% S o o) o "
’ i : . : w : T~ RN

AT
- AN INTRODUCTION
~ TOBASC-PARTT

By Professor Andrew Colin

FEFEMEY LT

‘\ .

Rl aliakial aF VAV ANEE ok iah o o o S0 R0 AP A0 ik al

-

CONTENTS

This course is Part 1 of a series designed to
help you learn about every aspect of program-
ming the COMMODORE 16 and Plus/4
computers. The present course covers the
principles of programming and all the
elementary facilities of the BASIC programming
languoge. It has three constituent parts:

1. Aself-study text divided into 15 lessons or
‘units’, each of which deals with an important
aspect of programming.

2. 2 cossette tapes or 1 disk with a collection of
programs, which help you study the units.

3. Aflow-chart stencil like the ones used by
protessional Computer Scientists. This
stencil will help you design programs to be
correct, efficient and robust.

Please note that this course teaches you to
write useful and entertaining programs for your
computer, but it does not cover the whole of the
BASIC language. The more advanced features of
BASIC are fully explained and discussed in the
second course of the series.

CONTENTS LIST

Title Subject

Related Cassetie
Programs

Introduction

Unit 1 Geftting Started: Setting up the computer; Loading

TESTCARD, HANGMAN

programs from cassettes or diskette; Adjusting the TV set

Unit 2 The Keyboard: The cursor; Graphics symbols; Drawing

pictures; Screen editing.

SPEEDTYPE

Unit 3 Pictures in Colour: Frame and background control;

UNIT3 QUIZ

Character colour selection; Reverse field characters.

Unit4 Direct Commands: Numbers and strings; the PRINT

UNIT4DRILL

COMMAND; Effects of commas and semicolons on
spacing; Yariables; the LET command; Arithmetic

and string operators.

Units Stored Commands: Stored programs; the GOTO

UNIT5QUIZ

command; Simple (uncontrolled) loops.

Unit 6 Practical Aids: The LIST command; Line editing;

SENTENCES

Saving and verifying programs; Some common pitfalls.

Unit 7 Confrolled Loops: Conditions involving numbers and

UNIT7QUIZ

strings; Loop control by counting, etc.; The meanings

of “=""in BASIC.

Unit 8 Tracing: Tracking down errors.

UNITBPROG

) Related Cassette

Title Subject Programs

Unit9 Programmed Colour: Normal and quote screen UNIT9QUIZ
modes; Screen representation of control characters;
Use of position and colour control characters in
programs; The internal clock Ti$.

Unit 10 Input of Data: The INPUT command; Relationships UNIT10QUIZ
between programmer and user.

Unit 11 Fiow-charts: Conditional commands in programs; UNITTTPROG
Data validation; Flow-charts; Glossartes;
Program design.

Unit 12 Advanced Loop Contral: The FOR and NEXT UNIT12QUIZ
commands; Program structure.

Unit13 Sounds: Volume and Sound; Control of pitch SOUND DEMO TUNE
and duration.

Unit 14 Data Reduction Programs: Terminating a stream of HEADS
data; Program robustness.

Unit15 Computer Games: Reaction time; the GET command; REACTION

the internal timer Tl; the RND function; Structuring
games of chance.

Afterword

Appendix A Mathematical aspects: Expressions

Precision of working
Standard functions

Appendix B

Answers to selected problems

Appendix C Common errors.

Index

‘W

INTRODUCTION

Welcome to the programming course for the
COMMODORE 16 and PLUS/4. Both these
machines are superb for playing games and
producing brilliant and exciting pictures and
sounds onyour TV set; butthey are also complete
modern computers in their own right.

Computers are extraordinarily versatile;
more 50, in fact, than anything except a human.
Your computer for instance, can be switched to
be ateaching machine, a calculator, anaidto the
handicapped, a word processor, a machine for
financial records and stock control, a monitor for
a patient in an intensive care unit, a controller for
on industrial process, or a scientific computer
used by engineers to design buildings, power
stations and aircraft.

Computers and the systems they control are
steadily entering into our everyday lives. Already
many devices such as traffic lights, cash registers,
and banking terminals have computers behind
the scenes. This trend will continue for most of our
litetimes. The world is passing through a
computer revolution, which will be as profound in
its effects as the Industrial Revolution was in its
own time,

The Computer Revolution can't be stopped;
but all of us can, if we like, have some influence
on the way it goes. The world is becoming
divided into two sorts of people — the
passengers and the pilots. The passengers let it
all just happen; they may enjoy using computer-
based products, or they may hate computers, or
both. They often make their views known, but
without any real effect — they can’t reach the
controls, and wouldn't know how to use them if
they could.

The pilots, on the other hand, are in control
of the whole revolution. They invent new types of
computers, and think up original and useful ways
of using them, The pilots have a heavy
responsibility, since it rests on them fo steer the
world towards peace, freedom and plenty, and
away from the nightmare society often depicted
in Science Fiction,

What sets apart a pilot from a passenger?
Only one thing: understanding the way a
computer works. Of course there are different

levels of understanding. Most people understand
how to use an arcade machine even though they
couldn’t explain the mechanism to you. (Yes —
there is a computerinside.) The level [am thinking
of is much deeper. It is so thorough and complete
that you can make a computer do anything you
want itto, in the way of teaching activities,
industrial or medical applications, or even
games to amuse you.

To have this power over your computer, to
make it into a fast, accurate obedient and willing
slave, you must be able to program the machine.
Programming is the key to becoming a pilot.

This course is all about programming. It
relates to the 16 and PLUS/4, but once you hove
mastered programming for these machines you
will find it simple to transfer to any other
computer, large or small.

The more programming you do, the easier it
becomes. Most peopie can learn how to program
if they give themselves a fair chance, and so can
you. You do not need to know much about
mathematics, but you wiil find it useful to have a
quiet place 1o read, think ond use the computer,
and it is best to give yourself plenty of time to
complete the course. Don’t rushl!

The course is split into fifteen ‘units’. Each unit
will take you one or two solid evenings’ work, on
average. Most of the units include some reading,
some practical work on the machine, some
programming, and a ‘self-test’ questionnaire to
measure how well you have understood the umit.
Every unit contains some ‘experiments’ which you
should tick off as you do them.

When the units ask you questions, they
generally give you spaces to write your answers.
Use them. Write with a soft pencil, and have a
rubber handy, so that your answers can be
rubbed out if you pass the computer course on to
someone else. If your copy of the course aiready
has the answers written in, go through it and
erase them before you start studying.

