRAW
DSAVE
END
ERRS
EXP

FOR

FRE

GET
GETKEY
GET#
GOSUB
GOTO
GRAPHIC
GSHAPE
HEADER
HEXS
IF. .. COTO
IF...THEN...ELSE
INPUT
INPUT#
INSTR
INT

JOY

KEY

ABBREVIATION

L Q
=

MO OO QO

o

goQuuauaQ Q

o
~

<SHIFT>
<SHIFT>
{SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<{SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<{SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none
<SHIFT>
none
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none
none
none
<SHIFT>
<SHIFT>
none
<SHIFT>
<SHIFT>

POoOrORRCCoOHRIPOMCAMD

0> nomon OmxuVOxXwZWnm oM™ >

0 Z

0

50

TYPE

function - numeric
function - numeric
function - numeric
command

command

statement
statement

function - string
statement -~
statement
statement
statement

command

statement

command

command

function - numeric
statement

function - numeric
statement

command

statement

command

command

statement
statement

command

statement

function - string
function - numeric
statement

function - numeric
statement
statement
statement
statement
statement
statement
statement

command

function - string
statement
statement
statement
statement

function - numeric
function - numeric
function - numeric
command

Section Two

LEFTS
LEN

LET

LIST
LOAD
LOCATE
LOG

LOOP
MIDS
MONITOR
NEW

NEXT ,
ON...GOSUB
ON...GOTO
OPEN
PAINT
PEEK
POKE

POS
PRINT
PRINT#
PRINT USING
PUDEF
RCLR
RDOT
READ

REM
RENAME
RENUMBER
RESTORE
RESUME
RETURN

. RGR

RIGHTS
RLUM
RND
RUN
SAVE
SCALE
SCNCLR
SCRATCH
SGN
SIN
SOUND
SPC(
SQR
SSHAPE
STatus
STOP
STRS
SYS

ON.eo
on...

33 HHPFM
o o (o]

‘st o I

"R RO V0 W

0

mmmmmmgmmmnnnn

uwunun
cr

<SHIFT> F
none

<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none

<SHIFT>
<SHIFT>
<SHIFT>
none

<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none

QOO H ™

OHO

OmpuwoOunm

<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<{SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none
<SHIFT>
<SHIFT>
<SHIFT>

moOoQOGc+~w2

noPvoOHOTOAPPCZOTHOEICWVWCZ

<3

2 - 51

Programming Basic

function -
function -
statement
command
command
statement
function -
statement
function -
statement
command
statement
statement
statement
statement
statement
function -
statement
function -
statement
statement
statement
statement
function -
function -
statement
statement
command
command
statement
statement
statement
function -
function -
function -
function -
command
command
statement
statement
command
function -
function -
statement
function -
function -
statement
reserved -
statement
function -
statement

string
numeric

numeric

string

numeric

numeric

numeric
numeric

numeric
string

numeric
numeric

numeric
numeric

special
numeric

numeric

string

Section Two

TAB (
TAN
TI
TIS
TRAP
TROFF
TRON
UNTIL
USR
VAL
VERIFY
VOL
WAIT
WHILE

<SHIFT>
none
none
none
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
<SHIFT>
none
<SHIFT>
<SHIFT>
<SHIFT>»
<SHIFT>

2 -

nzZO0omxo

T >»Oom

52

Programming Basic

function
function
reserved
reserved

statement
statement
statement
statement

function
function
command

statement
statement
statement

special
numeric
numeric
string

special
numeric

Section Three Programming Machine Code

SECTION THREE

PROGRAMMING MACHINE CODE

3.1 What is Machine Language?

At the heart of every microcomputer is a central
microprocessor, sometimes known as the central processing
unit (C.P.U.). The C.P.U. is a very special microchip which
is the computer's "brain". Almost everything that the
computer does - is controlled by the C.P.U. Every
microprocessor understands its own language of instructions
which are called machine language instructions. Machine
language is the ONLY programming language that your Cl6 or
PLUS/4 understands, it is the NATIVE language of the machine.

COMMODORE BASIC V3.5 is not the machine language of the C16
or PLUS/4. In order that the computer can understand the
COMMODORE BASIC V3.5 programming language the computer
contains a machine language program stored in a read only
memory, i.e. ROM. This machine language program is called the
OPERATING SYSTEM, i.e. 0S. When the computer is switched on,
it is automatically "RUN".

The OPERATING SYSTEM "organizes"™ all the memory in your
machine for the various tasks the computer performs.

All of the commands that are available in COMMODORE BASIC
V3.5 are simply recognized by another huge machine language
program built into your Cl6 or PLUS/4. This program "RUNs"
the appropriate piece of machine language depending on which
BASIC command is being executed. This program is called the
BASIC INTERPRETER, because it interprets each command.

3.2 What does Machine Code Look Like?

Each memory location has its own number which identifies it.
This number is known as the "address" of a memory 1location.
If you imagine the memory in your Clé or PLUS/4 as a street
of buildings, then the number on each door is, of course, the
address.

Section Three Programming Machine Code

3.3 Simple Memory Map of the Cl16 and PLUS/4

The following table introduces you to the computer's "street"
and the functions of the various addresses in that "street".

ADDRESS DESCRIPTION

g & 1 7581 registers

2 Start of memory

to 2045 Memory used by the operating system
2048 to.3071 Colour RAM

3072 to 4095 Screen memory

4096 Start of BASIC text area

8192 Start of BASIC when HIRES is on
53248 Beginning of character ROM

If you do not understand what the description of each part of
memory means, do not worry, this becomes clear as you work
through this section of the manual.

Machine language programs consist of instructions which may
or may not have operands (parameters) associated with them.
Each instruction takes up one memory location, any associated
operand is contained in one or two locations following the
instruction.

In BASIC programs, words like PRINT and GOTO only take up one
memory location, rather than one for each character of the
word. The contents of the 1location that represents a
particular BASIC keyword 1is called a token. In machine
language, there are different tokens for different
instructions, which also take up just one byte (one memory
location = one byte).

Machine 1language instructions are very simple. Each
individual instruction carries out one small step in a
program such as changing the contents of a memory location,
or changing one of the internal registers, 1i.e. special
storage locations, inside the microprocessor. The internal
registers form the basis of machine language.

Section Three Programming Machine Code
3.4 The Registers Inside the 7501 Microprocessor

3.4.1 THE ACCUMULATOR

This is the most important register in the microprocessor.
Various machine language instructions allow you to copy the
contents of a memory location into the accumulator, copy the
contents of the accumulator into a memory 1location, modify
the contents of the accumulator or some other register
directly, without affecting any memory. The accumulator is
the only register that has mathematical instructions.

3.4.2 THE X INDEX REGISTER

This is a very important register. There are instructions for
nearly all of the transformations you can make to the
contents of the accumulator. However, there are other
instructions for things that only the X register can do.
Various machine language instructions allow you to copy the
contents of a memory location into the X register, copy the
contents of the X register into a memory location, and modify
the contents of the X, or some other register, directly.

3.4.3 THE Y INDEX REGISTER

This register has instructions for nearly all of the
transformations you can make to the contents of the
accumulator and the X register. There are also other
instructions for things that only the Y register can do.
Various machine language instructions allow you to copy the
contents of a memory location into the Y register, copy the
contents of the Y register into a memory location, and modify
the contents of the Y, or some other register directly.

3.4.4 THE STATUS REGISTER

This register consists of six "flags". A flag lets you know
whether something has, or has not, occurred. These flags give
you information about the current "status" of the processor.

3.4.5 THE PROGRAM COUNTER

This contains the address of the current machine language
instruction being executed. Because the operating system is
always "RUNning" in your Cl6é or PLUS/4, the program counter
is constantly changing. It can only be stopped by halting the
microprocessor in some way.

Section Three Programming Machine Code

3.4.6 THE STACK POINTER

This register contains the location of the first empty place
on the stack. The stack is used for temporary storage by
machine language programs and by the computer.

3.4.7 THE INPUT/OUTPUT PORT

This register is an 8-bit input/output port. It is at memory
location @, for the DATA DIRECTION REGISTER, and 1, for the
actual PORT.

3.5 Writing Machine Language Programs

The Cl6 and PLUS/4 both contain a machine language program
called TEDMON which enables you to easily write machine
language programs. TEDMON includes a machine language
monitor, a mini assembler, and a disassembler.

Machine language programs written using TEDMON can run by
themselves, or be used as very fast "subroutines"™ for BASIC
programs since TEDMON has the ability to coexist with BASIC.

Section Three

3.5.1 TEDMON COMMANDS

A ASSEMBLE Assemble a line of 7501 code

c COMPARE Compare two sections of memory and
report any differences

D DISASSEMBLE Disassemble an area of memory

F FILL Fill an area of memory with the
specified byte

G GO Start execution at the specified
address

H HUNT Hunt through memory for all occurrences
of certain bytes

L LOAD Load a file from tape or disk

M MEMORY Display the hexadecimal values of
particular memory locations

R REGISTERS Display the 7501 registers

S SAVE Save to tape or disk

T TRANSFER Transfer code from one section of
memory to another

\% VERIFY Compare memory with tape or disk

X EXIT Exit TEDMON

. (period) Assembles a line of 7501 code

Programming Machine Code

> (greater than) Modifies memory

; (semi-colon) Modifies 7501 register displays

NOTE: In the PLUS/4 only, location $07F8 controls whether
TEDMON looks at ROM or RAM above $800@6. If this 1location is
set to $00 when TEDMON is commanded to do a disassembly or
memory dump above $8000, it displays BASIC and the KERNAL. If
this location is set to $80, TEDMON displays the RAM under
BASIC and KERNAL. This 1is often convenient for machine
language program development. Note that location $07F8 does
not affect the GO command. The GO command starts execution in
the current memory map (ROM on or RAM on) regardless of the
setting of location $@7F8.

Section Three Programming Machine Code

3.5.2 USING TEDMON

Enter TEDMON by typing:

MONITOR

TEDMON responds by displaying the 7510 registers and the

flashing cursor. The cursor is the prompt that lets you know
that TEDMON is waiting for your commands.

3.5.3 COMMAND DESCRIPTIONS

COMMAND: A

PURPOSE: Enter a line of assembly code

SYNTAX : A <address> <opcode mnemonic> <operand>

<address> a hexadecimal number 1indicating the location in
memory where the opcode is to be placed.

<opcode mnemonic> a standard MOS Technology assembly language
mnemonic, e.g. LDA, STX, ROR, etc.

<operand> the operand, when required, can be any of the legal
addressing modes. For zero-page modes, a 2-digit hex number
is required whose value is less than $100. For non-zero-page
addresses, 4-digit hex numbers are required.

A <RETURN> is used to indicate the end of the assembly line.
If there are any errors on the line, a question mark (?) is
displayed, and the cursor moves to the next line. The screen
editor can then be used to correct those errors.

When a line of code is successfully assembled, the assembler
prints a prompt containing the next 1legal memory location
which can be used for an instruction. This means that A and
the address number do not have to be typed more than once
when typing assembly language programs into the Cl6 and
PLUS/4.

EXAMPLE:

.A 1200 LDX #$00
JA 1202

NOTE: a period (.) is equal to the ASSEMBLE command.
EXAMPLE:

.2000 LDA #8823

Section Three Programming Machine Code

COMMAND: C
PURPOSE: Compare two areas of memory
SYNTAX : C <address 1> <address 2> <address 3>

<address 1> is a hexadecimal number indicating the start
address of the first area of memory

<address 2> is a hexadecimal number indicating the end
address of the first area of memory

<address 3> is a hexadecimal number indicating the start
address of the area of memory to be compared with the first
area of memory

If the two areas of memory are the same, then TEDMON prints a
<RETURN>, indicating that the second area of memory 1is the
same as the first. The addresses of any bytes in the two
areas which are different are printed on the screen.

COMMAND: D

PURPOSE: Disassemble machine code into assembly language
mnemonics and operands

SYNTAX : D [<address>] [<address 2>]

<address> a hexadecimal number setting the address at which
disassembly is to start

<address 2> an optional hexadecimal ending address of the
code to be disassembled

The format of the disassembly is only slightly different than
the input format of an assembly. The difference is that the
first character of a disassembly is a period rather than an
A, this is for readability, and the hexadecimal of the code
is listed as well.

A disassembly 1listing can be modified using the screen
editor. Make any changes to the mnemonic operand on the
screen, then press the <RETURN> key. This enters the line and
calls the assembler for further modifications.

A disassembly can be paged. Typing a D on its own causes the
next 20 bytes of code to be disassembled to the screen.

EXAMPLE:

D 3000 3004

. 3000 A9 @0 LDA #$500
. 3002 FF 222

. 3003 D@ 2B BNE $3030

Section Three Programming Machine Code

COMMAND: F

PURPOSE: Fill a range of locations with a specified byte
SYNTAX : F <address 1> <address 2> <byte>

<address 1> the first location to be filled with the <byte>
<address 2> the last location to be filled with the <byte>
<byte> a 1 or 2-digit hexadecimal number

This command is useful for initializing data structures or
any other RAM area.

EXAMPLE:
F 0400 @518 EA

This fills memory locations from $0400 to $0518 with SEA
which is a NOP instruction.

COMMAND: G

PURPOSE: Begin execution of a program at a specified address

SYNTAX : G [<address>]

<address> is an optional argument specifying the new value of
the program counter and the address where execution 1is to
start. When <address> is left out, execution begins at the
current location of the PC, i.e. Program Counter. The PC can
be viewed using the R command.

The GO command restores all registers and begins execution at
the specified starting address. The registers can be
displayed using the R command. Caution is recommended in
using the GO command. To return to TEDMON after executing a
machine language program, use the BRK instruction.

EXAMPLE:
G 1406C

Execution begins at location $140C.

Section Three Programming Machine Code

COMMAND: H

PURPOSE: Hunt through memory within a specified range for all
occurrences of a set of bytes

SYNTAX : H <address 1> <address 2> <data>

<address 1> beginning address for the hunt

<address 2> ending address for the hunt

<data> is the data set to search for. Data may be hexadecimal
or an ASCII string. An ASCII string is specified by preceding
the first character with a single apostrophe, e.g. 'STRING.
Data may be a single or multiple element argument. When

multiple and in hexadecimal, each number must be separated by
a space.

EXAMPLES:

H C@0@ FFFF 'READ Search for ASCII string "READ" from
$CO00 to SFFFF

H AQ@GQ@ Aldl A9 FF 4C Search for data $A9, SFF, $4C, from
$SA100 to $AlQl

COMMAND: L

PURPOSE: Load a file from cassette or disk

SYNTAX : L <"filename">,<device>

<"filename"> is any legal Cl6 or PLUS/4 filename enclosed in
quotes

<device> is a hexadecimal number indicating the device to
load from. 1 is cassette, 8 is disk.

The LOAD command causes a file to be loaded into memory. The
starting address is contained in the first two bytes of the
(program) file. In other words, the LOAD command always loads
a file into the same area of memory as it was saved from.
This is very important in machine 1language work, as few
programs are completely relocatable. The file is loaded into
memory until the end of file marker (EOF) is found.

EXAMPLE:
L "SCREEN",1 Reads the file called SCREEN from cassette

L "TANK",8 Reads the file called TANK from disk

Section Three Programming Machine Code

COMMAND: M

PURPOSE: To display memory within the specified address range
as a hexadecimal and ASCII dump

SYNTAX : M [<address 1>] [<address 2>]

<address 1> first address of memory dump. This is optional.
If it is omitted, then one page is displayed starting from
the last address specified

<address 2> last address of memory dump. Optional. If
omitted, then one page is displayed starting from <address 1>

Memory is displayed in the following format:
>6310 8B 8C 42 CE OE CE 4C F4 :..BN. NLI

Memory content may be edited using the screen editor. Move
the cursor to the data to be modified, type the desired
correction and press <RETURN>. If there is a bad RAM location
or an attempt to modify ROM has occurred, a question mark (?)
is displayed.

An ASCII dump of the data is displayed in REVERSE colours to
the right of the hex data. The REVERSE colours are to
differentiate the dump from other data displayed on the
screen. When a character is not printable, it is displayed as
a reverse period (.).

As with the DISASSEMBLY command, you can page down. This is
done by typing M and <RETURN>.