Programming is a tight-knit subject in which
ideas depend closely on each other. Topics you
learn about in earlier units are mentioned and
used in the later ones without any further
explanation. For example, you won't be able to
make head or tail of unit 10 uniess you have read
and understood all of units 1 to 9. This makes it
important that you follow the units in the order
they are given.

When you start work on a new unit, begin by
reading quickly right through it from beginning to
end. You won't get much of the detail, but you will
form an idea of the kind of topics you are going to
study.

Next, work through the unit in detail. Every
part matters, and the parts which seem the
hardest matter the most. Don't skip anything, but
try to understand every point. When you feel
you've learned something, repeat it fo yourself in
your own words. Don’t be upset if you find you
have to read parts of the unit several times over,
or even go back to an earlier unitto clear up
some awkward point. This is quite usual with a
technical subject.

Programming is like playing a musical
instrument: you can only learn it by practice. You
must therefore complete all the programming
problems in the course. As soon as you can, start
making up and solving problems of your own.

When you complete the course, you'll be
able to use the computer for many different
purposes. For instance, you can have it
administer tests or quizzes, you can make it play
games which you invent yourself, and you may
find it useful for sums and accounts. The games or
other applications can include coloured moving
pictures to your own design, and sounds to
emphasize your meaning — beautiful tunes or
rude noises!

Programming is, however, a very large sub-
ject, andgno one could do it full justice in a single
course. After a while you will probably want 1o
take your programming further, You may, for
instance, be interested in solving more compli-
cated problems, or in using the machine as a
controller for a model railway or private
telephone exchange. The second volume in this
series, entitled An Introduction to Basic: —Part 2
will help you achieve these complex and
sophisticated aims.

Well — enough talk. It is time you started on

Unit 1, Good luck!

{ |

UNI1

EXPERIMENT 1-1

PAGE 3

EXPERIMENT 1-2

EXPERIMENT 1-3

This book is about two of the computers in
Commodore’s range. One of them is the
Commodore 16, and the other is the more
sophisticated Plus/4. The two machines have
distinctly styled cases, different store sizes and
keyboard arrangements, but in all important
matters of programming they are the same. One
book will serve for both.

Where the differences matter (mainly in the

early units} the machines are decribed separately.

The sections are distinguished like this:

To learn programming you need the right
surroundings. Find a quiet comfortable place,
and timetable yourself long periods (at least 2
hours) at a time when you are not too tired to
concentrate. Do everything you possibly can to
avoid disturbance — put a notice on the door,
take the telephone receiver off the hook, and tell
everyone in your family that you are busy: there is
nothing that makes programming more difficuit
than constant interruptions!

If you have already installed your computer
and used it, you can skip straight through to

This is about the COMMQODORE 16 (and
doesn’t apply to the Plus/4).

Experiment 1. Otherwise, read quickly through
the unit even if you know what it's all about; you
may still find it useful,

First, arrange your equipment and connect it
to the mains. The computer and cassette or disk

Here is something which refers only to the
Plus/4 and has nothing to do with the 16.

drive go on the table in front of you, the power
supply can be put on the floor under the table,
andthe TV should be about é feet (2 metres} away

The first unit is designed to get you started
using your computer. It explains a number of
rather ordinary matters; practical questions
which often raise serious problems when
someone buys their first computer.

ifitis a small portable set. Sets with larger screens
should be put even further away. The pictures and
text you can expect fo see are quite large enough
to be read ot normal viewing distance, and if you
try it, you will find that working with a screen
close to your face is uncomfortable and tiring.

\oo<~l

posatsy] (m—

AR

Reset On/OH fower Seriql Fort User Memory 1 2 Avdio/Video H F H L
Switch Conneclar for Printer and/ Port Expansion Joysteks Connector
gt DiskDiive Cassette Port PFUS/4
—
---..
ooc@ T 1T OO o)
prshck, Paddle, Cn/OH Power Cartridge Audic/Video Serici Port Cassette Port
Lightpen ; Switch Connectar Slot foduidh Connector tor Printer
ese or o
O\?fplincfor v and/or Disk Drive 16

Cossehe
Reco-der

i}

The various units are connected together as
shown in the diagrams. All plugs should slide into
their sockets with gentle steady pressure. Never
use force, but look carefully at the pin
arrangements of the plugs and sockets before
you try to join them. Computers are robust, but
plugs and sockets will get worn and damaged if
they are connected and disconnected too many
times. Once your computer is set up, aim to leave
it undisturbed as long as you can.

If your TV set has to do double duty as a
broadcast receiver, get an aerial switch which
lets you keep the computer and the ordinary
aerial both connected all the time.

Both the computer and the TV can be run
from @ mains extension cable. The longer the
cable, the more freedom you have to arrange the
computer just as you want it. If you're using @
cassette recorder twin outlets are enough, but if
you have a disk drive we suggest you geta 4-way
adaptor. The spare power socket will be usetul it
you ever buy yourself a printer.

i you do decide to get an extension cable,
we advise you not to fit the plugs yourself unless
you really know how to do it. If you don't
understand why we are giving this advice, then
you definitely need someone to help! A qualified
electrician is by far the best choice.

Now you are ready to switch on.

Turnonthe TV. If ithas a simple tuning knob,
turnitto “36" or thereabouts. It it has push-button
tuning, select a channel which is not normally
used for broadcasts. The set will show you o
blank screen and probably hiss loudly. Turn
down the volume if you like.

Next, power up the computer, using the
switch on the right hand side. if all is well the red
power lamp will glow, but unless you are lucky
the TV set will still not show a picture.

Now go back tothe TV and tune it. The exact
method of tuning varies with the make of the set,
and is always explained in the manufacturer's
instructions. In most cases there is either a knob
or a small screw associated with each channel.
Sometimes the tuning controls are hidden behind
a small panel. If you have to use a screwdriver,
don’t poke it inside the set, as you could easily get
a nasty electric shock.

As you turn the tuning control, a picture will
suddenly appear:

COMMODORE BASIC V3.5 12277 BYTES FREE

COMMODORE BASIC V3.5 68671 BYTES FREE

The central area is white, with a cyan {light
blue) border. You may have to adjust the line hold
and frame hold controls to get a steady picture.

If you don’t getthis picture, turn the computer
off for a few seconds and try again.

It you have any difficulty, check the following
poinis:

® s the TV set working? Try it on ordinary
broadcast reception, and have it repaired if
necessary.

® |sthe computer power light on? If not, check:
a) Thatthere is no general power failure.

b) That some other device (such as a table-
lamp or hair-dryer} will run from the
socket you are using. If not, try changing
the fuse in the extension plug lead.

c) That the fuse in the computer power
supply plug is intact {try a new fuse).

d) Thatthe power supplyis firmly plugged in
to the computer.

® s the computer properly connected to the
aerial socket on the TV?

If your system still doesn’t work (a most
unlikely event), take it back to your dealer for
advice and repair.

The message now on your screen consists of
a number of ‘characters’ including letters and
numbers. These characters are always the same
size, and when the screen is full it can hald 1000
of them,

The first line on the screen identifies the
product: a BASIC system designed and
manufactured by Commodore Business
Machines. The 'V3.5" is a version number which
may be changed from time to time.

The message in the last part of the line tells
you how much memory there is in your machine.
Every computer needs a ‘'memaory’ o store details
of the job itis doing for you. Memory is measured
in ‘bytes’, each of which can hold just one symbol

or character of information. The more memory,
the more complex the task the machine can
handle.

The correct figures for available memory are
12277 for the COMMODORE 16, and 60671 for
the Plus/4. If you expand your computer by
plugging exira memory, the figures wili be larger.

If the number on the screen is less than you
expect, this is a clear sign that the computer is
broken. It should be returned to your dealer for
repair.

The next line tells you that the computer is
now READY to obey commands typed on the
keyboard.

The following line shows a flashing black
square. This is called the cursor. When you type a
command on the keyboard, the cursor indicates,
in advance, exactly where each character will be
displayed. For example, try the following:

(This takes 9 key depressions:

PRINTS + 8andthe Mkey,whichis

at the right of the keyboard.}

SHIFT
Before you start typing, touch the [l
key to make sure that it is not locked down. As you

type each symbol (except m] it

appears on the screen and the cursor moves on

by one place. The main job of the

key is to make the computer carry aut an
instruction: in this instance to PRINT (that is, to
display) the result of adding 5 and 8!

To do anything usetul, the computer must
have a program.

Programs are stored on cassette tapes or
floppy disks, and this first experiment will give
you practice in loading a program from a tape or
disk into the machine. If you have a cassette unit,
follow the instructions immediately below. If, on
the other hand, you are forfunate enough to be
equipped with a disk drive, skip to Experiment 1.2,
which is designed specially for you.

EXPERIMENT

1-1

Loading programs from tape:

1. Make surethat the cassette unitis plugged in
to the computer.

2. PressEJECT on the cassette unit.

3. Open the holder on the tape unit, and put in
the first of the two tapes provided with the course.
Itis labelled TAPE 1. You can load it either way up
since both sides are the same. In any case, the
tape window should be facing towards you.
Close the holder. If it doesn't close flat do not
force it but make sure you have put the tape in the
right way.

4. Pressthe REWIND key on the recorder.
Watch the cassette through the window, and if
you see it spinning, wait till it stops. Please make
sure you are at the beginning of the tape.

5. Pressthe STOP key on the recorder.

6. Now type the following message:

LOAD"TESTCARD" m

This takes 15 keystrokes in all, counting “ as
asingle stroke. To produce the symbol, you will
need fo find one of the two [keys
(either will do} and hold it down while you hit the

key marked .

Remember to release the key as
soon as (but not before) the * appears on the
screen.

You have to get the message right. Some
common faults which you should avoid are:

SHIFT

SHIFT
Typing with the key down. You will
get a strange pattern with lines, hearts and
spades, and nothing will happen.

Using two single primes ’* instead of a
double quote . The computer will reply:

¢SYNTAX ERROR
READY.

and you can try the command again on the next
line.

Putting a space between ” and T, TEST and
CARD, orDand “.

Typing the letters RET UR Ninstead of using

the key.

Nothing will happen.

Using digit @ instead of letter O in the word
LOAD.

If you make o mistake, you can always ‘rub

out’ by tapping the @ key. Each depression
ergses one character and moves the cursor back
one place.

7. lfyou give the message correctly {or even if
you make a mistake in spelling the word
TESTCARD) the machine will reply

PRESS PLAY ON TAPE

giving a picture like this:

COMMODORE BASIC V3.5 68671 BYTES FREE
READY

LOAD “TESTCARD”

PRESS PLAY ON TAPE

Press the PLAY key on the cassette unit. The
screen will go completely blank and you will see
the tape spin. After about half a minute the
message will come up:

FOUND FTESTCARD

and the tape will stop. This means that the
cassette unit has wound the tape up to the
beginning of the section on which the TESTCARD
program is stored. To load the program quickly,
hit any letter key on the keyboard. (The program
will actually start to load itself if you do nothing
for long enough.) When you have pressed the key
the screen will go blank again, and the program
will take about three minutes to be transferred
from the tape to the computer.

If, after waiting for alt this time, the computer
comes up with the message

FOUND HANGMAN

this means that you misspelled the name
TESTCARD when you typed the original
message. Stop the computer by pressing the

AUN
Sild key and go back to step 4.

In most cases this procedure will work
perfectly. If it doesn't and the tape just runs onand
on without anything happening, it is possible that
the tape has been damaged in same way. Turn it
over and fry loading the program from the other
side. If you still can’t manage to load the
TESTCARD program, take the tape, the cassette
unit and computer back to your dealer for a
check-up. This is hardly ever necessary, as all
Commodore computers use a special method ot
recording which is much more reliable than most
other makes of machine.

When the TESTCARD program is loaded, the
machine will say

READY.

Start the program by typing

(4 key depressions).
Alternatively, you can just hold down the

m key and press the long key marked

, and the program will start by itself.

Experiment 1.1 Completed

EXPERIMENT

1-2

(For readers with disk drives.)

Important: Read these instructions oll the
way through before you follow any of them.

1. Make sure that the disk drive is connected to
the mains supply and plugged in to the computer.
The back of the 1541 disk unit has two identical
sockets for the connection and you can use either
of them. At this stage, don't try putting a disk into
the machine!

2. Switch on the disk drive, using the switch at
the back. Both the green and red lights atthe front
will come on. For a second or so, the drive tests
itselfto make sure that it is working correctly. If all
i1s well the red light goes off, leaving only the
green one glowing. If the red light doesn’t turn
itself off, or starts flashing, this is a sign that the
disk drive may be broken. Try switching off and
on again, and if the trouble doesn’t go away take
the disk drive back to your dealer for repair.

3. Openthedrive by pushing the lever in and up.
Push your program disk firmly but gently into the
slot, making sure it goes all the way in. The
COMMODORE label should be uppermost,

towards you and on the right.

z
w
m
o o]
|
=
_{
Q
o
C_ 1 =
cc— <
— e

WRITE PROTECT NOTCH

Press down the lever until it springs forward. Your
disk is now loaded.