EXAMPLE:

>1C00 41 00 AA AA (0 98 56 45 :A.**, VE
>1Cl0 41 00 AA AA @0 98 56 45 :A.**_ VE
>1Cl@ 41 @00 AA AA 00 98 56 45 :A.**_ _VE
>1Cl8 41 00 AA AA 00 98 56 45 :A.**_ VE
>1C20 41 00 AA AA 00 98 56 45 :A.**, VE
>1C28 41 00 AA AA 00 98 56 45 :A.**_, VE
>1C30 41 00 AA AA @0 98 56 45 :A.**_ VE
>1C38 41 00 AA AA 00 98 56 45 :A.**_ _VE
>1C40 41 00 AA AA 00 98 56 45 :A.**_ VE
>1C48 41 00 AA AA 00 98 56 45 :A.**_ _ VE
>1C50 41 00 AA AA 00 98 56 45 :A.**_ VE
>1C58 41 00 AA AA 00 98 56 45 :A.**, VE

3 - 10

Section Three Programming Machine Code

COMMAND: >
PURPOSE: Can be used to set 1 to 8 memory locations at a time

SYNTAX : >address data byte 1 <data byte 2> <data byte 3>
...8

address - first memory address to be set
data byte 1 - data to be put at address

<data byte 2...8> - data to be placed in the successive
memory locations following the first address. Optional.

EXAMPLES:
>2000 @8 places a $08 at location $2000
>3000 23 45 65 places a $23 at location $3000, a $45 at
$3001, and a $65 at $3002
COMMAND: R
PURPOSE: Show 7501 registers. The Program Counter, Status
Register, Accumulator, X and Y registers, and Stack Pointer
are displayed.
SYNTAX : R
EXAMPLE:
.R
PC SR AC XR YR SP
- 1002 091 62 @3 04 F6

NOTE: the semi-colon (;) can be used to modify register
displays in the same way that > is used to modify memory.

3 -11

Section Three Programming Machine Code

COMMAND: S
PURPOSE: Save the contents of memory onto tape or disk
SYNTAX : S <"filename">,<device>,<address 1>,<address 2>

<"filename"> any legal Cl6 or PLUS/4 filename enclosed 1in
quotes

<device> two possible devices are cassette and disk. To save
onto cassette use a device number of 1, to save onto disk use
a device number of 8.

<address 1> starting address of memory to be saved

<address 2> ending address of memory to be saved+l. All data
up to, but not including, the byte of data at this address is
saved.

The file created by this command is a program file. The first
two bytes contain the starting address <address 1> of the
data. The file may be recalled using the L command.

EXAMPLE:

S "GAME",8,0400,0C00

Saves memory from $0400 to S$OBFF onto disk.

COMMAND: T

PURPOSE: Transfer an area of memory to another location
SYNTAX : T <address 1> <address 2> <address 3>

<address 1> the start address of data to be moved
<address 2> the end address of data to be moved

<address 3> start address of new location to which the data
is to be transferred

Data can be moved from 1low memory to high memory or
vice-versa. Additional memory segments of any length can be
moved forward or backward any number of bytes.

NOTE: the value of <address 3> must not fall within the range
of <address 1> to <address 2>.

EXAMPLE:

T 1401 1600 1400 Shifts the data from $1401 up to and
including $160@ one byte down in memory

3 - 12

Section Three Programming Machine Code

COMMAND: V

PURPOSE: Verify a file on cassette or disk with the memory
contents

SYNTAX : V <"filename">,<device>

<"filename"> is any legal Cl6 or PLUS/4 filename enclosed in
quotation marks

<device> is a hexadecimal number indicating which device the
file is on, cassette is 1 or @1, disk is 8 or @8

The VERIFY command compares a file with the contents of
memory. The Cl6é or PLUS/4 responds by displaying the message
VERIFYING. If an error is found, the word ERROR is displayed.
If the file is successfully verified, the flashing cursor
reappears.

EXAMPLE:

V "WORKLOAD",8

COMMAND: X

PURPOSE: Exit to BASIC

SYNTAX : X

When the X command is given, the machine stack pointer is set
to the current stack pointer value (see the R command). 1If

this is modified in any way, use the BASIC CLR command to
reset the pointers after exiting to BASIC.

3 -13

Section Three Programming Machine Code

3.6 HEXADECIMAL NOTATION

Hexadecimal is the notation usually used by machine language
programmers when they talk about a number or address in a
machine language program.

By looking at decimal, i.e. base 10, numbers, you can see
that each digit falls somewhere in the range @ thru 9, i.e.
in the range zero through to a number equal to the base less
one. This is true of all number bases. Binary, 1i.e. base 2
numbers have digits ranging from zero to one, i.e. one less
than the base. Similarly, hexadecimal, i.e. base 16, numbers
have digits ranging from zero to fifteen. As there are no
single digit figures for the numbers ten to fifteen, the
first six letters of the alphabet are used. This is shown in
the following table:

DECIMAL HEXADECIMAL BINARY

) a 000000009
1 1 00000001
2 2 00000010
3 3 00000011
4 4 000001009
5 5 00000101
6 6 00000110
7 7 90000111
8 8 90001000
9 9 00001001
10 A 90001010
£l B 00001011
12 c 00001100
13 D 00001101
14 E 00001110
15 F 90001111
16 10 0008106000

3.7 ADDRESSING MODES

3.7.1 ZERO PAGE

Absolute addresses are expressed in terms of a high and a low
order byte. The high order byte is often referred to as the
page of memory. For example, the address §$1637 1is 1in page
$16, i.e. decimal 22, and $0277 is in page $62, i.e. decimal
2. There is, however, a special mode of addressing known as
zero page addressing and is, as the name implies, associated
with the addressing of memory locations in page zero. These
addresses, therefore, ALWAYS have a high order byte of zero.
The zero page mode of addressing only expects one byte to
describe the address, rather than two when using an absolute
address. The zero page addressing mode tells the
microprocessor to assume that the high order address is zero.
Therefore, zero page can reference memory locations whose
addresses are between $0000 and SOOFF.

3 - 14

Section Three Programming Machine Code

3.7.2 THE STACK

The 7501 microprocessor has a temporary storage area, known
as the stack which is used by both the programmer and the
microprocessor. It is also used to remember a particular
order of events. When a GOSUB statement is encountered in a
program, the BASIC interpreter "pushes", i.e. places, its
current position in the program onto the stack before going
to do the subroutine. When a RETURN 1is executed, the
interpreter "pulls", i.e. takes, this information off the
stack so that the program continues executing at the correct
point. The assembly language instructions for doing this are
PHA, which pushes the contents of the accumulator onto the
stack, and PLA, i.e. the reverse, which pulls a value off the
stack and places it in the accumulator. The status register
can also be pushed and pulled with the PHP and PLP
instructions respectively.

The stack is 256 bytes long, and is located in page one of
memory, from $0100 to $O1FF. It 1is organized backwards in
memory, the first position in the stack is at $@1lFF, and the
last is at $01040.

Another register in the 7501 microprocessor is <called the
stack pointer. This always points to the next available
location in the stack. When a-value is pushed onto the stack,
it is placed at the location to which the stack pointer is
pointing, and the stack pointer is moved down, 1.4
decremented, to the next position. When a value is pulled off
the stack, the stack pointer is incremented.

NOTE: the X register 1is referred to as X from now on.
Similarly A (for the accumulator), Y (for the Y index
register), S (for the stack pointer), and P (for the
processor status).

3.8 INDEXING

Indexing plays an extremely important part in the running of
the 7501 microprocessor. It can be defined as "creating an
actual address from a base address plus the contents of
either X or Y registers".

For example, 1if X contains $05, and the microprocessor
executes an LDA instruction in the "absolute X indexed mode"
with base address $9000, then the actual 1location that is

loaded into the A register is $9000 + $05 = $9005. The
mnemonic format of an absolute indexed instruction 1is the
same as an absolute instruction except that an ",X" or ",Y"

denoting the index is added to the address.

3 -15

Section Three Programming Machine Code

EXAMPLE:
LDA $9009,X

There are absolute indexed, 2zero page indexed, indirect
indexed, and indexed indirect addressing modes available on
the 7501 microprocessor.

3.8.1 INDIRECT INDEXED

This only allows usage of the Y register as the index. The
actual address can only be in zero page. The mode of
instruction is called indirect because the zero page address
specified in the instruction contains the 1low byte of the
actual address, and the next byte contains the high order
byte.

EXAMPLE:

Location $02 contains $45, and location $03 contains S1E. If
the instruction to 1load the accumulator in the indirect
indexed mode is executed and the specified zero page address
is $02, then the actual address is:

Low order = contents of $02
High order = contents of $03
Y register = $00

Thus the actual address = S1E45 + Y = S1E(4S5.

The title of this mode implies an indirect principle. To look
at it another way, "a letter is to be delivered to the post
office at address $82, MEMORY ST., and the address on the
letter is $05 houses past past $160@¢, MEMORY ST.". This is
equivalent to the code:

LDA #$00 ; load low order actual base address
STA $0@2 ; set the low order of the indirect base address
LDA #S16 ; load the high order indirect address
STA $@3 ; set the high byte of the indirect address
LDY #$05 ; set the indirect index (Y)
4

LDA ($02),Y load indirectly indexed by Y

3.8.2 INDEXED INDIRECT

Indexed indirect only allows usage of the X register as the
index. This is the same as indirect indexed, rather than the
actual base address. Therefore, the actual base address IS
the actual address because the index has already been used
for the indirect. Indexed indirect would also be used if a
table of indirect pointers were located in zero page memory,
and the X register could then specify which indirect pointer
to use.

3 - 16

Section Three Programming Machine Code

EXAMPLE:

Location $02 contains $45, and location $03 contains $10. 1If
the instruction to 1load the accumulator in the indexed
indirect mode is executed and the specified zero page address
is $02, then the actual address is:

Low order = contents of.($02 + X)
High order = contents of ($03 + X)
X register = $00

Thus the actual pointer is in $02 + X = $02, and the actual
address is the indirect address contained in 802 which is
$1@45.

The title of this mode does, in fact, 1imply the principle
underlying it. Look at it this way: "a letter 1is to be
delivered to the fourth post office at address $@2, MEMORY
ST., and the address on the letter 1is $1608, MEMORY ST.".
This is equivalent to the code:

LDA #S$040 load low order actual base address

STA $06 set the low byte of the indirect address
LDA #S16 load high order indirect address

STA $07 set the high byte of the indirect address
LDX #$04 set the indirect index (X)

LDA ($02,X) load indirectly indexed by X

NOTE: of the two indirect methods of addressing, the first
(indirect indexed) is far more widely used.

3.8.3 BRANCHES AND TESTING

Another very important principle in machine language 1is the
ability to test, and detect certain conditions in a similar
fashion to the "IF...THEN, IF...GOTO" structure in BASIC.

The various flags in the status register are affected 1in
different ways by different instructions. For example, there
is a flag that is set when an instruction has caused a zero
result, and is reset when a result is non-zero. For example,
the instruction:

LDA #$00
causes the 2zero result flag to be set, because that

instruction has resulted in the accumulator containing a
zero,

3 - 17

Section Three Programming Machine Code

There are a set of instructions that, given a particular
condition, branch to another part of the program. An example
of a branch instruction is BEQ, which means Branch if result
EQual to zero. These instructions branch if the condition is
true. If it 1is not, the program continues to the next
instruction, as if nothing had occurred. The branch
instructions branch by internally -examining the status
register, not as a result of the previous instruction(s). For
example, the BEQ instruction branches if the zero result flag
(2) is set. The BEQ instruction has an opposite instruction
BNE, which means Branch on result Not Equal to zero, 1i.e. 2
not set. Every branch instruction has an opposite branch
instruction.

The index registers have a number of associated 1instructions
which modify the contents of those registers. For example,
the INX instruction INcrements the X index register. If the X
register contained $FF, which is the maximum number the X
register can contain, before it was incremented, it "wraps
around" back to zero. If you require a program to continue to
do something until you perform the increment of the X index
that pushes it around to zero, you <can use the BNE
instruction to continue "looping" around, until X becomes
zero.

The reverse of INX, is DEX, which is DEcrement the X index
register. If the X index register contains =zero, DEX wraps
around to SFF.

Similarly, there are the INY and DEY instructions for the Y
index register.

If you do not want your program to wait until X or Y reaches,
or does not reach, zero, then use the comparison instructions
CPX and CPY. These allow you to test the index registers, or
the contents of memory locations with specific values. For
example, if you wish to see if the X register contains §$440,
you would use the instruction:

CPX #$40 compare X with the value §$490
BEQ $§?222? branch to somewhere else in the program if this
condition is "true"

The compare, and branch instructions play a major part in any
machine language program.

The operand specified in a branch instruction when using
TEDMON is the address of the section that the branch goes to
when the conditions are met. However, the operand is only an
offset, which gets you from where the program currently is to
the address specified. This offset is a single byte, and
therefore, the range that a branch instruction can use 1is
limited. It can branch from 128 bytes backward to 127 bytes
forward. Note that this is a total range of 255 bytes, the
maximum that a single byte can contain.

3 - 18

Section Three Programming Machine Code

TEDMON tells you if you try to "branch out of range" by
refusing to "assemble" that particular instruction. The
branch is a "quick" instruction by machine language standards
because it uses the "offset" principle as opposed to an
absolute address. TEDMON allows you to type in an absolute
address and it calculates the correct offset. This is one of
the advantages of using an assembler.

3.9 SUBROUTINES

In machine language you can call subroutines in much the same
way as you do in BASIC. The instruction to call a subroutine
is JSR (Jump to SubRoutine), followed by the absolute address
of the subroutine.

Incorporated in the operating system is a machine 1language
subroutine that PRINTs a character to the screen. The CBM
ASCII code for the character must be 1in the accumulator
before calling the subroutine. The address of this subroutine
is SFFD2.

The following program prints "HI" on the screen:

A 3000 LDA #8548 load the CBM ASCII code of "H"

A 3002 JSR SFFD2 print it

A 3005 LDA #S$49 load the CBM ASCII code of "I"

A 3007 JSR SFFD2 print that too

A 300A LDA #S$@D load a carriage return

A 140C JSR $FFD2 print it

A 140F BRK return to TEDMON

G 3000 prints "HI" and returns to TEDMON

This "PRINT-a-character" routine is part of the KERNAL jump
table. The instruction similar to GOTO in BASIC is JMP, which
means JuMP to the specified absolute address. The KERNAL is a
long list of "standardized" subroutines that control ALL
input and output operations. Each entry in the KERNAL jump
table JMPs to a subroutine in the operating system. This
"jump table" is found between memory locations $FF81 to SFFF3
in the operating system.

The following program displays the alphabet using the KERNAL
PRINT routine. The only instruction in this program which you
have not yet been introduced to is TXA. This Transfers the
contents of the X index register into the Accumulator.

3 -19

Section Three Programming Machine Code

A 3000 LDX #S41 X = CBM ASCII of "aA"“

A 3002 TXA A =X

A 30063 JSR S$FFD2 print character

A 3006 INX bump count

A 3007 CPX #$5B have we gone past "2"?

A 30069 BNE $3002 if no, go back and do more
A 300B BRK ‘if yes, return to TEDMON

To see your Clé or PLUS/4 print the alphabet, type:
G 3009

The comments that are beside the program explain its flow and
logic. If you are writing a program, COMMODORE recommends
that you write it on paper first, and then test small parts
of it at a time.