4. Findthe longkey IobeHedcmd press it.
Then type the word

TESTCARD
The screen should show the message

DLOAD"TESTCARD

If it doesn’t you can rub out any characters which

are wrong by pressing the m key. Each
depression removes a character and moves the

cursor back one place,
When you're sure the message is right, hit the

m key.

If you type everything correctly, the disk drive
will clatter gently for a few moments with the red
light glowing. Eventually the light will go out, and
the screen will be left with the message

COMMQODORE BASIC V3.5 60671 BYTES FREE

READY.

DLOAD"'TESTCARD
SEARCHING FOR TESTCARD
LOADING

READY

If this process doesn’t work, there are two
likely reasons:

a) It you have not connected the disk drive
properly or forgottento turn it on, you will get the
message

DEVICE NOT PRESENT

b) If you have forgotten to load the disk, or
loaded it the wrong way round, or loaded the
wrong disk, the message will be

FILENOT FOUND

in both cases find out what is wrong, correct
it and try again.

Once the program has been loaded
correctly, you can start it by typing

RUN

(4 key depressions). Alternatively you can just

hold down m and strike the (il key

and the program will start.

Betore going on, we should draw your
attention to some important points about
handling disks:

@® Neverswitch the disk drive on or off if there
is a disk inside it. Always load after switching
on, and unload before switching off.

® Hondle the disks as little as possible; keep
them away from dust, heat, cold and damp,
and never touch the surface which shows
through the slot in the paper cover.

® Keep disks away from all electrical
machinery such as TV sets, electric motors or
metal detectors. If you take a disk through an
airport security check, don't let it be X-rayed,
but insist on being hand-searched.

(Readers with cassette recorders rejoin here.)

The first program shows you something of
the range of colours and sounds your computer
can produce. It also lets you adjust your TV set to
get the best colour. Remember to turn up the
volume control so that you can hear the program!

When you have watched TESTCARD for fong
enough, you can stop the program by pressing

RUN
the Gl key.

When you hit this key (or whenever a progrom
stops for any reason) the screen shows o
message like

BREAK IN 560
READY.

The 560 inthe example could be any number.
BREAK doesn't mean your computer is broken: it
just tells you there has been a break in the
sequence of commands which makes up the
program.

Experiment 1.2 Completed

EXPERIMENT

1-3

Experiment 1.3 is a word-guessing game
designed to help you get the feel of the keyboard.
The program is called HANGMAN. You can load
it either from tape or disk, using the commands

oanrancman I

for tape, or

DLOAD "HANGMAN m
for disk. Remember that the key

automatically gives you the sequence
DLOAD”

When the program is loaded and the READY
message comes up, type

hitthe il key while holding downm,

and the game will start by itself. i you don"tknow
how to play, just keep trying letters and watch
{and listen) to what happens. You will quickly pick
up the idea.

Play the game as long as you like, and use
the opportunity to get accustomed to using the
letters on the keyboard.

Experiment 1.3 Completed

®
EXPERIMENT 2-1 PAGE ¢
EXPERIMENT 2-2 T
EXPERIMENT 2-3 13

EXPERIMENT 2-4 15

Welcome back. This unit is about the
keyboard, and tells you how to use it to write
messages and draw pictures on the screen.

If you have ever used an ordinary typewriter,
the computer keyboard will lock familiar, You
will find the letters, the numbers and most of the
signs in their accusiomed places, and there are

. s
the usual and G keys—although

they work a little differently on the computer.

On the other hand, don't be put off if you
have never done any typing. You may need a little
more time o get used to the keyboard, but that is
all the difference it makes.

For this unit only, please don‘t use the
RETURN key unless we say you should. As
yousaw in Unit 1, this key is the one which makes
the machine actually carry out a command for
you, such as loading a program or adding up
some numbers. At present, justto use the screen,
you don't need the help of the computer. [f you do

press the computer will only try to

obey the message or picture you have just typed,
misunderstand it and spoil its appearance.

Another symbol you should avoid just now is
the double quote mark (). This sign has a special
meaning, and alters the way the screen reacts to
many of the other keys on the keyboard. If o
double quote is showing on the screen it can be
much more difficult to draw useful pictures. You
will learn all about this character in a later unit;
but for now, keep off!

You may find this list of “don’ls” quite
alarming. Here is another one: Don’t worry!
Unlike computers in Science Fiction, your machine
has no ‘self destruct’ command. It is absolutely
impossible to damage the machine by typing on
the keyboard. Some patterns of characters which

contain * or m will make it behave

quite strangely, and a few sequences, which you
might hit by chance if you are careless, will stop
the computer from responding to you at all. These
troubles are only temporary: you can always
cure them by switching the computer off and on
again, or by pressing the reset button beside the
main switch.

EXPERIMENT

The COMMODORE 16 has 66 keys in its
keyboard, and the Plus/4 has 67. Both keyboards
are illustrated below.

The keys are divided into two categories:

® 48 'symbol’ keys which make the computer
show characters on the screen. ('Space’
counts as a symbol key.}

® 18 (or 19) ‘function’ keys, which control the

way characters are drawn.

On the COMMODORE 16, the function
keys are

DEDENEES
BEEESER
23 (5 XD (22D
=0 =D

On the COMMODORE Plys/4, the

functions keys are

i £s HILP € ?
CLR M INST AUN
a

£1 £4a

~
— W
o

COMMODORE 16

COMMODORE Plus/4

DENEEEEONEEE
1 ELIEDERDLLE

RETURN

J

The only difference between the two
keyboards {apart from the layout) is that on the
Plus/4 the Control key is duplicated.

Press the @ key several times and note
that it has two positions — up and down. Finally,
make sure that it is in the ‘up’ position.

Now start your machine in the normal way,
or press the reset button if the computer is already
on. Just below the READY. message you will see
the flashing cursor.

in this experiment we examine how the
cursor moves when symbols are drawn on the
screen. The purpose of the cursor is to show you
where the next typed character will appear. Type
afew letters, and watch the cursor. Notice that
every character replaces the cursor, which then
shifts to the next position.

Now fill up the whole line with letters, until
the cursor is atthe exireme end of the white area.
Type one more letter and watch what happens:
the cursor jumps to the beginning of the next line,
all by itself.

Before going on, count the number of letters
across the screen, and fill in the box:

There are spaces for characters on

each line on the screen.