3.18 7561 MICROPROCESSOR INSTRUCTION SET - ALPHABETIC
SEQUENCE

ADC add memory to accumulator with carry
AND "AND" memory with accumulator
ASL shift left one bit (memory or accumulator)

BCC branch on carry clear

BCS branch on carry set

BEQ branch on result zero

BIT test bits in memory with accumulator
BMI branch on result minus

BNE branch on result not zero

BPL branch on result plus

BRK force break

BVC branch on overflow clear

BVS branch on overflow set

CLC clear carry flag

CLD clear decimal mode

CLI clear interrupt disable bit
CLV clear overflow flag

CMP compare memory and accumulator
CPX compare memory and index X

CPY compare memory and index Y

DEC decrement memory by one
DEX decrement index X by one
DEY decrement index Y by one

EOR "EXCLUSIVE-OR" memory with accumulator
INC increment memory by one
INX increment index X by one
INY increment index Y by one

3 - 20

Section Three Programming Machine Code

JMP jump to new location
JSR jump to new location saving return address

LDA load accumulator with memory

LDX load index X with memory

LDY load index Y with memory

LSR shift right one bit (memory or accumulator)

NOP no operation
ORA "OR" memory with accumulator

PHA push accumulator onto stack
PHP push processor status onto stack
PLA pull accumulator off stack
PLP pull processor status off stack

ROL rotate one bit left (memory or accumulator)
ROR rotate one bit right (memory or accumulator)
RTI return from interrupt
RTS return from subroutine

SBC subtract memory from accumulator with borrow
SEC set carry flag

SED set decimal mode

SEI set interrupt disable status

STA store accumulator in memory

STX store index X in memory

STY store index Y in memory

TAX transfer accumulator to index X
TAY transfer accumulator to index Y
TSX transfer stack pointer to index X
TXA transfer index X to accumulator
TXS transfer index X to stack pointer
TYA transfer index Y to accumulator

3.11 THE KERNAL

The KERNAL is a standardized JUMP TABLE ¢to the 39 input,
output, and memory management routines in the operating
system.

The location of each routine in ROM may change as the system
is upgraded, and the KERNAL jump table is always changed to
match. If your machine language routines only use the system
ROM routines through the KERNAL, it takes much less work to
modify them, should that need ever arise.

The KERNAL jump table is located in the last page of memory,

in read-only memory (ROM) and allows you to simplify the
machine language programs you write.

3 -21

Section Three Programming Machine Code

To use the KERNAL jump table, first set up the parameters
that the KERNAL routine needs in order to work. Then JSR,
i.e. Jump to SubRoutine, to the proper place in the KERNAL
jump table. After performing its function, the KERNAL
transfers control back to your machine 1language program.
Depending on which KERNAL routine you are using, certain
registers may pass parameters back to your program. The
particular registers for each KERNAL routine may be found in
the individual descriptions of the KERNAL subroutines (see
Section 4.11.3).

You can JSR directly to the required KERNAL subroutine.
However, using the jump table ensures that machine language
programs still work if the KERNAL or BASIC is changed. Future
operating systems or machines may have the memory 1locations
of routines in different positions in the memory map, but the
jump table routines in existing programs will still work
correctly in spite of any changes.

3.11.1 HOW TO USE THE KERNAL

When writing machine language programs it 1is convenient ¢to
use the routines which are already part of the operating
system for input/output, access to the system clock, memory
management, and other similar operations. It is an
unnecessary duplication of effort to write these routines
over and over again, and easy access to the operating system
helps speed machine language programming.

To use a KERNAL routine you must first make all of the
preparations that the routine demands. If one routine says
that you must call another KERNAL routine first, then that
routine must be called. If the routine expects you to put a
number in the accumulator, then that number must be there. If
these guidelines are followed, the routines work as expected.

After all preparations are made, you must call the routine by
means of the JSR instruction. All KERNAL routines you can
access are structured as SUBROUTINES, and therefore end with
an RTS instruction. When the KERNAL routine has finished its
task, control is returned to your program at the instruction
after the JSR.

Many of the KERNAL routines return error codes in the status
word or the accumulator. This is in case you have problems in
the routine. Good programming practice and the success of
your machine language programs demand that you handle these
error codes properly. If you ignore an error return, the rest
of your program might fail.

Section Three Programming Machine Code

Summary: the three steps involved when using a KERNAL routine
are:

1. Set up

2. Call the routine

3. Error handling

The KERNAL routines are described in Section 3.11.3.

The following conventions are used in these descriptions:

FUNCTION NAME: name of the KERNAL routine.

CALL ADDRESS: this is the call address of the KERNAL routine,
given in hexadecimal and decimal.

COMMUNICATION REGISTERS: registers listed under this heading
are used to pass parameters to and from the KERNAL routines.

PREPARATORY ROUTINES: certain KERNAL routines require that
data be set up before they can operate. The routines needed
are listed here.

ERROR RETURNS: a return from a KERNAL routine with the CARRY
set indicates that an error was encountered in processing.
The accumulator contains the number of the error.

STACK REQUIREMENTS: this is the actual number of stack bytes
used by the KERNAL routine.

REGISTERS AFFECTED: all registers used by the KERNAL routine
are listed here.

DESCRIPTION: a short tutorial on the function of the KERNAL
routine.

Section Three

3.11.2 USER CALLABLE KERNAL

NAME

ACPTR
CHKIN
CHKOUT
CHRIN
CHROUT
CIoUuT
CINT
CLALL
CLOSE
CLRCHN

GETIN
IOBASE

IOINIT
LISTEN

LOAD
MEMBOT
MEMTOP
OPEN
PLOT
RAMTAS

RDTIM
READST
RESTOR
SAVE
SCNKEY
SCREEN

SECOND
SETLFS

SETMSG
SETNAM
SETTIM
SETTMO
STOP
TALK

TKSA

UDTIM
UNLSN

UNTLK
VECTOR

®0 00 00 06 00 00 G0 00 o0 06 00 00 e s o0

00 60 00 00 00 00 00 00 00 00 00 K0 G0 00 00 00 00 00 00 00 00 G0 00 00 00 00 06 00 00 06 00 06 e0 ee e

ADDRESS

HEX DECIMAL
SFFAS : 65445
SFFC6 : 65478
SFFC9 : 65481
SFFCF : 65487
SFFD2 : 65490
SFFA8 : 65448
SFF81 : 65409
SFFE7 : 65511
SFFC3 : 65475
SFFCC : 65484
SFFE4 : 65508
SFFF3 : 65523
SFF84 : 65412
SFFB1 : 65457
SFFD5 : 65493
SFF9C : 65436
SFF99 : 65433
SFFCO@ : 65472
SFFFd : 65520
SFF87 : 65415
SFFDE : 65502
SFFB7 : 65463
SFF8A : 65418
SFFD8 : 65496
SFF9F : 65439
SFFED : 65517
SFF93 : 65427
SFFBA : 65466
SFF99 : 65424
SFFBD : 65469
SFFDB : 65499
SFFA2 : 65442
SFFE1 : 65505
SFFB4 : 65460
SFF96 : 65430
SFFEA ; 65514
SFFAE : 65454
SFFAB : 65451
SFF8D : 65421

Programming Machine Code

ROUTINES

FUNCTION

Input byte from serial port
Open channel for input

Open channel for output
Input character from channel
Output character to channel
Output byte to serial port
Initialize screen editor
Close all channels and files
Close specified logical file
Close input and output
channels

Get character from keyboard
queue (keyboard buffer)
Returns base address of I/0
devices

Initialize input/output
Command devices on serial bus
to LISTEN

Load RAM from a device
Read/set the bottom of memory
Read/set the top of memory
Open a logical file

Read/set X,Y cursor position
Initialize RAM, allocate tape
buffer, set screen $0400
Read real time clock

Read I/0 status word

Restore default I/0 vectors
Save RAM to device

Scan keyboard

Return X,Y organization of
screen

Send secondary address after
LISTEN

Set logical, first andsecond
addresses

Control KERNAL messages

Set file name

Set real time clock

Set timeout on serial bus
Scan stop key

Command serial bus device to
TALK

Send secondary address after
TALK

Increment real time clock
Command serial bus to
UNLISTEN

Command serial bus to UNTALK
Read/set vectored I/0

00 00 00 00 00 20 00 00 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 00 0 00 Ge 00 00 60 00 o0 e 00 a0

®0 60 00 00 @6 00 00 08 00 00 00 o4 8o o6 oo

3 - 24

Section Three Programming Machine Code

3.11.3 KERNAL ROUTINE DESCRIPTIONS

Function name: ACPTR

Purpose: Get data from the serial bus
Call address: $FFAS5 (hex) 65445 (decimal)
Communication registers: A

Preparatory routines: TALK, TKSA

Error returns: See READST

Stack requirements: 13

Registers affected: A, X

Description: Use this routine when you require information
from a device, e.g. disk, on the serial bus. This routine
gets a byte of data from the serial bus using full
handshaking. The data is returned in the accumulator. To
prepare for this routine the TALK routine must be called to
command the device on the serial bus to send data through the
bus. If the input device needs a secondary command, it must
be sent, before calling this routine, using the TKSA KERNAL
routine. Errors are returned in the status word which is read
using the READST routine.

How to use:

1. Command a device on the serial bus to prepare to send data
to your Cl6 or PLUS/4, (use the TALK and TKSA KERNAL
routines).

2. Call this routine (using JSR).

3. Store or otherwise use the data.

EXAMPLE:

; GET A BYTE FROM THE BUS
JSR ACPTR
STA DATA

Function name: CHKIN

Purpose: Open a channel for input

Call address: SFFC6 (hex) 65478 (decimal)
Communication registers: X

Preparatory routines: (OPEN)

Error returns: See READST

Stack requirements: NONE

Registers affected: A, X

Description: Any logical file that has already been opened by
the KERNAL OPEN routine can be defined as an input channel by
this routine. The device on the channel must be an input
device, otherwise an error occurs and the routine aborts.

3 - 25

Section Three Programming Machine Code

If you are obtaining data from anywhere other than the
keyboard, this routine must be called before using either the
CHRIN or the GETIN KERNAL routines for data input. If you
wish to use the input from the keyboard, and no other input
channels are opened, then the calls to this routine and to
the OPEN routine are not needed.

When this routine is used with a device on the serial bus, it
automatically sends the talk address, together with the
secondary address if one was specified by the OPEN routine,
over the bus.

How to use:

1. OPEN the 1logical file if necessary (see description
above).

2. Load the X register with the number of the logical file to
be used.

3. Call this routine (using a JSR command).

Possible errors are:

#3: File not open
#5: Device not present
#6: File not an input file

EXAMPLE:

; PREPARE FOR INPUT FROM LOGICAL FILE 2
LDX #$02
JSR CHKIN

Function name: CHKOUT

Purpose: Open a channel for output

Call address: SFFC9 (hex) 65481 (decimal)
Communication registers: X

Preparatory routines: (OPEN)

Error returns: 9,3,5,7 (See READST)

Stack requirements: 4+

Registers affected: A, X

Description: Any logical file number that has been created by
the KERNAL OPEN routine can be defined as an output channel.
The device to which you intend opening a channel must be an
output device, otherwise an error occurs and the routine is
aborted.

This routine must be called before any data is sent to any
output device unless you wish to use the Cl6 or PLUS/4 screen
as your output device. If screen output is desired, and there
are no other output channels already defined, then calls to
this routine, and to the OPEN routine, are not required.

3 - 26

Section Three Programming Machine Code

When used to open a channel to a device on the serial bus,
this routine automatically sends the LISTEN address specified
by the OPEN routine, together with a secondary address if
specified.

How to use:

1. Use the KERNAL OPEN routine to specify a logical file
number, a LISTEN address, and a secondary address (if
needed) .

2. Load the X register with the logical file number used in
the OPEN statement.

3. Call this routine (by using the JSR instruction).

NOTE: This routine is NOT NEEDED to send data to the screen.
EXAMPLE:

LDX #$03 ; DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL
JSR CHKOUT

Possible errors are:

#3: File not open
#5: Device not present
#7: Not an output file

Function name: CHRIN

Purpose: Get a character from the input channel
Call address: SFFCF (hex) 65487 (decimal)
Communication registers: A

Preparatory routines: (OPEN, CHKIN)

Error returns: @ (See READST)

Stack requirements: 7+

Registers affected: A, X

Description: This routine gets a byte of data from a channel
already set up as the input channel by the KERNAL routine
CHKIN. If CHKIN has NOT been used to define another input
channel, then all the data is expected from the keyboard. The
data byte is returned in the accumulator and the channel
remains open after the call.

Input from the keyboard is handled in a special way. The
cursor is turned on, and blinks until a carriage return is
typed on the keyboard. All characters on the line, up to a
maximum of 88 characters, are then stored in the BASIC input
buffer. These characters can be retrieved one at a time by
calling this routine once for each character. When the
carriage return is retrieved, the entire 1line has been
processed.

Section Three Programming Machine Code

How to use:

From the keyboard:

1. Retrieve a byte of data by calling this routine.
2. Store the data byte.

3. Check if it is the last data byte (is it a CR?).
4, If not, go to step 1.

EXAMPLE:
LDY #$00 7 PREPARE THE Y REGISTER TO STORE THE DATA
RD JSR CHRIN
STA DATA,Y 7 STORE THE YTH DATA BYTE IN THE YTH
; LOCATION IN THE DATA AREA
INY
CMP #$0D ; IS IT A CARRIAGE RETURN?
BNE RD ; NO, GET ANOTHER DATA BYTE

From other devices:

1. Use the KERNAL OPEN and CHKIN routines.

2. Call this routine (using a JSR instruction).
3. Store the data.

EXAMPLE:

JSR CHRIN
STA DATA

Function name: CHROUT

Purpose: Output a character

Call address: SFFD2 (hex) 65490 (decimal)
Communication registers: A

Preparatory routines: (CHKOUT, OPEN)
Error returns: @ (See READST)

Stack requirements: 8+

Registers affected: A

Description: This routine outputs a character to an already
opened channel. Use the KERNAL OPEN and CHKOUT routines to
set up the output channel before calling this routine. 1If
this call is omitted, data is sent to the default output
device, i.e. number 3, the screen. The data byte to be output
is loaded into the accumulator, and the CHROUT routine is
called. The data is then sent to the specified output device.
The channel is left open after the call.

NOTE: Care must be taken when using this routine that you
send data to a specific serial device, as data is sent to all
open output channels on the bus. Unless this is desired, all
open output channels on the serial bus, other than the
intended destination channel, must be closed by a call to the
KERNAL CLRCHN routine.

3 - 28

Section Three Programming Machine Code

How to use:

1. Use the CHKOUT KERNAL routine if necessary (see
description above).

2. Load the data to be output into the accumulator.

3. Call this routine.

EXAMPLE:

;7 DUPLICATE THE BASIC INSTRUCTION CMD 4,"A";
LDX #$04 ; LOGICAL FILE #4
JSR CHKOUT ; OPEN CHANNEL OUT
LDA #5541 7 HEX CODE FOR ASCII "a"
JSR CHROUT ; SEND CHARACTER

Function name: CIQUT

Purpose: Transmit a byte over the serial bus
Call address: S$FFA8 (hex) 65448 (decimal)
Communication registers: A

Preparatory routines: LISTEN, [SECOND]

Error returns: See READST

Stack requirements: 5

Registers affected: None

Description: This routine is used to send information to
devices on the serial bus. A call to this routine puts a data
byte onto the serial bus using full serial handshaking.
Before this routine is called, the LISTEN KERNAL routine must
be used to command a device on the serial bus to get ready to
receive data. If a device needs a secondary address, it must
also be sent by wusing the SECOND KERNAL routine. The
accumulator is loaded with a byte to handshake as data on the
serial bus. A device must be listening or the status word
returns a timeout. This routine always buffers one character,
i.e. the routine holds the previous character to be sent
back. This means that when a call to the KERNAL UNLSN routine
is made to end the data transmission, the buffered character
is sent with an End Or Identify (EOI) set. The UNLSN command
is then sent to the device.

How to use:

1. Use the KERNAL LISTEN routine (and the SECOND routine |if
needed).

2. Load the accumulator with a byte of data.

3. Call this routine to send the data byte.

EXAMPLE:
SEND AN X TO THE SERIAL BUS

H
LDA #$58 ; HEX CODE FOR ASCII "x"
JSR CIOQUT ; SEND IT

3 - 29

Section Three Programming Machine Code

Function name: CINT

Purpose: Initialize screen editor

Call address: SFF81 (hex) 65409 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: None

Stack requirements: 4

Registers affected: A, X, Y

Description: This routine 1initializes the KERNAL screen
editor,

NOTE: On the COMMODORE 64 the CINT KERNAL routine also resets
the (6567) video chip. CINT does not alter the state of the
video chip on the Cl6 and PLUS/4.

How to use:
1. Call this routine.
EXAMPLE:

JSR CINT
JMP RUN ; BEGIN EXECUTION

Function name: CLALL

Purpose: Close all files

Call address: SFFE7 (hex) 65511 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: None

Stack requirements: 11

Registers affected: A, X

Description: This routine closes all previously OPENed files.
When this routine is called, the pointers into the open file
table are reset, closing all files. The CLRCHN routine 1is
also automatically called to reset the I/O channels.

How to use:

1. Call this routine.

EXAMPLE:

JSR CLALL ; CLOSE ALL FILES AND SELECT DEFAULT I/O CHANNELS
JMP ROUN ; BEGIN EXECUTION

Section Three Programming Machine Code

Function name: CLOSE

Purpose: Close a logical file

Call address: $FFC3 (hex) 65475 (decimal)
Communication registers: A

Preparatory routines: None

Error -returns: @, 240 (See READST)

Stack requirements: 2+

Registers affected: a, X, Y

Description: This routine is used to close a 1logical file
after all I/O operations have been completed on that file. It
is called after the accumulator is loaded with the number of
the logical file to be closed, this must be the same number
used when the file was opened using the OPEN routine.

How to use:

l. Load the accumulator with the number of the 1logical file
to be closed.
2. Call this routine.

EXAMPLE:

; DUPLICATE THE BASIC INSTRUCTION CLOSE 15
LDA #$0F ; LOAD ACCUMULATOR WITH HEX OF 15
JSR CLOSE ; CLOSE THE FILE

Function name: CLRCHN

Purpose: Clear I/0 channels

Call address: SFFCC (hex) 65484 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: See READST

Stack requirements: 9

Registers affected: A, X

Description: This routine 1is called to clear all open
channels and restore the 1I/0 channels to their original
default values. It is usually called after opening other 1I/0
channels, such as a tape or disk drive, and using them for
input/output operations. The default input device is 0, i.e.
the keyboard, and the default output device is 3, 1i.e. the
screen,

Section Three Programming Machine Code

If one of the channels to be closed is on the serial port, an
UNTALK signal must first be sent to clear the input channel
or an UNLISTEN sent to clear the output channel. 1If the
UNLISTEN routine is not called, thus leaving listeners active
on the serial bus, several devices can receive the same data
from the Clé or PLUS/4 at the same time. One way to take
advantage of this is to command the printer to LISTEN and the
disk to TALK. In this way, with the aid of a routine to get
data bytes from the disk drive and send them to the printer,
you can print a disk file directly.

This routine is automatically called when the KERNAL CLALL
routine is executed.

How to use:
1. Call this routine using the JSR instruction.
EXAMPLE:

JSR CLRCHN

Function name: GETIN

Purpose: Get a character

Call address: SFFE4 (hex) 65508 (decimal)
Communication registers: A

Preparatory routines: CHKIN, OPEN

Error returns: See READST

Stack requirements: 7+

Registers affected: A (X, Y)

Description: If the channel is the keyboard, this subroutine
removes one character from the keyboard queue and returns it
in the accumulator as an ASCII value. If the queue is empty,
the value returned in the accumulator is zero. Characters are
put into the queue automatically by an interrupt driven
keyboard scan routine which calls the SCNKEY routine. The
keyboard buffer can hold up to ten characters. If the buffer
is full, additional characters are ignored until at least one
character has been removed from the queue. If the channel is
RS-232, then only the A register 1is used and a single
character is returned. See READST to check validity. If the
channel is serial, cassette, or screen, then call the CHRIN
routine.

Section Three Programming Machine Code

How to use:

1. Call this routine using a JSR instruction.
2. Check for a zero in the accumulator (empty buffer).
3. Process the data.

EXAMPLE:

WAIT FOR A CHARACTER

GET A CHARACTER

COMPARE IT WITH ZERO

IT'S A ZERO! GO BACK AND GET ANOTHER

WAIT JSR GETIN
CMP #$00
BEQ WAIT

Ne N we “o

Function name: IOBASE

Purpose: Return location of start of I/0
Call address: $FFF3 (hex) 65523 (decimal)
Communication registers: X, Y
Preparatory routines: None

Error returns: See READST

Stack requirements: 2

Registers affected: X, Y

Description: This routine sets the X and Y registers to the
address of the memory section where the memory mapped 1I/0
devices are located. This address can then be used with an
offset to access the memory mapped I/0 devices in the Cl6 and
PLUS/4. The offset 1is the number of locations from the
beginning of the page on which the required I/0 register is
located. The X register contains the low order address byte,
and the Y register contains the high order address byte.

This routine exists to provide compatibility between
COMMODORE machines. If the I/0 locations for a machine
language program are set by a call to this routine, they
remain compatible with other versions of the KERNAL and
BASIC.

How to use:

1. Call this routine by using the JSR instruction.

2. Store the X and Y registers in consecutive page =zero
locations.

3. Load the Y register with the offset.

4, Access that I/0 location.

EXAMPLE:
JSR IOBASE
STX POINT ;s SET BASE REGISTERS
STY POINT + 1 ;
LDY #$02 ;7 LOAD Y WITH OFFSET
LDA #S500 ; LOAD A WITH DATA

’

STA (POINT),Y ACCESS MEMORY MAPPED I/O

3 - 33

Section Three Programming Machine Code

Function name: IOINIT

Purpose: Initialize I/O devices

Call address: $FF84 (hex) 65412 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: See READST

Stack requirements: None

Registers affected: A, X, Y

Description: This routine 1initializes all input/output
devices and routines.

EXAMPLE:

JSR IOINIT

Function name: LISTEN

Purpose: Command a device on the serial bus to listen
Call address: SFFB1l (hex) 65457 (decimal)
Communication registers: A

Preparatory routines: None

Error returns: See READST

Stack requirements: None

Registers affected: A

Description: This routine commands a device on the serial bus
to receive data. The accumulator must be loaded with a device
number between @ and 31 before calling the routine. LISTEN
ORs the number bit by bit to convert it to a listen address,
then transmits this data as a command on the serial bus. The
specified device then goes into listen mode ready to accept
information.

How to use: \
1. Load the accumulator with the number of the device to be
commanded to LISTEN.

2. Call the LISTEN routine using the JSR instruction.

EXAMPLE:

; COMMAND DEVICE #8 TO LISTEN
LDA #$08 ; LOAD ACCUMULATOR WITH DEVICE NO.
JSR LISTEN ; SEND COMMAND

Section Three Programming Machine Code

Function name: LOAD

Purpose: Load RAM from device

Call address: S$FFDS5 (hex) 65493 (decimal)
Communication registers: A, X, Y
Preparatory routines: SETLFS, SETNAM
Error returns: @, 4, 5, 8, 9 (See READST)
Stack requirements: None

Registers affected: A, X, Y

Description: This routine LOADs data bytes from any input
device directly into the memory of the Cl6 and PLUS/4. It can
also be used to perform a verify operation, comparing data
from a device with the data already in memory, while leaving
the data stored in RAM unchanged.

The accumulator (A) must be set to @ for a LOAD operation, or
1l for a verify. If the input device 1is OPENed with a
secondary address (SA) of @, the header information from the
device is ignored. In this case, the X and Y registers must
contain the starting address for the load. If the device is
addressed with a secondary address of 1, then the data is
loaded into memory starting at the location specified by the
header. This routine returns the address of the highest RAM
location loaded.

Before this routine can be called, the KERNAL SETLFS and
SETNAM routines must be called.

NOTE: You can NOT LOAD from the keyboard (@), RS-232 (2), or
the screen (3).

How to use:

1. Call the SETLFS and SETNAM routines. If a relocated 1load
is desired, use the SETLFS routine to send a secondary
address of 4.

2. Set the A register to @ for load, 1 for verify.

3. If a relocated load is desired, the X and Y registers must
be set to the start address for the load.

4. Call the routine using the JSR instruction.

3 - 35

Section Three Programming Machine Code

EXAMPLE:
; LOAD A FILE FROM TAPE
LDA #$01 ; SET DEVICE NUMBER (1 FOR TAPE)
LDX #FILENO ; SET LOGICAL FILE NUMBER
LDY #SA ; SET SECONDARY ADDRESS
JSR SETLES

LDA #NAMEl - NAME LOAD A WITH NUMBER OF CHARACTERS
IN FILE NAME
LOAD X WITH LOW ORDER BYTE OF

FILE NAME ADDRESS

LDX #<NAME

Ne NE NE NS Ne Ne W

FILE NAME IN ASCII BYTES
LENGTH OF FILENAME (NAMEl - NAME)

NAME .ASC "FILE NAME"
NAME1l NOP

LDY #>NAME LOAD Y WITH HIGH ORDER BYTE OF
FILE NAME ADDRESS

JSR SETNAM

’
LDA #$00 ; SET FLAG FOR A LOAD
LDX #SFF ; ALTERNATE START
LDY #SFF ; (NOT REQUIRED FOR THIS LOAD)
JSR LOAD ; LOAD FILE

’
STX VARTAB ; STORE ENDING ADDRESS IN POINTER
STY VARTAB + 1 ; FOR START OF BASIC VARIABLES
JMP START ; BEGIN EXECUTION

7

’

;

Function name: MEMBOT

Purpose: Read/set bottom of memory

Call address: SFF9C (hex) 65436 (decimal)
Communication registers: X, Y
Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: X, Y

Description: This routine 1is used to set the bottom of
memory. If the accumulator carry bit is set when this routine
is called, a pointer to the lowest byte of RAM is returned in
the X and Y registers. On the Cl6 and PLUS/4 the initial
value of this pointer is $1000, i.e. 4096 in decimal. If the
accumulator carry bit is clear, i.e. = @, when this routine
is called, the values of the X and Y registers are
transferred to the low and high bytes respectively of the
beginning of RAM pointer.

3 - 36

Section Three Programming Machine Code

How to use:

TO READ THE BOTTOM OF RAM
1. Set the carry.
2. Call the MEMBOT routine.

TO SET THE BOTTOM OF RAM
1. Clear the carry.
2. Call the MEMBOT routine.

EXAMPLE:
; MOVE BOTTOM OF MEMORY UP 1 PAGE
SEC ;7 SET CARRY
JSR MEMBOT ; READ MEMORY BOTTOM
INY ; INCREMENT Y (HIGH ORDER BYTE OF POINTER)
CLC ; CLEAR CARRY
JSR MEMBOT ; SET MEMORY BOTTOM TO NEW VALUE

Function name: MEMTOP

Purpose: Read/set top of memory

Call address: $FF99 (hex) 65433 (decimal)
Communication registers: X, Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: X, Y

Description: This routine is used to set the top of RAM. When
this routine is called with the carry bit of the accumulator
set, the pointer to the top of RAM is locaded into the X and Y
registers. When this routine is called with the accumulator
carry bit clear, i.e. = @, the contents of the X and Y
registers are loaded into the top of memory pointer, changing
the top of memory.

EXAMPLE:
; BRING DOWN THE TOP OF MEMORY
SEC 7 SET CARRY
JSR MEMTOP ; READ TOP OF MEMORY
DEX ; DECREMENT X REGISTER
CLC ; CLEAR CARRY
JSR MEMTOP ; SET NEW TOP OF MEMORY

3 - 37

Section Three Programming Machine Code

Function name: OPEN

Purpose: Open a logical file

Call address: $FFCO (hex) 65472 (decimal)
Communication registers: None

Preparatory routines: SETLFS, SETNAM

Error returns: 1, 2, 4, 5, 6, 240 (See READST)
Stack requirements: None

Registers affected: a, X, Y

Description: This routine is used to OPEN a logical file.
Once the 1logical file is set up, it can be used for
input/output operations. Most of the 1I/0 KERNAL routines
require this routine to create the 1logical files on which
they operate. No arguments are needed to set up this routine,
but both the SETLFS and SETNAM routines must be called before
using this routine.

How to use:

1. Use the SETLFS routine.
2. Use the SETNAM routine.
3. Call this routine.

EXAMPLE:

The following routine emulates the BASIC statement: OPEN
15,8, 15,"1 /0™

LDA #NAMEl - NAME ; LENGTH OF FILE NAME FOR SETLFS
LDX #<NAME

LDY #>NAME ; ADDRESS OF FILE NAME

JSR SETNAM

LDA #S$S0@F

LDX #S$08

LDY #S$S0OF

JSR SETLFS

JSR OPEN

-e

NAME .ASC "I1/0"
NAME1l NOP

Section Three Programming Machine Code

Function name: PLOT

Purpose: Read/set cursor location

Call address: SFFF@ (hex) 65520 (decimal)
Communication registers: A, X, Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, X, Y

Description: A call to this routine, with the accumulator
carry flag set, loads the current position of the screen
cursor, in X, Y coordinates, into the Y and X registers. The
Y register contains the column that the cursor is in (@-39),
and the X register contains the row that the cursor in on
(0-24). A call with the carry bit clear positions the cursor
at the X, Y location held in the Y and X registers.

How to use:

READING CURSOR LOCATION

1. Set the carry flag.

2, Call this routine.

3. Get the X and Y position from the Y and X registers,
respectively.

SETTING CURSOR LOCATION

1., Clear the carry flag.

2. Set the Y and X registers to the desired cursor location.
3. Call this routine.

EXAMPLE:
; MOVE THE CURSOR TO ROW 10, COLUMN 5 (5,10)
LDX #$0A ; LOAD X REGISTER WITH 140
LDY #$05 ; LOAD Y REGISTER WITH 5
CLC ; CLEAR CARRY
JSR PLOT

Function name: RAMTAS

Purpose: Perform RAM test

Call address: $FF87 (hex) 65415 (decimal)
Communication registers: A, X, Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, X, Y

Description: This routine is used to test RAM and set the top
and bottom of memory pointers accordingly.

EXAMPLE:

JSR RAMTAS

3 - 39

Section Three Programming Machine Code

Function name: RDTIM ‘

Purpose: Read system clock

Call address: SFFDE (hex) 65502 (decimal)
Communication registers: A, X, Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, X, Y

Description: This routine is used to read the system clock.
The clock's resolution is 1/60th of a second. Three bytes are
returned by the routine. The accumulator contains the most
significant byte, the X index register contains the next most
significant byte, and the Y index register contains the least
significant byte.

EXAMPLE:

JSR RDTIM .

STY TIME
STX TIME + 1
STA TIME + 2

Function name: READST

Purpose: Read status word

Call address: SFFB7 (hex) 65463 (decimal)
Communication registers: A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A

Description: This routine returns the current status of the

I/0 devices in the accumulator. The routine is usually called

after new communication to an I/0 device. The routine gives .
you information about device status, or errors that have

occurred during the I/0 operation.

3 - 40

Section Three Programming Machine Code

The bits returned in the accumulator contain the following
information:

ST ST TAPE
BIT NUMERIC CASSETTE SERIAL/RW VERIFY
POSITION VALUE READ + LOAD
a 1 Time out
write
1 2 Time out
read
2 4 Short block Short block
3 8 Long block Long block
4 16 Unrecoverable Any
read error mismatch
5 32 Checksum Checksum
error error
6 64 End of file EOI line
7 ~-128 End of tape Device not End of tape
present

How to use:

1. Call this routine.
2. Decode the information in the A register

EXAMPLE:

7 CHECK FOR END OF FILE DURING READ
JSR READST
AND #$5490 ; AND WITH 64 TO CHECK EOF (END OF FILE) BIT
BNE EOF ; BRANCH ON EOF

Function name: RESTOR

Purpose: Restore default system and interrupt vectors
Call address: SFF8A (hex) 65418 (decimal)

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: a, X, Y

Description: This routine restores the default values of all
system vectors used in KERNAL and BASIC routines and
interrupts (see the Memory Map in Section 3.12 for a list of
the vectors). The KERNAL VECTOR routine is used to read and
alter individual system vectors.

How to use:

1. Call this routine.

EXAMPLE:

JSR RESTOR

Section Three Programming Machine Code

Function name: SAVE

Purpose: Save memory to a device

Call address: $SFFD8 (hex) 65496 (decimal)
Communication registers: A, X, Y
Preparatory routines: SETLFS, SETNAM
Error returns: 5, 8, 9 (See READST)

Stack requirements: None

Registers affected: A, X, Y

Description: This routine saves a section of memory to a
device. Memory is saved from an indirect address on page zero
specified by the accumulator contents, to the address stored
in the X and Y registers. It is then sent to a 1logical file
on an input/output device. The SETLFS and SETNAM routines
must be used before calling this routine. Note that a file
name is not required when saving to device 1, the cassette
unit. An attempt to save to any other device without using a
file name results in an error.