\ 4

Next, type some more lines, and keep going
until you reach the bottom of the screen. This isn’t
difficult, because if you hold down any symbol
key it will ‘repeat’ and fill up the screen quite
quickly. Count the number of lines showing and
write the number in the box below. Remember to
include the blank lines above and below the initial
message

COMMODORE BASIC . ..

) lines in a screenful of
characters.

Now fill in the last line until the cursor reaches
the lower right hand corner of the screen. Type
one more character and watch the cursor. The
whole screen moves up and the cursor moves to
the beginning of the next blank line which
appears at the bottom. Every new blank line is
bought ot the expense of the top-most one, which
vanishes. The top line has gone for good, and
there is no way or bringing it back unless it is
stored somewhere else.

Fill in o few more lines, and contirm that the
system always gives you room at the bottom of
the screen for more text.

There are

Experiment 2.1 Completed

10

11

EXPERIMENT [
down and type the line again. You will

get an almost completely different line of

symbols {including o ** but this will not
trouble you if you follow the instructions).
. Copy the symbols into the second row of
the table below, and notice how some of
the graphics (for example those on U and

I} fit together. Note that the graphic
symbols usually reoch the edges of the
little squares they occupy, so they can be
made to touch each other.

Next, type the line a third time, but

this time holding down the g key.
Many of the signs are different again.
Copy the line into the third row of the

iable.
(For COMMODORE 16) To examine the other graphics,
repeat the experiment with the line
. The computer has 48 symbol keys, but NM,./£=, followed by 33 spaces, which
it can display a much larger number of will take you to the edge of the screen.
different symbols. They include letters, Note and remember that digit @ is
numbers, puncfuqtion and mofhemcficol dibfarant feom leder O Yoi shauld
sym'bols, ond a W'd? range of ‘grophics’ always use @ (with the bar through it} to
orsimple shapes Wh’d_’ can be combined show you mean the number, not the letter
to make up different pictures. All these
different characters can be selected by Press G and AU ..
_ _ SHIFT together. The capital letters on the screen
using either of the two - keys will change to lower case letters, whilst
(they are connected 1og_ethfar inside the ’ some of the graphics will change into
computer} and the special ‘Commodare upper-case letters. Press the keys
together again (or hold them pressed
key lobelled o down) and the capitals come back. In
. Restartyour machine and type the general, you can use either a full set of
line graphics, or a restricted set and lower
case letters, but not both at the same
1234567890QWERTYUIOP @ +-—ASDF time. The use of small letters will be
GHJKL: wZXCVB discussed in the second volume in this
(These are all symbol keys, taken row by course.
row.)
SYMBOL [1]2[3[4]5]8[7[8]9 e [QWIETRTT]YUIT[O[P]@[+ - [A[SID[FIGIHII[KIL]: L [*[Z]X[C]V]B]
ol ([[[[FT T T T T T T I I T T I I T I ITITITI]TIT]
CLIL LTI T T P T T T T I T A I T T T TTTITTT1]
SYMBOLINM[L [I/T=T [T T T T TTTTITITITTITTITIIITITTIITIq T
Ol ([T T TTT T I I I IIITITIIIIIT1]
NN EEENEEEEEEEnEEEE

(For COMMODORE Plus/4}

The computer has 48 symbol keys,
but it can display a much larger number
of different symbols. They include lefters,
numbers, punctuation and mathematical
symbols, and a wide range of ‘graphics’
or simple shapes which can be combined
to make vp different pictures. All these
different characters can be selected by

using either of the two keys

(they are connected together inside the
computer) and the special ‘Commodore’

key labelled a ;
Restart your machine (or press the

RESET button) and type the line

1234567890+ - =QWERTYUIOP @ Ex A
SDFGHJKL:;ZXC

(These are all symbol keys, taken row by
row.)

Now hold one of the keys

down and type the line again. You will
getan almost completely different line of
symbols (including a but this will not
trouble you if you follow the instructions).
Copy the symbols into the second row of
the table below, and notice how some of
the graphics (for example those on U and
|} fit together. Note that the graphic
symbols usually reach the edges of the
little squares they occupy, so they can be
made to touch each other,

Next, type the line a third ime, but

this time holding down the 3 key.

Many of the signs are different again.
Copy the line into the third row of the

table.

To examine the other graphics,
repeat the experiment with the line
VBNM,./ followed by 31 spaces, which
will take you to the edge of the screen.

Note and remember that digit @ is
different from letter O. You should
always use @ (with the bar through it) to

show you mean the number, not the letter.

SHIFT
Press G and down

together. The capital letters on the screen
will change to lower case letters, whilst
some of the graphics will change into
upper-case letters. Press the keys
together again (or hold them pressed
down) and the capitals come back. In
general, you can use either a full set of
graphics, or a restricted set and lower

case letters, but not both atthe same time,

The use of small letters will be discussed
in Part Two of this course.

SYMBOL [112[3[2[5]8 718]9 0] I-IQMIE[R[TIY]u[1 [O[Ple[E[*[A[S[O[FIG[H] K[L T: {z[x]c]

SO ((TT T IO i LT
g EEEEEENE IR EEEEEEENEEEREER

SYMBOLVIENML /T T T [[T T T U T T T T T T Il [lT]

B o L T T LTI T T

ANEEBSNENEEEEEEEEEEEENEEEEEENEEREANERREE

Experiment 2.2 Completed

12

13

EXPERIMENT

2+3

So far you have been limited to displaying
characters strictly in sequence, left-to-right and
from the top down. This is a tedious way to draw a
picture, and it would be far more convenient if
you could place your text and graphic symbols at
any position you choose.

This can be done with the cursor keys, of
which there are five:

S 8.0
HOME and On the

P|us/4 not the 16) the arrowed keys are actually
shcped like arrows.

When you type w by itself, it moves the
cursor back ‘home’, which is the top left-hand
corner of the screen. Reset your computer and
strike this key. You will see the cursor move to the
corner of the screen.

The four arrowed keys are used to move the
cursor in the direction of the arrow. If you now

strike , the cursor moves one line down so
that it is over the C of COMMODORE. The C
remains visible because the cursor is fransparent.
Try moving the cursor along the line, using the

key, and then move it back fo the start with

. None of the characters in the line will
change as long as you use only the cursor keys.
If you hit a symbol key, the character under
the cursor is replaced by the new character, and
the cursor advances one ploce. For example, if
you put the cursor on the C of COMMODORE
andtype the letters EXCELLENT, the line will read

EXCELLENT BASIC. ..

(Of course, any other 9-lefter word will do equally
well for this expertment.)