NOTE: You cannot SAVE to device @ (the keyboard), device 2
(RS-232), or device 3 (the screen). If this is attempted, an
error occurs, and the SAVE is stopped.

How to use:

1. Use the SETLFS and SETNAM routines.

2. Load two consecutive locations in page zero with a pointer
to the start of the save, low byte first, high byte next.

3. Load the accumulator with the single byte page zero offset
to the pointer.

4, Load the X and Y registers with the 1low byte and high
byte, respectively, of the location of the end of the end of
the save.

5. Call the SAVE routine.

EXAMPLE:

LDA #$01 ; DEVICE = 1, CASSETTE

JSR SETLFS

LDA #$00 ; NO FILE NAME

JSR SETNAM

LDA PROG ; LOAD START ADDRESS OF SAVE

STA TXTTAB ; (LOW BYTE)

LDA PROG+1

STA TXTTAB+1 (HIGH BYTE)

LDX VARTAB LOAD X WITH LOW BYTE OF END OF SAVE

LDY VARTAB+1
LDA #<TXTTAB
JSR SAVE

LOAD Y WITH HIGH BYTE OF END OF SAVE
LOAD ACCUMULATOR WITH PAGE ZERO OFFSET

e N We N

Section Three Programming Machine Code

Function name: SCNKEY

Purpose: Scan the keyboard

Call address: $FFI9F (hex) 65439 (decimal)
Communication registers: None

Preparatory routines: IOINIT

Error returns: None

Stack requirements: 5

Registers affected: a, X, Y

Description: This routine scans the Cl6 and PLUS/4 keyboard
and checks for pressed keys. This is the routine which |is
called by the interrupt handler. If a key is down, its ASCII
value is placed in the keyboard queue. This routine is called
only if the normal IRQ interrupt is bypassed.

How to use:

1. Call this routine.

EXAMPLE:

GET JSR SCNKEY SCAN KEYBOARD

14
JSR GETIN ; GET CHARACTER
CMP #$00 ; IS IT NULL?
BEQ GET ; YES...SCAN AGAIN
JSR CHROUT ; PRINT IT

Function name: SCREEN

Purpose: Return screen format

Call address: SFFED (hex) 65517 (decimal)
Communication registers: X, Y
Preparatory routines: None

Stack requirements: 2

Registers affected: X, Y

Description: This routine returns the format of the screen,
€.9., 40 columns in X and 25 lines in Y. The routine can be
used to determine what machine a program is running on. This
function has been included on the Cl6 and PLUS/4 to help
upward compatibility of your programs.

How to use:

1. Call this routine.
EXAMPLE:

JSR SCREEN

STX MAXCOL
STY MAXROW

Section Three Programming Machine Code

Function name: SECOND

Purpose: Send secondary address for LISTEN
Call address: $SFF93 (hex) 65427 (decimal)
Communication registers: A

Preparatory routines: LISTEN

Error returns: See READST

Stack requirements: 8

Registers affected: A

Description: This routine is used to send a secondary address
to an I/0 device after a call to the LISTEN routine is made.
This routine can NOT be used to send a secondary address
after a call to the TALK routine.

A secondary address is usually used to give setup information
to a device before I/0 operations begin. When a secondary
address is to be sent to a device on the serial bus, the
address must first be ORed with #$64.

How to use:
1. Load the accumulator with the secondary address to be

sent.
2. Call this routine.

EXAMPLE:
; ADDRESS DEVICE #8 WITH COMMAND
; (SECONDARY ADDRESS) #15

LDA #S08

JSR LISTEN

LDA #S0OF

JSR SECOND

Function name: SETLFS

Purpose: Set up a logical file

Call address: SFFBA (hex) 65466 (decimal)
Communication registers: A, X, Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

Description: This routine sets the logical file number,
device address, and secondary address, i.e. command number,
for other KERNAL routines.

Section Three Programming Machine Code

The logical file number is used by the system as a key to the
file table created by the OPEN file routine. Device addresses
can range from @ to 31. The codes used by the Cl6é and PLUS/4
for the CBM devices are listed below:

ADDRESS DEVICE

Keyboard

Cassette unit

RS-232C device

CRT display

Serial bus printer

CBM serial bus disk drive

QWM

Device numbers greater than 3 automatically refer to devices
on the serial bus.

The device number 1is sent during the serial attention
handshaking sequence, then a command to the device is sent as
a secondary address on the serial bus. If no secondary
address is to be sent, the Y index register must be set to
255,

How to use:
1. Load the X index register with the logical file number.

2, Load the accumulator with the device number.
3. Load the Y index register with the command.

EXAMPLE:
; FOR LOGICAL FILE 32, DEVICE #4, NO COMMAND
LDA #$20 ; HEX FOR 32
LDX #$04
LDY #SFF ; HEX FOR 255
JSR SETLFS

Function name: SETMSG

Purpose: Control system message output
Call address: SFF90 (hex) 65424 (decimal)
Communication registers: A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A

Description: This routine controls the printing of error and
control messages by the KERNAL. Either error messages or
control messages can be selected by setting the accumulator
when the routine is called. FILE NOT FOUND is an example of
an error message, PRESS PLAY ON TAPE 1is an example of a
control message.

Section Three Programming Machine Code

Bits 6 and 7 of this value determine whether control or error
messages are displayed. If bit 7 is set, the KERNAL error
messages are printed. If bit 6 is set, control messages are
printed.

How to use:

1. Set accumulator to desired value.
2. Call this routine.

EXAMPLE:

LDA #$40

JSR SETMSG ; TURN ON CONTROL MESSAGES

LDA #$8@

JSR SETMSG ; TURN ON ERROR MESSAGES

LDA #$00

JSR SETMSG ; TURN OFF ALL KERNAL MESSAGES

Function name: SETNAM

Purpose: Set file name

Call address: SFFBD (hex) 65469 (decimal)
Communication registers: A, X, Y
Preparatory routines: SETLFS

Stack requirements: None

Registers affected: A, X, Y

Description: This routine is used to set up the file name for
OPEN, SAVE, or LOAD routines. The accumulator must be loaded
with the length of the file name. The X and Y registers must
be loaded with the address of the file name, low byte first,
high byte next. This address can be any valid memory address
in the system. If no file name is desired, the accumulator
must be set to @, representing a zero file length.

How to use:

1, Load the accumulator with the length of the file name.

2. Load the X index register with the low order address of
the file name.

3. Load the Y index register with the high order address of
the file name.

4, Call this routine.

EXAMPLE:

LDA #NAME1l - NAME ; LOAD LENGTH OF FILE NAME
LDX #<NAME ; LOAD ADDRESS OF FILE NAME
LDY #>NAME

JSR SETNAM

.o we

NAME .ASC "FILENAME"
NAME1l NOP

FILE NAME IN ASCII FORMAT

Section Three

Function name: SETTIM

Purpose: Set the system clock
Call address: SFFDB (hex) 65499

Communication registers: a, X, Y

Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: None

Programming Machine Code

(decimal)

Description: A system clock is maintained by an interrupt
routine that updates it every 1/60th of a second, i.e. one
"jiffy". The clock is three bytes long, which gives it the
capability of counting up to 5,184,000 jiffies, i.e. 24
hours, at which point the clock resets to zero. Before
calling this routine ensure that the accumulator contains the
most significant byte, i.e. MSB, the X index register the
next most significant byte, and the Y index register the
least significant byte, i.e. LSB, of the initial time
setting. These values must be in jiffies.
How to use:
l. Load the accumulator with the MSB of the 3-byte number to
set the clock.
2. Load the X register with the next byte.
3. Load the Y register with the LSB.
4, Call this routine.
EXAMPLE:

; SET THE CLOCK TO 19 MINUTES = 36060d JIFFIES
LDA #$00 ; MOST SIGNIFICANT
LDX #$8C
LDY #SA0Q ; LEAST SIGNIFICANT
JSR SETTIM
Function name: SETTMO
Purpose: Set IEEE bus card timeout flag
Call address: SFFA2 (hex) 65442 (decimal)
Communication registers: A
Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: None
NOTE: This routine can only be used if you have an IEEE
add-on card.

3 - 47

Section Three Programming Machine Code

Description: This routine sets the timeout flag for the IEEE
bus. When the timeout flag is set, the Cl6 or PLUS/4 waits
for 64 milliseconds for a response from a device on the IEEE
port. If the device does not respond to the Data Address
valid, i.e. DAV, signal within that time, the computer
recognizes an error condition and aborts the handshake
sequence. To enable timeouts, call this routine with bit 7 of
the accumulator clear. To disable timeouts, call this routine
with bit 7 of the accumulator set.

How to use:

TO SET THE TIMEOUT FLAG

1. Clear bit 7 of the accumulator.
2. Call this routine.

TO RESET THE TIMEOUT FLAG

1. Set bit 7 of the accumulator.
2. Call this routine.

EXAMPLE:

DISABLE TIMEOUT

-e

LDA #500
JSR SETTMO

Function name: STOP

Purpose: Check if STOP key is pressed
Call address: SFFEl (hex) 65505 (decimal)
Communication registers: A

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: A, X

Description: If the STOP key is pressed during a UDTIM call,
a call to the STOP routine returns with the Z flag set. 1In
addition, the channels are reset to their default values. All
other flags remain unchanged. If the STOP key is not pressed
then the accumulator returns a byte representing the last row
of the keyboard scan.

How to use:

1. Call UDTIM routine.
2. Call this routine.

3. Test for the zero flag.
EXAMPLE:

JSR UDTIM

JSR STOP ; SCAN FOR STOP
BNE NO ; KEY NOT DOWN
JMP READY ; STOP

3 - 48

Section Three Programming Machine Code

Function name: TALK

Purpose: Command a device on the serial bus to TALK
Call address: SFFB4 (hex) 65460 (decimal)
Communication registers: A

Preparatory routines: None

Error returns: See READST

Stack requirements: 8

Registers affected: A

Description: To use this routine the accumulator must first
be loaded with a device number between 7 and 31. The device
number is ORed bit by bit to create a talk address. The data
is then transmitted as a command on the serial bus.

How to use:

l. Load the accumulator with the device number.
2. Call this routine.

EXAMPLE:

; COMMAND DEVICE #4 TO TALK
LDA #$04
JSR TALK

Function name: TKSA

Purpose: Send secondary address to device commanded to TALK
Call address: $FF96 (hex) 65433 (decimal)

Communication registers: A

Preparatory routines: TALK

Error returns: See READST

Stack requirements: 8

Registers affected: A

Description: This routine transmits a secondary address for a
TALK device on the serial bus. It must be called with a
number between # and 31 in the accumulator, the routine then
sends this number as a secondary address over the serial bus.
TKSA can only be called after a call to the TALK routine, it
does not work after a LISTEN.

How to use:

l. Use the TALK routine.
2. Load the accumulator with the secondary address.
3. Call this routine.

EXAMPLE:

; TELL DEVICE #4 TO TALK WITH COMMAND #7
LDA #5004
JSR TALK
LDA #$@7
JSR TKSA

Section Three Programming Machine Code

Function name: UDTIM

Purpose: Update the system clock

Call address: SFFEA (hex) 65514 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, X

Description: This routine updates the system clock. This
routine is usually called by the normal KERNAL interrupt
routine every 1/6@0th of a second. However, if vyour program
processes its own interrupts, this routine must be called to
update the time. In addition, the STOP routine must be called
if the STOP key is to remain functional.

How to use:
l. Call this routine.
EXAMPLE:

JSR UDTIM

Function name: UNLSN

Purpose: Send an UNLISTEN command

Call address: SFFAE (hex) 65454 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: See READST

Stack requirements: 8

Registers affected: A

Description: This routine commands all devices on the serial
bus to stop receiving data. A call to this routine sends an
UNLISTEN command on the serial bus, only devices previously
commanded to LISTEN are affected. This routine should be used
when you have finished semding data to external devices.

How to use:

1. Call this routine.

EXAMPLE:

JSR UNLSN

3 - 50 ’

Section Three Programming Machine Code

Function name: UNTLK

Purpose: Send an UNTALK command

Call address: $SFFAB (hex) 65451 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: See READST

Stack requirements: 8

Registers affected: A

Description: This routine transmits an UNTALK command on the
serial bus. All devices previously set to TALK stop sending
data when this command is received. S

How to use:
1. Call this routine.
EXAMPLE:

JSR UNTALK

Function name: VECTOR

Purpose: Manage RAM vectors

Call address: SFF8D (hex) 65421 (decimal)
Communication registers: X, Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, X, Y

Description: This routine manages all system vector jump
addresses stored 1in RAM. Calling this routine with the
accumulator carry bit set, causes the current contents of the
RAM vectors to be stored in a list pointed to by the X and Y
registers. When this routine is called with the carry bit
clear, the user list pointed to by the X and Y registers 1is
transferred to the system RAM vectors. The RAM vectors are
listed in the memory map (see Section 3.12).

NOTE: Use this routine witth caution. COMMODORE recommend that
you use it by transferring the entire vector contents into
the user area, altering the desired vectors, and then copying
the contents back to the system vectors.

3 - 51

Section Three Programming Machine Code

How to use:

READ THE SYSTEM RAM VECTORS

1. Set the carry bit.

2. Set the X and Y registers to the required address.
3. Call this routine.

LOAD THE SYSTEM RAM VECTORS

1. Clear the carry bit.

2. Set the X and Y registers to the address of the vector
list in RAM.

3. Call this routine.

EXAMPLE:
; CHANGE THE INPUT ROUTINES TO NEW SYSTEM
LDX #<USER
LDY #>USER
SEC
JSR VECTOR READ OLD VECTORS

we we

LDA #<MYINP CHANGE INPUT
STA USER+10

LDA #>MYINP

STA USER+1l1l

LDX #<USER

LDY #>USER

CLC

JSR VECTOR ALTER SYSTEM

we we

USER

3.11.4 ERROR CODES

The following is a list of error messages which can occur
when using the KERNAL routines. If an error occurs during a
KERNAL routine, the carry bit of the accumulator is set and
the number of the error message 1is returned in the
accumulator.