Now use the key to move the cursor to
the B in BYTES, and change this word to GULPS,

Like all the other keys, the cursor control
keys repeat, so that if you keep one pressed
down the cursor will move continuously at about
10 character places asecond. This is useful if you
want to move around quickly,

If you press the key when the cursor is
atthe end ot a line, it moves on to the beginning of

the next line. Similarly, otthe beginning ofa
line moves the cursor back to the end of the
previous line.

The and keys move the cursor

directly up and down, with no sideways mohon.
The top ond bottom of the screen are handled
in a special way, and it is worth noticing what
happens.
Fill up the screen with a few lines and move
the cursor to the end of the last line. When you
move the cursor past the end of this line, using

iy .
. or , the whole screen movesup justas

if you had added another character. The top line
disoppears

Now go back ‘home’ and try to move the
cursor backwards. The screen does not move
down as you might have expected; nothing
happens at ali and the cursor stays in the same
place.

Now press w whilst holding down ene of

the m keys. The cursor moves home and

the screenis cleared, giving you a fresh screento
work on.

Practice making drawings on the screen
using the graphics symbols and cursor control
keys. Start with some simple geometrical shapes
like squares, oblongs, triangles and small circles.
If you make a mistake, move the cursor back and

type the right character. m will get

rid of characters in the wrong place.

When you have got the feel of using the
graphics, draw a box, like this, with your name in
it.

CHRIS

CHARNOCK

Now draw some playing cards, with curved
corners and the right symbols {(we suggest you
keep to black cards worth 18 or less).

Finally, if your artistic talent is up to it, try
something like an animal, a space-ship ora
human face.

Plan your picture first, using the grid below:

Experiment 2.3 Completed

14

15

EXPERIMENT

24

Everyone makes mistakes when typing. If
you get a single letter wrong in the middle of a
word, you can correct it with the cursor controls.
For example, if you type AUSTRAPIA when you
mean AUSTRALIA, you can move the cursor back
over the P and change it intoan L. Try !

Unfortunately, if you get the wrong number
of letters (too few or too many) this method won't
help you. A more powerful facility is provided by

INST _ _
the key, which lets you insert or remove
characters from the screen.

When you type E by itself, it rubs out the
character to the left of the cursor and shuffles all
the other characters on the line one place left so
as to fill in the empty space.

For example, suppose that you mistakenly
type INXDIA when you mean INDIA. You want to
get rid of the X, so put the cursor over the D (not

INST
the X!} and hit . The X disappears, and DIA

all move up one place, leaving INDIA — without
a space in the middle.

Now try using the m key to make some
corrections, as follows:

CHAINA to CHINA
EEGYPT to EGYPT
FINLANDIA to FINLAND
AUSTRALIA to AUSTRIA

In practice, the most common use of the
key isto get rid of characters you have just fyped.
The key will remove the last symbol and reposition
the cursor, all in one movement. You will soon get

accustomed to hitting whenever you make
a typing mistake.
INST
The other function of the &kl key can be
called up by typing it as a shifted character: that

e R
is, holding down the keywhen Bl is

struck. This function is used to insert spaces into
the middle of words or lines. These spaces can

then be filled up with characters in the ordinary
way.

Try the following example, which involves
changing AUSTRIA into AUSTRALIA.

Cl h SHIFT "%L':E
ear the screen | and }and

type
AUSTRIA

Move the cursor back over the |.

Hold down the (UL key and strike

@ twice. Each time the |A moves ane place to
the right. The cursor stays in the same place, so
after twa moves you get

& 2 spaces
=
AUSTR B |A

cursor

Now finish by filling in the AL. Move the

cursor past the end of the word, using the
key (not the space bar, since this would rub out
characters you still need).

INST
To practise using the key, clear the
screen, fill it up with the list of words on the left,
and then change each one to the corresponding
word on the right:

HOTEL MOTEL
MICROPHONE MICROCOMPUTER
PLYWOQOD wOQD
ANGLE ANGEL
CHAP CHEAP
WRITER WRITTEN
ACTOR AUTHOR
BALL BARREL
WIRE REWIRE
FLOWER FLOUR
MOON MORON
PIDGIN PIGEON
TACT TACIT
HORSE HOARSE
WING WARRING
TAXI TAX

READ READY
MERRY MERCURY
JOVE JUPITER
PAL PASCAL
BACK BASIC
JAVA JAMAICA

And now change them all back again.

Experiment 2.4 Completed

The Unit 2 program is entitled SPEEDTYPE. It
helps you get familiar with the keyboard. Load it

by typing
LOAD"'SPEEDTYPE"
or
DLOAD"'SPEEDTYPE

Start the program with the RUN command
and practice using it as much as you feel is
necessary.

16

|

o
EXPERIMENT 3-1 PAGE 19
EXPERIMENT 3-2 20
EXPERIMENT 3-3 21
EXPERIMENT 3-4 24

19

The COMMODORE 16 and the Plus/4 are
both colour computers. This unitintroduces you to
some of the ways you can get the machine to
draw many-coloured pictures on your TV screen.

Ifyour TV set is a black-and-white model, do
not expect brilliant results from Unit 3! You should
work through it just the same.

EXPERIMENT

31

Use the TESTCARD program (Unit 1) to make
sure that your TV receiver is properly adjusted.

RUN
Stop the program by hitting the G key.

You will see that the cursor at this stage is
black. Now the cursor can change colour, and as
well as telling you where the next symbol will be
placed, it also indicates what colour it is gaing to

L
be. Try typing a sequence of Il symbols (@
and | keys) and note that they appear in black,
which is the present colour of the cursor.

The colour of the cursor can be changed at
any time by typing one of the eight colour keys
while holding down the RSk key. The colour
keys are marked 1 to 8, and also carry
abbreviations of the celours they control.

Hold down m and strike the colour

keys in succession.
When you hit 1 (BLK) the cursor changes to
black (unless it's black already).
When you hit 2 (WHT) the cursor turns white.
The other keys change the cursor to red,
cyan, purple, green, blue and yellow
respectively. When the cursor is white, it is
invisible against the white background: it
just seems to disappear.
You can get another range of eight colours

by using the G key instead of .
They are the less brilliant pastel shades:

E and 1 gives orange

E and 3 gives yeflow-green
G and 4 gives pink

B and 5 gives dark green
@ and 6 gives light blue

and 2 gives brown

and 7 gives dark bive
@ and 8 gives light green.

Now try making some coloured pictures. A
good way to start is to make some coloured bars

of various lengths. Use the F graphic { C:
and U) to build up each bar. For example, to
make a red bar 5 symbols long, first hold down

and type 3 {(RED); this will change the

cursor to red. Then hold down a and strike U
five times.