NOTE: some KERNAL I/0 routines do not use these codes for
error messages. Instead, errors are identified using the
KERNAL READST routine. ¢

NUMBER MEANING

Routine terminated by the STOP key
Too many open files

File already open

File not open

File not found

Device not present

File is not an input file

File is not an output file

File name is missing

Illegal device number

Top of memory change RS-232 buffer allocation/
deallocation

NOWONOTULddWNDHFH®R

>
xR

3 - 52

Section Three Programming Machine Code

3.12 C16 AND PLUS/4 MEMORY MAP

HEX DECIMAL

LABEL ADDRESS LOCATION DESCRIPTION

PDIR $0000] 7518 on-chip data-
direction register (DDR)

PORT $0001 1 751@ on-chip 8-bit
input/output register

SRCHTK $0002 2 Token 'search' looks for
(run-time stack)

ZPVEC1 $00033-0004 3-4 Temp (renumber)

ZPVEC?2 $0005-004@6 5-6 Temp (renumber)

CHARAC $0097 7 Search character

ENDCHR $0008 8 Flag: scan for quote at
end of string

TRMPOS $0999 9 Screen column from last
TAB

VERCK $000A 19 Flag: @ = load 1 = verify

COUNT $000B 11 Input buffer pointer /
No. of subscripts

DIMFLG $8dacC 12 Default array DIMension

VALTYP $@00D 13 Data type: SFF = string
$00 = numeric

INTFLG SOQJE 14 Data type: $80 = integer
$00 = floating

DORES SO0GaF 15 Flag: DATA scan/LIST
quote/garbage collect

SUBLFG $0019 16 Flag: subscript ref /
user function call

INPFLG $@011 17 Flag: $00 = INPUT,
$40 = GET, $98 = READ

TANSGN $0012 18 Flag: TAN sign /
comparison result

CHANNL $0013 19 Flag: INPUT prompt

LINNUM $0014-0015 20-21 Temp: integer value

TEMPPT $0016 22 Pointer: temporary
string stack

LASTPT $0017-04018 23-24 Last temp string address

TEMPST $0019-0021 25-33 Stack for temporary
strings

INDEX1 $0022-0023 34-35 Utility pointer area

INDEX2 $0024-0025 36-37 Utility pointer area

RESHO $0026 38

RESMOH $0027 39

RESMO $0028 40

RESLO $0029 41

$002a 42

TXTTAB $0@2B-0G02C 43-44 Pointer: start of BASIC
text

VARTAB $002D-002E 45-46 Pointer: start of BASIC
variables

ARYTAB $S002F-0030 47-48 Pointer: start of BASIC
arrays

STREND $0031-0032 49-50 Pointer: end of BASIC

arrays (+1)

3 - 53

Section Three

FRETOP

FRESPC
MEMSIZ

CURLIN
TXTPTR
ENDPNT
DATLIN
DATPTR

INPPTR
VARNAM

VARPNT
FORPNT

OPPTR

OPMASK
DEFPNT
DSCPNT

HELPER
JMPER
SIZE
OLDOV
TEMPF1
HIGHDS
HIGHTR

LOWDS
LOWTR
EXPSGN
FACEXP

FACHO

FACMOH
FACMO
FACLO
FACSGN
SGNFLG

BITS
ARGEXP
ARGHO
ARGMOH
ARGMO
ARGLO

ARGSGN
ARISGN

$0033-0034

$0035-0036
$0037-0038

$0939-003A
$003B-003C
$@03D-003E
$O03F-0040
$0041-0042

$0043-0044
$0045-00346

$0047-0048
$0049-004A

$004B-004C
$@34D
SOG4E~-QG4F
$0050-9051
$0052
$00@53
$@0354
$@@55
$3356
$@@57
$0958-0059
S@05A-0035B
$@dsc
$@05D-00SE
S@O5F
$00640
$d961

$0062

$0063
$0064
$@065
$0066
$0067

$3068
$8d69
$dd6A
$0d6B
$@gecC
$S@@6D

$O006E
SO06F

51-52

53-54
55-56

57-58
59-60
61-62
63-64
65-66

67-68
69-=70

71-72

99
100
101
192
1@3

104
105
106
167
198
199

110
11l

3 - 54

Programming Machine Code

Pointer: bottom of

string storage

Utility string pointer
Pointer: highest address
used by BASIC

Current BASIC line number

Current DATA line number
Pointer: current DATA
item address

Vector: INPUT routine
Current BASIC variable
name

Pointer: current BASIC
variable data

Pointer: index variable
for FOR/NEXT

Floating-point
accumulator #l: exponent
Floating accum. #1:
mantissa

Floating accum. #1l: sign
Pointer: series
evaluation constant
Floating accum. #1:
overflow digit
Floating-point
accumulator #2: exponent
Floating accum. #2:
mantissa

Floating accum. #2: sign
Sign comparison result:
accum. #1 vs #2

Section Three

FACOV

FBUFPT
AUTINC

MVDFLG

KEYNUM
KEYSIZ
SYNTMP

DSDESC
TOS
TMPTON

VOICNO
RUNMOD
POINT
GRAPHM
COLSEL
MC1

FG
SCXMAX
SCYMAX
LTFLAG
RTFLAG
STOPNB

GRAPNT
VTEMP1
VTEMP2
STATUS

STKEY
SPVERR
VERFCK
C3pPO

BSOUR

YSAV
LDTND

DFLTN
DFLTO

MSGFLG

SAL
SAH
EAL
EAH
T1l
T2
TIME

$0970

$0071-0072
$0073-0074

$0075

$0076
$0077
$0078

$0079-0078B
$007C-007D
S@O07E-0QGTF

$0080
$@g8l
$0082
$0983
$0084
$0085
$0086
$0d87
$0088
$0089
$0g8a
$@d8B

$008C-008D
$O@8E
SO08F
$0099

$00691
$0092
$0093
$0094

$0095

$0096
$0097

$0098
$0099

$009A

$S@09B
$@4d9cC
$8069D
$SOd9E
SQ09F-00A0
$00A1-00A2
$90a3-00A5

112

113-114
115-116

117

118
119
129

121-123
124-125
126-127

128
129
130
L3l
132
133
134
135
136
137
138
139

140-141
142
143
144

145
146
147
1438

149

150
151

152
153

154

155
156
157
158
159-1640
161-162
163-165

Programming Machine Code

Floating accum. #1

low order (rounding)
Pointer: cassette buffer
Increment value for AUTO
(@ = off)

Flag if 10K hires
allocated

Used as temp for indirect
loads

Descriptor for ds$

Top of run-time stack
Temps used by music

(tone and volume)

Current graphic mode
Current colour selected
Multicolourl

Foreground colour
Maximum # of columns
Maximum # of rows
Paint-left flag
Paint-right flag

Stop paint if not BG
(not same colour)

Kernal I/0 status word:
ST

Flag: STOP key / RVS key
Temp

Flag: 8 = load 1 verify
Flag: serial bus - output
char buffered

Buffered character for
serial bus

Temp for basin

of open files / index
to file table

Default input device (@)
Default output (CMD)
device (3)

Flag: $80 = direct mode
$§00 = program

Tape pass 1 error log
Tape pass 2 error log

Temp data area

Temp data area
Real-time jiffy clock
(approx) 1/68 sec

Section Three Programming Machine Code

R2D2 $0aa6 166 Serial bus usage

TPBYTE S0gA7 167 Byte to be written/read
on/off tape

BSOURL1 $30aA8 168 Temp used by serial
routine

FPVERR $3da9 169

DCOUNT $00AA 170

FNLEN $O0AB 171 Length of current file
name

LA $@IAC 172 Current logical file
number

SA $00AD 173 Current secondary address

FA ~$00AE 174 Current device number

FNADR SO0AF-00BO 175-176 Pointer: current file
name

ERRSUM $00B1 177

STAL $00B2 178 I/0 start address

STAH $00B3 179

MEMUSS $00B4-00BS 180-181 Load RAM base

TAPEBS $00B6-00B7 182-183 Base pointer to cassette
base

TMP2 S00B8-00BY 184-185

WRBASE SO00BA-00BB 186-187 Pointer to data for tape
writes

IMPARM $@0BC-0G0BD 188-189 Pointer to immediate
string for primms

FETPTR SOOBE-QOBF 199-191 Pointer to byte to be
fetched in bank f routine

SEDSAL $00C@-00C1 192-193 Temp for scrolling

RVS $3acC2 194 RVS field flag on

INDX $09C3 195

LSXP = $@0C4 196 X position at start

LSTP $48CS 197

SFDX $00C6 198 Flag: shift mode for
print

CRSW $04aC7 199 Flag: INPUT or GET from
keyboard

PNT $90C8-00C9 200-201 Pointer: current screen
line address

PNTR §gaca 202 Cursor column on current
line

QTSW $04cCB 203 Flag: editor in quote
mode $0d = no

SEDT1 $@dcc 204 Editor temp use

TBLX $d4CD 205 Current cursor physical
line number

DATAX SOOCE 206 Temp data area

INSRT SGACF 207 Flag: insert mode,
>3 = # INSTs

$00D@-00D7 208-215 Area for use by speech
software
$00D8-00ES 216-232 Area for use by

application software

CIRSEG SOQE9 233 Screen line link table /
editor temps

USER SOJEA-QOOJEB 234-235 Screen editor colour IP

3 - 56

Section Three

KEYTAB
TMPKEY
NDX
STPFLG
TO
CHRPTR
BUFEND
CHKSUM

LENGTH
PASS

TYPE
USEKDY

XSTOP
CURBNK

XON
XOFF
SEDT2
LOFBUF

FBUFR
SAVEA
SAVEY
SAVE
COLKEY

SYSSTK

BUF
OLDLIN
OLDTXT

XCNT

FNBUFR
DOSFIL
DOSDS1
DOSF1la

DOSF2L
DOSDS 2
DOSF2A

DOSLA
DOSFaA
DOSSA

DOSDID
DIDCHK

SOJEC-0QED
SOJEE
SGOEF
SOOFQ
SOOF1-00F2
SOOF3
SGIF4
S@OFS

SOOF6
S@OF7

SOOF8
SOOF9

SOGJFA
SOOFB

S@OFC
S@FFD
SO@OFE
S@OFF

$0100-010F
$0110
$O111
$@112
$6113-9122

$0124-01FF

$0200-0258
$0259-025A
$825B-025C

$325D-02AC
$025D
S@25E-@26D
S@26E
SO26F
$@273-0271

$0272
$@273
$0274-0275

$0276
$0277
$0278

$0279-027A
$@278B

236-237
238
239
249
241-242
243
244
245

246
247

248
249

25@
251

252
253
254
259

256-271
272
273
274
275-289

291-511
512-600
601-602
603-604

605-684

3 - 57

Programming Machine Code

Key scan table indirect

Index to keyboard queue
Pause flag
Monitor ZP storage

Temp for checksum
calculation

Which pass we are doing
str

Type of block

(B.7=1)=> for wr,
(B.6=1)=> for rd

Save xreg for quick
stopkey test

Current bank
configuration

Char to send for a x-on
Char to send for a x-off
Editor temporary use

Temp locations for...
...Save

...restore
Colour/luminance table
in RAM

System stack

BASIC/monitor buffer
BASIC storage
BASIC storage

BASIC/DOS INTERFACE AREA
DOS loop counter

Area for filename

DOS filename 1 length
DOS disk drive 1

DOS filename 1 addr

DOS filename 2 length
DOS disk drive 2

-DOS filename 2 addr

DOS logical address
DOS physical addr
DOS secondary address

DOS disk identifier
DOS DID flag

Section Three

Programming Machine Code

DOSSTR $§@27C DOS output string buffer

DOSSPC $027D-02AC Area used to build DOS
string
Graphics Variables

XPOS $02AD-02AE 685-686 Current x position

YPOS $O2AF-02BJ 687-688 Current y position

XDEST $02B1-02B2 689-690 X coordinate destination

YDEST $02B3-02B4 691-692 Y coordinate destination

XABS S$@2B5-02B6 693-694

YABS $@2B7-02B38 695-696

XSGN $02B9-02BA 697-698

YSGN $@2BB-02BC 699-700

FCT1 $@2BD-02BE 781-702

FCT2 $02BF-02CJ 763-704

ERRVAL $§@2C1-02C2 785-7@6

LESSER $@2C3 707

GREATR $02C4 708

ANGSGN $@2C5 789 Sign of angle .

SINVAL $02C6-02C7 710-711 Sine of value of angle

COSVAL $02C8-02C9 712-713 Cosine of value of angle

ANGCNT $02CA-02CB 714-715 Temps for angle distance
routines
Start of multiply defined
area #1

§@2ccC 716 Placeholder

BNR $@2CD 717 Pointer to begin no.

ENR $O2CE 718 Pointer to end no.

DOLR $@2CF 719 Dollar flag

FLAG $92D9 720 Comma flag

SWE $02D1 721 Counter

USGN $@2D2 722 Sign exponent

UEXP $02D3 723 Pointer to exponent

VN $02D4 724 # of digits before
decimal point

CHSN $92D5 725 Justify flag .

VF $@2D6 726 # of pos before decimal
point (field)

NF $02D7 727 # of pos after decimal
point (field)

POSP $32D8 728 +/- flag (field)

FESP $@2D9 729 Exponent flag (field)

ETOF $d2DA 730 Switch

CFORM $@2DB 731 Char counter (field)

SNO $d2DC 732 Sign no.

BLFD $82DD 733 Blank/star flag

BEGFD S@2DE 734 Pointer to beginning of
field

LFOR $d2DF 135 Length of format

ENDFD SO2EQD 736 Pointer to end of field

3 - 58

Section Three

XCENTR
YCENTR
XDIST1
YDIST1
XDIST2
¥YDIST2

COLCNT
ROWCNT
STRCNT

XCORD1
YCORD1
BOXANG
XCOUNT
YCOUNT
BXLENG
XCORD2
YCORD2

XCIRCL
YCIRCL

XRADUS
YRADUS
ROTANG
ANGBEG
ANGEND
XRCOS

YRSIN
XRSIN

YRCOS

KEYLEN
KEYNXT
STRS?Z

GETTYP
STRPTR
OLDBYT
NEWBYT

$32CC-0d2CD
S@2CE-@2CF
$@2D0-92D1
$@2D2-032D3
$@2D4-02D5
$@2D6-32D7
$92D8-02D9

$@2DA
$@2DB
$@2DC

$@2CC-02CD
S@2CE-@2CF
$@2D@-32D1
$@2D2-032D3
$02D4-02D5
$@2D6-92D7
$92D8-32D9
$@2DA-32DB

$@2CC-02CD
$@2CE-@2CF

$@2D@-032D1
$62D2-02D3
$02D4-02D5
$02D8-0@2D9
S$@2DA-32DB
$42DC-062DD

$02DE-@2DF
$O02E0-02E1

$02E2-02E3

$@2cCcC
$02CD
$@2CE -
$@2CF
$02D0@
$42D1
$02D2
$02D3

$02D4

716-717
718-719
720-721
722-723
724-725
726-727
728-729

730
731
732

716-717
718-719
720-721
722-723
724-725
726-727
728-729
730-731

716-717
718-719

728-721
122=723
724-725
728-729
738-731
7132~733

734-735
736-737

738-739

716
717
718
719
720
721
722
123

724

3 - 59

Programming Machine Code

Placeholder

Characters column counter
Characters row counter

Start of multiply defined
area #2

Rotation angle

Length of a side

Circle center,

X coordinate
Circle center,
y coordinate

X radius

Y radius
Rotation angle
Arc angle start
Arc angle end

X radius * cos
(rotation angle)
Y radius * sin
(rotation angle)
X radius * sin
(rotation angle)
Y radius * cos
(rotation angle)

Start of multiply defined
area #3
Placeholder

String length

Replace string mode
String position counter
0l1ld bit map byte

New string or bit map
byte

Placeholder

Section Three

XSIZE $32D5-@2D6 725-726 Shape column length

YSIZE $02D7-02D8 727-728 Shape row length

XSAVE $@2D9-02DA 729-730 Temp for column length

STRADR $32DB-@2DC 131=732 Save shape string
descriptor

BITIDX $@2DD 733 Bit index into byte

SAVSIZ $@2DE-G2EL 734-737 Temporary work locations

CHRPAG SO2E4 740 High byte addr of char
ROM for CHAR

BITCNT $32ES 741 Temp for gshape

SCALEM SO2E6 742 Scale mode flag

WIDTH S@2E7 743 Double width flag

FILFLG SG2ES 744 Box fill flag

BITMSK $SO2E9 745 Temp for bit mask

NUMCNT SO2EA 746

TRCFLG SG2EB 747 Flags trace mode

73 S$S@2EC 748

T4 S@2ED-Q2EE 749-750

VTEMP3 S@2EF 751 Graphic temp storage

VTEMP4 SO2F0 752

VTEMPS $SO2F1 753

ADRAY1 $O2F2-02F3 754-755 Ptr to routine: convert
float to integer

ADRAY2 $O2F4-02F5 756-757 Ptr to routine: convert
integer to float

BNKVEC SO2FE-02FF 766-767 Vector for function
cartidge users

IERROR $03060-90301 768-769 Indirect Error (output
error in X)

IMAIN $0302-9303 776-771 Indirect Main (system
direct loop)

ICRNCH $0304-0305 772-773 Indirect Crunch
(tokenization routine)

IQFLOP $30306-0307 774-775 Indirect List (char list)

IGONE $0308-3309 776-777 Indirect Gone (character
dispatch)

IEVAL $@30A-030B 778-779 Indirect Eval (symbol
evaluation)

IESCLK $839C-230D 780-781 Escape token crunch

IESCPR SO30E-G30F 782-783

IESCEX $0310-0311 784-785

ITIME $0312-0313 786-787

CINV $0314-0315 788-789 IRQ RAM vector

CBINV $0316-0317 790-791 Brk instr RAM vector

IOPEN $6318-0319 792-793 Indirects for code

ICLOSE. $@031A-031B 794-795

ICHKIN $831C-631D 796-797

ICKOUT $@031E-031F 798-799

ICLRCH $@320-0321 800-801

IBASIN $0322-9323 802-803

IBSOUT $@324-0325 804-805

ISTOP $0326-0327 806-807

3 - 6@

Programming Machine Code

Section Three

IGETIN
ICLALL
USRCMD
ILOAD
ISAVE

TAPBUF
WRLEN

RDCNT

INPQUE
ESTAKL
ESTAKH

CHRGET
CHRGOT
QNUM

INDSUB
ZERO

INDTXT
INDINL
INDIN2
INDST1
INDLOW
INDFMO

PUFILL
PUCOMA
PUDOT

PUMONY

TMPDES

ERRNUM
ERRLIN
TRAPNO
TMTTRP
ERRTXT
OLDSTK

TMPTXT
TMPLIN

MTIMLO
MTIMHI

USRPOK
RNDX

$0328-0329
$332A-032B
$032C-@32D
S@32E-G32F
$@330-0331

$0333-03F2
$O3F3-03F4

$O3F5-03F6

$O3F7-0436
$0437-0454
$0455-0472

$0473-0478
$0479-0484
$0485-0493

$30494-04A1
$34A2-04A4

S@4A5-F4AF
$G4BJ-J4BA
S@4BB-04CS
$94C6-04D@
$04D1-04DB
$04DC-G4E6

SG4E7
SO4ES
SG4E9
SG4EA

SO4EB-J4EE

S@AEF
SP4F3-04F1
SG4F2-04F3
SO4F4
SO4F5-04F6
SG4AF7

SO04F8-04F9
SO4FA-04FB

$@4FC-04FD
SO4FE-G4FF

$0500-0502
$0503-0507

808-809
810-811
812-813
814-815
816-817

819-191¢0
1011-1012

1013-1014

1015-1078
1679-1108
1109-1138

1139-1144
1145-1156
1157-1171

1172-1185
1186-1188

1189-1199
1200-1210
1211-1221
1222-1232
1233-1243
1244-1254

1255
1256
1257
1258

1259-1262

1263
1264-1265
1266-1267
1268
1269-1270
1271

1272-1273
1274-1275

1276-1277
1278-1279

1280-1282
1283-1287

3 - 61

Programming Machine Code

Cassette tape buffer
Length of data to be
written to tape

Length of data to be read
from tape

RS-232 input queue

Shared ROM fetch sub
Numeric constant for
BASIC

Txtptr
Index & Indexl
Index2
Strngl
Lowtr
Facmo

Print using fill symbol
Print using comma symbol
Print using D.P. symbol
Print using monetary
symbol

Temp for instr

Last error number

Line # of last error

Line to go on error

Hold trap no. temporarily

Table of pending jiffies
(2's comp)

Section Three

Programming Machine Code

DEJAVU $0508 1288 'Cold' or 'warm' start
status

LAT $0509-0512 1289-1298 Logical file numbers

FAT $0513-051C 1299-1308 Primary device numbers

SAT $@51D-@526 1309-1318 Secondary addresses

KEYD $0527-0530 1319-1328 IRQ keyboard buffer

MEMSTR $0531-0532 1329-133¢0 Start of memory

MSIZ $0533-0534 13311332 Top of memory

TIMOUT $3535 1333 IEEE timeout flag

FILEND $@536 1334 File end reached = 1,
otherwise @

CTALLY $0537 1335 # of chars left in buffer
(for R & W)

CBUFVA $0538 1336 # of total valid chars in
buffer (R)

TPTR $0539 1337 Ptr to next char in
buffer (for R & W) ‘

FLTYPE $@53a 1338 Contains type of current
cass file

COLOR $053B 1339 Active attribute byte

FLASH $@53C 1340 Character flash flag

$853D 1341 FREE

HIBASE $@S5S3E 1342 Base location of screen
(top)

XMAX S@S53F 1343

RPTFLG $0540 1344 Key repeat flag

KOUNT $@541 1345

DELAY $@542 1346

SHFLAG $0543 1347 Shift flag byte

LSTSHF $@544 1348 Last shift pattern

KEYLOG $0545-0546 1349-13540 Indirect for keyboard
table setup

MODE $0547 1351

AUTODN $@548 1352 Auto scroll down flag ‘
(8 = on, @ <> off)

LINTMP $d549 1353

ROLFLG $d54A 1354

FORMAT $054B 1355 Monitor non-zpage storage

MSAL $054C-054E 1356-1358

WRAP $SO54F 1359

TMPC $05540 1360

DIFF $8551 1361

PCH $@552 1362

PCL $0553 1363

FLGS $0554 1364

ACC $0555 1365

XR $3556 1366

YR $@557 1367

SP $@558 1368

INVL $0559 1369

INVH $@55A 13740

3“62 \

Section Three

CMPFLG
BAD
KYNDX
KEYIDX
KEYBUF
PKYBUF
KDATA
KDYCMD

KDYNUM
KDYPRS

KDYTYP

SAVRAM
PAT
LNGJIMP
FETARG
FETXRG
FETSRG
AREAS
ASPECH
STKTOP
WROUT
PARITY
TT1l
TT2
RDBITS
ERRSP
FPERRS
DSaMP1l
DSAMP2
ZCELL
SRECOV
DRECOV

TRSAVE
RDETMP

$055B
$055C
$055D
$O55E
$@55F-0566
$@567-05E6
$@5E7
SOSES

S@SE9
SO5EA

S@5EB

SOSEC-06EB
S@5EC-@SEF
$@G5F0-05F1
S@5F2
S@5F3
SGS5F4
S@5FS5-065D
S@65E-J6EB
SG6EC-G7AF
SO07BG
S87B1
$g7B2
$@7B3
$@7BS
S@7B6
S@7B7
$S@7B8-37B9
S37BA-G7BB
$@7BC-@7BD
S87BE
SO7BF

$67C@-07C3
$07C4

1371
1372
1373
1374
1375-1382
1383-1519
1511
1512

1513
1514

1515

1516=1771
1516-1519
1520-1521
1522
1523
1524
1525-1629
1630-1771
1772-1967
1968
1969
1970
1971
1973
1974
1975
1976-1977
1978-1979
1980-1981
1982
1983

1984-1987
1988

3 - 63

Programming Machine Code

Used by various monitor
routines

Used for programmable
keys

Table of P.F. lengths
P.F. key storage area

Temp for data write to
kennedy

Select for kennedy read
or write

Kennedy's dev#

Kennedy present = $FF,
else $00

Temp for type of open for
kennedy

1 page used by banking
routines

Physical address table
Long jump address

Long jump accumulator
Long jump X register

Long jump status register

RAM areas for banking
RAM area for speech
BASIC run-time stack

Byte to be written on
tape

Temp for parity calc
Temp for write-header
Temp for write-header
Local index for READBYTE
routine

Pointer into the error
stack

Number of first pass
errors

Time constant
Time constant
Time constant

Stack marker for stopkey
recover

Stack marker for dropkey
recover

Params passed to RDBLOK
Temp stat save for RDBLOK

Section Three Programming Machine Code

LDRSCN $07CS5 1989 # consec shorts to find
in leader

CDERRM $@d7cCe 1999 4 errors fatal in RD
countdown

VSAVE $97C7 1991 Temp for VERIFY command

T1PIPE $@7C8-07CB 1992-1995 Pipe temp for T1

ENEXT $@7cCcC 1996 Read error propagate
For RS-232

UouTQ $@7CD 1997 User character to send

UOUTFG S@7CE 1998 g = empty, 1 = full

SOUTQ $@7CF 1999 System character to send

SOUNFG $@700 2000 g = empty, 1 = full

INQFPT $@7D1 2001 Pntr to front of input
queue

INQRPT $@7D2 20082 Pntr to rear of input
queue

INQCNT $@7D3 2003 # of chars in input queue

ASTAT $d7D4 2004 Temp status for ACIA

AINTMP $@7D5S 2005 Temp for input routine

ALSTOP $@7D6 2906 FLG for local pause

ARSTOP $67D7 2007 FLG for remote pause

APRES $@7D8 2008 FLG to indicate presence
of ACIA

KLUDES $07D9-07E4 2009-2029 Indirect routine
downloaded

SCBOT S@7ES 2021

SCTOP SO7E6 2022

SCLF SG7E7 2023

SCRT $SG7ES 2024

SCRDIS SG7ES 2025

INSFLG S@7EA 2026

LSTCHR S@7EB 2027

LOGSCR $S@7EC 2028

TCOLOR $SA7ED 2829

BITABL S@7EE-@7F1 . 2030-2033

SAREG S@7F2 2034 Registers for SYS command

SXREG S@7F3 2035

SYREG SO7F4 2036

SPREG S$SAT7FS 2037

LSTX $S@7F6 2038 Key scan index

STPDSB SG7F7 2039 Flag to disable CTL-S
pause

RAMROM SO7F8 2049 MSB for monitor fetches
from RAM = 4, ROM = 1

COLSW S@7F9 2041 MSB for colour/luminance
table in RAM = @, ROM =1

FFRMSK SO7FA 2042 ROM mask for split screen

VMBMSK S@7FB 2043 VM base mask for split
screen

LSEM $@7FC 2044 Motor lock semaphore for
cassette

3 - 64

Section Three

PALCNT

TEDATR

TEDSCN

BASBGN

GRBASE

BMLUM

BMCOLR

CHRBAS

$G7FD

$0800-0BFF

$0CO@-GFFF

$1000-

$2000-

$1800-1BFF

$1CO0-1FFF

$D03Qd

BANKING JUMP TABLE

UNOFFICIAL JUMP TABLE

SFCF1

SFCF4
S$SFCF7
SFCFA
$FCFD

SFF49
SFF4C
SFF4F
SFF52

SFF84

KERNAL JUMP TABLE

CINT

IOINIT
RAMTAS
RESTOR

VECTOR
SETMSG
SECND
TKSA
MEMTOP
MEMBOT
SCNKEY

SFF81
SFF84
SFF87
SFF8A

SFF8D
SFF90
SFF93
SFF96
SFF99
SFF9C
SFFIF

2045
2048-3071

3072-4095

4096~

8192~

6144-7167

7168-8191

53248

64753

64756
64759
64762
64765

65353

65356
65359
65362

65408

65409
65412
65415
65418

65421
65424
65427
65430
65433
65436
65439

3 - 65

Programming Machine Code

PAL tod

TED attribute bytes
(colour)

TED character pointers
(screen)

Start of BASIC text area

Start of BASIC when HIRES
is on

Luminance for bit map
screen

Colour for bit map

Beginning of character
ROM

JMP to cartridge IRQ
routine

JMP to PHOENIX routine
JMP to LONG FETCH routine
JMP to LONG JUMP routine
JMP to LONG IRQ routine

JMP to define function
key routine

JMP to PRINT routine
JMP to PRIMM routine
JMP to ENTRY routine

Release # of KERNAL
(MSB @ = NTSC, 1 = PAL)

Initialize screen editor
Initialize I/0 devices
RAM test

Restore vectors to
initial values

Change vectors for user
Control 0.S. messages
Send SA after LISTEN
Send SA after TALK
Set/read top of memory
Set/read bottom of memory
Scan keyboard

Section Three Programming Machine Code

SETTMO SFFaA2 65442 Set timeout in DMA disk

ACPTR SFFAS 65445 Handshake serial bus or
DMA disk byte in

cI1ourT SFFAS 65448 Handshake serial bus or
DMA disk byte out

UNTLK SFFAB 65451 Send UNTALK out serial
bus or DMA disk

UNLSN SFFAE 65454 Send UNLISTEN out serial
bus or DMA disk

LISTN SFFB1l 65457 Send LISTEN out serial
bus or DMA disk

TALK SFFB4 65460 Send TALK out serial bus
or DMA disk

READST SFFB7 65463 Return I/0 STATUS byte

SETLFS SFFBA 65466 Set LA, FA, SA

SETNAM SFFBD 65469 Set length and FN address

OPEN SFFCO 65472 Open logical file

CLOSE SFFC3 65475 Close logical file

CHKIN SFFC6 65478 Open channel in

CHKOUT SFFC9 65481 Open channel out

CLRCH SFFCC 65484 Close I/0 channels

BASIN SFFCF 65487 Input from channel

BSOUT SFFD2 65490 Output to channel

LOADSP SFFD5S 65493 Load from file

SAVESP SFFDS8 65496 Save to file

SETTIM SFFDB 65499 Set internal clock

RDTIM SFEDE 65502 Read internal clock

STOP SFFE1l 65505 Scan STOP key

GETIN SFFE4 65508 Get character from queue

CLALL SFFE7 65511 Close all files

UDTIM SFFEA 65514 Increment clock

SCRORG SFFED 65517 Screen org

PLOT SFFF@ 65520 Read/set X,Y coord of
cursor

IOBASE SFFF3 65523 Return location of start
of 1/0

3 - 66

Appendix A Screen Display Codes

APPENDIX A

SCREEN DISPLAY CODES

The following chart lists all of the characters built into
the Clé and PLUS/4 character sets. It shows which numbers
should be POKEd into screen memory, locations 3072 to 4071,
to display a desired character.

Two character sets are available, but only characters from
one set can be displayed at any one time. The sets are
switched by holding down the <SHIFT> key and pressing the
<C=> key.

From BASIC, PRINT CHRS(142) switches to upper-case/graphics
mode, and PRINT CHR$(14) switches to upper/lower-case mode.

Any character on the chart may also be displayed in reverse.

The reverse character code is obtained by adding 128 to the
values shown.

A -1

Screen Display Codes

Appendix A

- _

x0126M56789w12345_o789

m444 < 9@ ¢ ¢ % 555555555

. -

o~

-

Bl — —~« + | ~ O -~ NN M YT WO O N~ © O

-4 .

¥l o Mm T N O KN © o o n O N O O
-— -

" . '

Bl - 2 > 2 x > N

w

. 3

nTUVWXYZ[EIT—A: ®* B P o

7]

w

X| O M M 9@ N ©~ ® O O ~ N O ¥ VW O~ © O

m : fl - - o - - - -

~

w " 0D O D ©® «~ ODE - —x — FE € 0o O - o

o .

mmABCDEFGHlJKLMNOPOHS

Appendix A Screen Display Codes

SET1 SET2 POKE SET1 SET2 POKE SET1 SET2 POKE
< so| O T s | (& 108
= s1| (4 v s | (9 109
> 2| Q4 v g6 | A 110
? aa| O w e O 11
= ¢ | M x e [d 112
@ A | O v e 5 113
M = 6| @ z w| H 114
H c 7| BB o | H 115
B o e | & 2| O 116
B e e| O o3| L 17
O ¢ n| @ 8 <« A 118
O ¢« »n| 3 § | O 119
O = 72 | SPACE 6| ™ 120
&l |l D 97 | 121
N 74| 8 | 122
7 ok 1| O % | &I 123
o v 76 | 00| M 124
N M 7| O w1 H] 125
g ~ mn| & 02| M 126
O o n»| d 03| Mg 127
O 7 | = 104
@ o 81 A 105 |
g r | d 106
@ s 3| (H 107

Codes trom 128-255 are reversed images of codes 0-127.

Appendix B ASCII and CHRS$ Codes

APPENDIX B

ASCII AND CHRS CODES

This appendix shows the characters that appear if you PRINT
CHRS (X) for all possible values of X. It also shows the
values obtained by typing PRINT ASC("X"), where X 1is a
character. This 1is useful for evaluating the character
received in a GET statement, converting upper/lower-case, and
printing character based commands, like switch to
upper/lower-case, that can not be enclosed in quotes.