You can change the colour of the cursor any
time you like. When you have got the feel of the
colour keys, try drawing an “election results
chart” as shown in Figure 1. Keep the leftering
black to emphasise the colours of the bars.

Figure]

ELECTION RESULTS
blue ——» TORY
R Y LIBERAL
red +» LABOUR
black —» SoPp
yeliow —» QOTHERS

Experiment 3.1 Completed

EXPERIMENT

32

You have seen how the computer looks after
the colours of individual symbols on the screen. It
con also control the shodes of the outer frame
and the background against which the symbols
oppear. The machine doesn’t have any dedicated
keys to control these colours, and the way to
change them is to give special commands.

Type COLOR 4, 5. Check it carefully {you
must use the North American spelling for the
command) and correct if necessary, and then hit

he key. The frame of the TV

screen immediately turns purple.
This special command hos three parts:

—

COLOR: This is called a keyword.

4: This number tells the computer which part of
the screen is to be affected by the change.
Thus

COLORG, ... would alter the background of
the screen,

COLOR 1 would refer to the cursor, and
COLOR 4 is used for the frame.

A

This is a colour code, The full table is

Colour| Black | White Red Cyan

Code 1 2 3 4
Colour| Purple | Green Blue Yellow
Code 5 6 7 8

Colour | Orange | Brown |Yel.-green| Pink

Code 9 10 ° 11 12

Colour| D.Green| LBlue | DBive |L.Green

Code 13 14 15 16

20

2]

You can now see why the command
"COLOR 4,5” turned the frame purple. Try some
other commands of the same sort, like

COLORY4, 2 m
COLOR 4, 14

The screen background can be changed in
the same way, using COLOR, . . . For example,

try
COLOR®, 8

If you make a mistake when typing e COLOR
commond, you can expect one of the messages

2SYNTAX ERROR if the command is not
spelled nght

or ZILLEGAL QUANTITY ERROR if the numbers
are not in the right range (@-4 for the first
one, and 1-16 for the second).

If you are drawing a picture, a good plan is
to start by setting the frame and background
colours by suitably chosen COLOR commands,

and then clearing the screen witha ﬂ and

If you set the background colour and the
cursor colour to be the same, the cursor will be
invisible. Certain other combinations {like yellow
and orange) make the characters impossible to
distinguish from the background. If you ‘lase’ the
cursor, you can always regain it by pressing the
RESET button.

Experiment 3.2 Completed

EXPERIMENT

33

You may have noticed some strange gaps in
the graphics characters; for instance we have

-; but not .. : we have ! and | ! but
not ‘ or k . Furthermore it seems impos-

sible to fill a complete square with colour and
therefore to build up large areas of the same hue.
The reverse field facility comes to our help.
When a character is displayed in reverse
field, the colours of the characters and of its
background are swapped. Try the following
experiment:

Reset the computer, and type o few
characters, including

L-.— r, 1‘ and a space. Now hotd down

and the 9key (also labelled RVS ON).

Then relecsemond type o few more charac-
ters. They will appear in white on a black back-
ground, instead of black on white. In particular

- comes out as .. ; '___ and L! are
ha G
changed to ‘ and k , and a space

appears as a solid block of black. We say the
the machine is in reverse mode.
To bring the following characters back to

normal mode, hold down mond type the @

key (labelled RVS OFF).

The cursor does not show whether the
machine is reverse or normal mode. If you are
using many reversed symbols it is easy to forget,
and to be in some doubt as to how the next
character will appear. This difficulty can be
resolved in two ways:

(a) Type the next character and look at it. If itis
wrong, erase it, change the mode, and try
again.

(b) Type the RVS ON or RVS OFF key, as
appropriate, before you type the next symbol.
Ifthe machine is already in the right mode this
will not make any difference.

A useful way of filling up the screen with
blocks of colour is to use reversed spaces. The
space bar is a ‘repeating’ key, and if you hold it
down it will generate a sequence of spaces at
about 10 per second.

Drawing national flags makes a good way
of getting practice in the use of colour. The
easiest type of flag to reproduce is one with hori-
zontal stripes, such as that of Luxembourg.

purple

yellow

green

To paint this flag, set the frame to a suitable
colour (say black) and the background colour to
the same as the bottom right hand corner of the
Hlag (green). This is done by

RETURN

COLORA4, 1

COLOR®, 6 m

Next move the cursor home and clear the
screen, select purple and reverse mode (hold

downm and fype&ond then RVS ON).

Then hold down the space bar and fill up 8 lines
with reversed purple spaces.

Next, select yellow and fill up 9 lines with
yellow reversed spaces.

Lastly, change the colour to green. This will
make the cursor disappear and leave an 8-line
green area of the bottom of the flag.

It is important to set the background colour
to one of the colours which appear on the picture,
otherwise you will be unable to hide the cursor
when the drawing is complete. Likewise the
frame colour should be different from any colour
which appears in the flag itself.

When you have mastered horizontal flags,
try one with vertical stripes, such as Italy. Those
with crosses (Switzerland or Iceland) are also
worth drawing.

Even more difficult are flags with diagonal
elements such as Czechoslovakia. The parts ot
the flag near the sloping lines must be made with

the graphics j or i suitably reversed if

necessary. If you think about it you'll see that the
background colour mustbe chosen so thatitis on
one side of every sloping line. In the case of the
Czechoslovakian flag, a suitable background
colour is blue; red — say — wouldn't do because
there would be no way of drawing a blue and
white element on the upper diagonal.

if a flag has a diagonal bar right across it
{such as the flog of Tanzaniq) it is better to use
only 25 of the 40 columns, and to fill in the rest
with the ‘frame’ colour. Assuming a black frame,
a typical line halfway down the Tanzanian flag
would be entered as:

and GRN, KA ond
=3
and B | m dnd g,m,
and BLACK, and ISR
onc s, I I
W e | ond£,m,
and BLUE, and MR |

ST E,W

The commas as well as the word ““and”
shown above are simply to show you the different
commands so that they are easier to follow. They
should, of course, not actually be used when
drawing the flag.

If you feel sufficiently patriotic, you might try
the tlags of St. Andrew, 5t. David, St. George or
St. Patrick. The Union Jack is formidably difficult
to draw (even without g computer) and could well
be omitted.