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS

0 ' 17 - 34 3 51
1 o 18 # 35 4 52
2 o 19 s 36 5 53
3 F14 20 % 37 6 54
4 21 & 38 7 55
wur 5 22 : 39 8 56
6 23 (40 9 57
7 24) a1 58
isAsLrs 8 25 . 42 ; 39
ENABLES 9 26 + 43 < 60
surr Ce 10 ESCAPE 27 . 44 = 61
1 D 28 - 45 > 62
12 — 29 : 46 ? 63
RETURN 13 crm 30 ! 47 @ 64
a2 p R » 3 o 48 A 65
15 sPace 32 1 49 8 66
16 ' 33 2 50 o 67

Appendix B ASCII and CHRS Codes

PRINTS CHAS PRINTS CHRS PRINTS CHRS PRINTS CHRS
D 68 (4] 97 m] 126 Lroresn 155
E 69 @ 98 [127 rm 156
F 70 H 99 128 - 157
G 71 =~ 100 oranex 129 vm 158
H 72 | 10y TLASE 930 o . 159
! 73 g 102 131 SPACE 160
J 74 [1w ‘o 132 QI e
K 75 H| 104 133 [162
L 76 &l 108 13¢ [J 163
M 77) 106 135 ([164
N 8 Pl 07 16 [165
o} .79 O 108 137 B 166
P 80 N 109 138] 167
Q 81 A 110 139 = 168
R 82 D 1 140 ﬂ 169
S 83 D 112 SHIFT RETURN 141 D 170
T 84 & 113 UpPERCASE 142 171
u 85 Q 114 143 G 172 i
v 86 (v] 115 w144 (9 173
W 87 Il ne ¢} s @) 17s
X - 88 P M7 53 146 e 175
v 89 X 118 B a7 (3 17e
b4 90 (@) e 3T s = 177
| 91] 120 sown 149 [178
£ 92 m 121 yYeL/creeny 150 8:] 179
| 93) 122 e 151 [180
1 94 E 123 8L /cReEN 152 U 181
- 95 E 124 LTBLUE 153 El 182
E 96 ED 125 suuz 154 G 183

Appendix B ASCII and CHRS Codes

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS

- 184 a 186 - 188 ll 190
o 185 -3 187 =] 189 - 191

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS e 160-190
CODE 255 SAME AS 126

Appendix C Screen and Colour Maps

APPENDIX C
SCREEN AND COLOUR MEMORY MAPS
The following charts show the memory locations used by the
screen, and the locations used to change individual character

colours. A list of the character colour codes is also given
in this appendix.

SCREEN MEMORY MAP

oLy
] 9 0 i b

1072 5 L L) D A e 00 O U O
N2 T I R R]
1182 15 | 5
3192 . |
1232 Ll o B :
i R S N N C L ! -
e T T PR R ; ; . !
135¢ oE g

B -

. R IR IS T T S W i
R RERE H :

1432 < N ‘
a1z - 0 3
1812 P - : : =
1852 — Lkl
35892 R e | ofcts ¥ 7

872
e
7%2

-
1l

-1- -

Ja32
an
92
1982
3992 L

11

T

44+ 44--1-1-4- 1

r
(171
B

Appendix C Screen and Colour Maps

COLOUR MEMORY MAP

T
<

The values

BLACK
WHITE
RED
CYAN
PURPLE
GREEN
BLUE
YELLOW

NounkewhhHrSe

to

8

9
10
11
12
13
14
15

The luminance
luminance value (6-7) by 16, and

number. To make a character flash,

by 128.

change a character's colour are:

ORANGE

BROWN
YELLOW-GREEN
PINK
BLUE-GREEN
LIGHT BLUE
DARK BLUE
LIGHT GREEN

of the colour is selected by multiplying

C =

adding

it

to

the

increase the colour

the
colour
value

Appendix D Deriving Mathematical Functions

APPENDIX D

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to BASIC V3.5 may be
calculated as follows:

FUNCTION BASIC EQUIVALENT
SECANT SEC(X)=1/COS (X)
COSECANT CSC(X)=1/SIN (X)
COTANGENT COT (X)=1/TAN (X)
INVERSE SINE ARCSIN (X)=ATN (X/SQR (-X*X+1))
INVERSE COSINE ARCCOS (X) ==-ATN (X/SQR (=-X*X+1))
+PI/2
INVERSE SECANT ARCSEC (X)=ATN (X/SQR (X*X-1))
INVERSE COSECANT ARCCSC (X)=ATN (X/SQR (X*X-1))
+ (SGN (X)-1*PI/2)
INVERSE COTANGENT ARCOT (X)=ATN (X)+PI1/2
HYPERBOLIC SINE SINH (X)=(EXP (X)-EXP (-X))/2
HYPERBOLIC COSINE COSH (X)=(EXP (X)+EXP (-X))/2
HYPERBOLIC TANGENT TANH (X) =EXP (-X) / (EXP (X)
+EXP (-X)) *2+1
HYPERBOLIC SECANT SECH (X)=2/(EXP (X)+EXP (-X))
HYPERBOLIC COSECANT CSCH(X)=2/(EXP (X)=-EXP (=-X))
HYPERBOLIC COTANGENT COTH (X)=EXP (-X)/ (EXP (X)
-EXP (-X)) *2+1
INVERSE HYPERBOLIC SINE ARCSINH (X)=LOG (X+SQR (X*X+1))
INVERSE HYPERBOLIC COSINE ARCCOSH (X)=LOG (X+SQR (X*X-1))
INVERSE HYPERBOLIC TANGENT ARCTANH (X)=LOG ((1+X)/(1-X))/2
INVERSE HYPERBOLIC SECANT ARCSECH (X)=LOG ((SQR (=-X*X+1)+1)
/X)

INVERSE HYPERBOLIC COSECANT ARCCSCH (X) =LOG ((SGN (X)
*SOR (X*X+1) /X))
INVERSE HYPERBOLIC COTANGENT ARCCOTH (X)=LOG ((X+1)/(X-1))/2

Appendix E . Musical Note Table

APPENDIX E

MUSICAL NOTE TABLE

NOTE SOUND REGISTER VALUE ACTUAL FREQUENCY (HZ)

A 7 110
B 118 123.5
c 169 130.8
D 262 146.8
E 345 164.7
F 383 174.5
G 453 195.,9
A 516 220 ;2
B 571 246.9
c 596 261.4
D 643 293.6
E 685 330
E 704 349.6
G 739 392,55
A 770 440.4
B 798 494.9
C 8l@ 522.7
D 834 588.7
E 854 658
F 864 699
G 881 782,2
A 897 880.7
B 911 989.9
C 917 1945
D 929 1177
E 939 1316
F 944 1398
G 953 1575

The above table contains the sound register values for four
octaves of notes. These values are used as the second
parameter of the SOUND command (see Section 2.4.44). To play
the first note in the table, use 7 as the second number 1in
the SOUND command, i.e. SOUND 1,7,39. Use VOL 8 first to turn
on sound.

The following formula allows you to calculate the sound
register values for frequencies other than those 1in the
table:

SOUND REGISTER VALUE = 1024-(111860.781/FREQUENCY)

Both the table of sound register values and the above formula
are for NTSC computers. This is the television standard used
throughout the United States and Canada. If you are in a
country where PAL 1is the television standard, use the
following formula to calculate new sound register values:

SOUND REGISTER VALUE = 1024-(111840.45/FREQUENCY)

Appendix F

Error Messages

APPENDIX F

ERROR MESSAGES

These error messages are printed by BASIC. You can PRINT
these messages by using the ERR$() function.

ERROR#

1

10

1l

ERROR NAME

TOO MANY FILES

FILE OPEN

FILE NOT OPEN

FILE NOT FOUND

DEVICE NOT PRESENT

NOT INPUT FILE

NOT OUTPUT FILE

MISSING FILE NAME

ILLEGAL DEVICE NUMBER

NEXT WITHOUT FOR

SYNTAX

There is a limit of 19 files
OPEN at one time

Attempt made to OPEN a file
using the number of an
already OPEN file

The file number specified in
an I/0 statement must be
OPENed before use

Either no file with that
name exists (disk), or an
end-of-tape marker was read
(tape)

Required I/0 device not
available

Attempt made to GET or INPUT
data from a file that was
specified as output only

Attempt made to send data to
a file that was specified as
input only

An OPEN, LOAD, or SAVE to
disk drive generally
requires a file name

Attempt made to use a device
improperly (SAVE to the
screen, etc.)

Either loops are nested
incorrectly, or the variable
in the NEXT statement does
not correspond with the one
in the FOR statement

Statement is unrecognizable
by BASIC. This could be
because of missing or extra
parentheses, misspelled
keywords, etc.

Appendix F

12

13

14

15

16

L7

18

19

20

21

22

23

24

RETURN WITHOUT GOSUB

OUT OF DATA

ILLEGAL QUANTITY

OVERFLOW

oUT OF MEMORY

UNDEF'D STATEMENT

BAD SUBSCRIPT

REDIM'D ARRAY

DIVISION BY ZERO

ILLEGAL DIRECT

TYPE MISMATCH

STRING TOO LONG

FILE DATA

Error Messages

RETURN statement encountered
when no GOSUB was active

READ statement encountered
with insufficient data in
the program

A number used as the
argument of a function or
statement is outside the
allowed range

The result of a computation
is larger than the largest
number allowed
(1.701411833E+38)

Either there is no more room
for the program and program
variables, or there are too
many DO, FOR, or GOSUB
statements in effect

A line number referenced
does not exist in the
program

The program tried to
reference an element of an
array out of the range
specified by the DIM
statement

An array can only be
DIMensioned once. If an
array is referenced before
that array is DIM'd, an
automatic DIM (to 10) is
performed

Division by zero is not
allowed

INPUT or GET statements are
only allowed within a
program :

This occurs when a number is
used in place of a string or
vice-versa

A string can contain up to
255 characters

Bad data read from a tape
file

Appendix F

25

26

27

28

29

30

3L

32

33

34

35

36

FORMULA TOO COMPLEX

CAN'T CONTINUE

UNDEF'D FUNCTION

VERIFY

LOAD

BREAK

CAN'T RESUME

LOOP NOT FOUND

LOOP WITHOUT DO

DIRECT MODE ONLY

NO GRAPHICS AREA

BAD DISK

Error Messages

Simplify the expression by
splitting it up, or using
fewer parentheses

The CONT command does not
work if the program was not
RUN, there was an error, or
a line has been edited

A user defined function
referenced does not exist in
the program

The program on tape or disk
does not match the program
in memory

There was a problem loading.
Try again

The <STOP> key was pressed
to halt program execution

RESUME 'statement encountered
with TRAP statement in
effect

The program has encountered
a DO statement and cannot
find the corresponding LOOP

LOOP statement encountered
without a DO statement
active

This command is allowed only
in direct mode, not from a
program

A graphics command (DRAW,
BOX, etc.) encountered
before the GRAPHIC command
was executed

An attempt failed to HEADER
a diskette, either because
no ID was specified, or
because the diskette is bad

Appendix F Error Messages

DESCRIPTION OF DOS ERROR MESSAGES

These error messages are returned
reserved variables.

through the DS and DS$

NOTE: Error message numbers less than 20 should be ignored
with the exception of @1, which gives information about the
number of files scratched with the SCRATCH command.

20

2L

22

23

24

25

READ ERROR
(block header not
found)

READ ERROR
(no sync character)

READ ERROR
(data block not
present)

READ ERROR
(checksum error in
data block)

READ ERROR
(byte decoding
error)

WRITE ERROR
(write-verify error)

The disk controller is unable to
locate the header of the
requested data block. Caused by
an illegal sector number, or if
the header has been destroyed.

The disk controller is unable to
detect a sync mark on the desired
track. Caused by misalignment of
the read/write head, if no
diskette is present, or an
unformatted or improperly sealed
diskette. Can also indicate a
hardware failure.

The disk controller has been
requested to read or verify a
data block that was not properly
written. This error message
occurs in conjunction with the
BLOCK commands and indicates an
illegal track and/or sector
request.

This message indicates an error
in one or more of the data bytes.
The data has been read into the
DOS memory, but the checksum over
the data is wrong. This message
may also indicate grounding
problems.

The data or header has been read
into the DOS memory, but a hard-
ware error has occurred due to an
invalid bit pattern in the data
byte. This message may also
indicate grounding problems.

This message is generated when
the controller detects a mismatch
between the written data and the
data in the DOS memory.

Appendix F

26

27

28

29

30

31

32

33

WRITE PROTECT ON

READ ERROR
(checksum error in
header)

WRITE ERROR

(long data block)

DISK ID MISMATCH

SYNTAX ERROR
(general syntax)

SYNTAX ERROR
(invalid command)

SYNTAX ERROR
(invalid command)

SYNTAX ERROR
(invalid file name)

Error Messages

This message is generated when
the controller is requested to
write a data block while the
write protect switch is
depressed. Typically, this is
caused by using a diskette with a
write protect tab over the notch.

The controller has detected an
error in the header of the
requested data block. The block
has not been read into the DOS
memory. This message may also
indicate grounding problems.

The controller attempts to detect
the sync mark of the next header
after writing a data block. If
the sync mark does not appear
within a pre-determined time, the
error message is generated. The
error is caused by a bad diskette
format (the data extends into the
next block), or by hardware
failure.

This message is generated when
the controller is requested to
access a diskette which has not
been initialized. The message can
also occur if a diskette has a
bad header.

The DOS cannot interpret the
command sent to the command
channel. Typically, this is
caused by an illegal number of
file names or illegal patterns.
For example, two files names on
the left side of the COPY
command.

The DOS does not recognize the
command. The command must start
in the first position.

The command sent is longer than
58 characters.

Pattern matching is used
incorrectly in the OPEN or SAVE
command.

Appendix F

34

39

5@

P

52

60

61

62

63

SYNTAX ERROR
(no file given)

SYNTAX ERROR
(invalid command)

RECORD NOT PRESENT

OVERFLOW IN RECORD

FILE TOO LARGE

WRITE FILE OPEN

FILE NOT OPEN

FILE NOT FOUND

FILE EXISTS

Error Messages

The file name was left out of a
command or the DOS does not
recognize it as such. Typically,
a colon (:) has been left out of
the command.

This error may result if the
command sent to the command
channel, secondary address 15, is
not recognized by the DOS.

Result of disk reading past the
last record through INPUT#, or
GET# commands. This message also
occurs after positioning to a
record beyond the end of a
relative file. If the intent is
to expand the file by adding the
new record with a PRINT# command,
the error message may be ignored.
INPUT or GET should not be
attempted after this error is
detected without first
repositioning.,

PRINT# statement exceeds record
boundary. Information is
truncated. Since the carriage
return which is sent as a record
terminator is counted in the
record size, this message occurs
if the total number of characters
in the record, including the
final carriage return, exceeds
the defined size.

Record position within a relative
file indicates that disk overflow
will result.

This message is generated when an
attempt is made to OPEN an
unCLOSEed write file for reading.

This message is generated when an
attempt is made to access an
unOPENed file. Sometimes, a
message is not generated, the
request is simply ignored.

The requested file does not exist
on the specified drive.

The file name of the file being
created already exists on the
diskette.

Appendix F

64

65

66

67

70

Tl

72

FILE TYPE MISMATCH

NO BLOCK

ILLEGAL TRACK AND
SECTOR

ILLEGAL SYSTEM
T OR S

NO CHANNEL
(available)

DIRECTORY ERROR

DISK FULL

Error Messages

The file type does not match the
file type in the directory entry
for the requested file.

This message occurs in conjunc-
tion with the B-A command. It
indicates that the block has
already been allocated. The
parameters indicate the track and
sector available with the next
highest number. If the parameters
are zero (@), then all blocks
higher in number are in use.

The DOS has attempted to access
a track or block which does not
exist in the format being used.
This may indicate a problem
reading the pointer to the next
block.

This special error message
indicates an illegal system
track or sector.

The requested channel is not
available, or all channels are in
use. A maximum of five sequential
files may be opened at one time
to the DOS. Direct access
channels may have six opened
files.

The BAM does not match the
internal count. There is a
problem in the BAM allocation or
the BAM has been overwritten in
DOS memory. To correct this
problem, reinitialize the
diskette to restore the BAM in
memory. Some active file may be
terminated by this corrective
action. NOTE: BAM is the Block
Availability Map.

Either the blocks on the diskette
have been used up, or the
directory is at its entry limit.
DISK FULL is sent when two blocks
are available on the 1541 to
allow the current file to be

closed.
A

Appendix F

73

74

DOS MISMATCH (73,
CBM DOS V2.6 1541)

DRIVE NOT READY

Error Messages

DOS 1 and 2 are read, but not
write compatible. Disks may be
read with either DOS, but a disk
formatted on one version cannot
be written to with the other
version because the format is
different. This error is
displayed whenever an attempt is
made to write to a disk which has
been formatted in a non-
compatible format. This message
may also appear after power up.

An attempt has been made to
access the floppy disk drive
without a diskette present.

Appendix G Cl6 and PLUS/4 Schematic Diagrams

APPENDIX G

Cl6 AND PLUS/4 SCHAMATIC DIAGRAMS