Experiment 3.3 Completed

22

green white red
ITALY vellowl 1 \zaNiA
red
white
white blue
red
SWITZERLAND CZECHOSLOVAKIA
white white \/
red blue white blue
white white /\
ST. GEORGE ST. ANDREW
blue
blue blue [white
blue
- * I Whlfe
| red | blue
x : white
L blue
blue biue white
blue
— |
white ICELAND white GREECE

EXPERIMENT

3.4

Another useful facility inthe COMMODORE
16 and Plus/4 is that of flashing characters. Any
character can be made to flash on and off, at the
same rate as the cursor. Flashing is controlled by
the two keys marked “Flash on” and “Flash off”
near the space bar.

These keys are used in much the same way as

RVS :
BR . BR 1oscean example, try typing the

sequence

VOTE m and G FLASH GORDON

F .. FOR PRESIDENT

Draw the best coloured picture you can,
using the full scope of the computer. You may find
it useful to plan your picture first, using a sheet of
squared paper and some coloured crayons.

Experiment 3.4 Completed

The program which goes with Unit 3is a quiz,
and can be loaded by typing

LOAD “UNIT3QUIZ"
or

OPENT1,8,15, 1"
LOAD “UNIT3QUIZ" 8

24

UNIT:4

EXPERIMENT 4-1 PAGE 27
EXPERIMENT 4.2 30

27

In the first three units of the course we have
concentrated almost wholly on the computer
keyboard, and on using it to display text and
paint pictures on the TV screen. This is sound
preparation for the next part of the course, where
we look at some of the functions the computer
can do on your behalf.

As you already know, the computer will do
various jobs when it is commanded to do so. The
necessary commands are written in BASIC, a
simple and popular computer language first
devised by Kemeny and Kurtz at the Dartmouth
College, USA. BASIC has its own rules of
grammar just like any other language, but you
may be glad to hear that they are simple to learn,
and that you will easily memorise them through
practice, without any special effort.

Every BASIC command starts with a ‘keyword’
such as LOAD or POKE or PRINT. This tells the
computer what type of command is meant.

Similarly, every command ends with the
RETURN key. This has two different
meanings:

If the keyword is the first word on the line,

RETURN

is a kind of starting gun: “Now go
and do it”. For example, if you type

LOAD “TESTCARD"

the actual loading starts when the
key is pressed. The other interpretation of
ﬁ is discussed in the next unit, but

here is a short preview:

If the keyword in @ BASIC command has a
number in front of it — such as the “3" in

3PRINTS + 7
RETUAN

then the key is a signal not to obey
the command, but to store it away for |ater use.

In this unit we concentrate on the first inter-
pretation. Our commands will not have numbers
in front of them, and RETURN will be a cue
for the computer to take immediate action.

EXPERIMENT

4-1

One of the most useful and flexible com-
mands is PRINT. [t makes the computer work out
something for you and display the result on the
screen. The word PRINT is used because the
original BASIC system at Dartmouth relied on
mechanised teleprinters which really did print the
answers on rolls of paper.

Experiment 4.1 is arranged in three stages.
First, we try out @ number of different PRINT
commands and make careful notes of the results.
Next, we discuss the features of the command
which have shown up in the examples; and finally,
we examine some new PRINT commands, and try
to predict what the computer will do with them.
The answers can be checked by using the
computer itself.

Begin by typing these commands, ending

each one with the key. Be sure to
Eei the commands right, using the cursor control

eys to correct your typing if need be. Make a
careful note of the responses in the boxes
provided. The first two boxes are already filled in
for you:

PRINT 999 999
READY.
PRINT “HELLO" HELLO
READY.
PRINT —56 -
PRINT 3+4+4
PRINT 57

[

PRINT 27/7

PRINT “COMPUTER”

PRINT VIC

PRINT 3,5

PRINT 3;5

PRINT “RABBIT”, “DOG"”

PRINT “CAT"; “FISH"

PRINT “3+5"

PRINT 29-12; “LIONS”

PRINT 1,2;3;4

Before reading on, study your notes carefully
and see how many different features of PRINT
you can pick out. One common aspect of the
answers is that they are followed by READY, but
this is true of any command obeyed directly from
the screen, so it hardly counts as a special
property of PRINT!

Here then are the most important points of
the PRINT command;

1. Thecommand can handle both numbers and
strings, and it does so in different ways:
A number can either be given explicitly {like
999) or in the form of an expression or “sum”
which the computer works out. The expres-
sions in our trials were 3+4+5,5%7,27/7

and 29-12, so we see that the computer can
add, take away, multiply and divide. The
signs * and / mean multiplication and
division, respectively. {If you are interested
in using the computer for more advanced
mathematics calculations, you will be glad
to hear that these expressions can be as
complicated as you need. They can include
brackets, and all the special functions you
would expect to find on a scientific
calculator. You are advised to look at
Appendix A, which is an extra unit designed
specially for you.)

A siring is any sequence of characters
enclosed in double quole marks. The PRINT
command simply regurgitates such a string
exactly as it was given, without trying fo
process it in any way. The strings in our tests
were

"HELLO"”, “COMPUTER”, “RABBIT”,
“DOG”, “CAT”, "FISH"”, “3+5” and
“LIONS”.

Noticethat’’3+5" is notan expression, even
thaugh it locks like one; it is enclosed in
quotes, so it must be a string.

It you want to display a string, but forget to
put quotes round it, you will probably get @
(although you might sometimes get some-
thing else).

The PRINT command can handle two or
more quantities or strings at the same time, If
the two are separated by commas, then the
second result is spaced well across the
screen (just aver halfway). If a semicalon is
used, the separation is less. In particular,
strings are not separated at all {this is how
we get “CATFISH"). Numbers displayed by
the computer seem to be separated because
every number is always preceded by a
space (or by a—sign if it is negative) and
always followed by ancther space. If your
records don't show this very clearly, repeat
the command

PRINT 1,2;3;4

and ‘measure’ the result by moving the
cursor over It

Next we look at spaces inside the command
itself. The keyword PRINT must be compact
(that is, its letters must not be separated by
spaces), and any space which is inside a
string belongs to that string and will be
reproduced. Otherwise, spaces between
strings or numbers are ignored. Thus

PRINT 3 +5:7; 8

will give exactly the same result as

PRINT3+5;7.8

This rule — that spaces in commands are
ignored everywhere except inside keywords
and in strings — is generally true for the
whole of BASIC.

28

29

4. Ifyou make a mistake in the keyword itself,
or if you supply on expression which doesn’t
make sense (such as 5k x7) the computer

will reject your command with the comment
2SYNTAX
ERROR

This is computer jargon for saying that you
have braken the rules of BASIC. There is
nothing for it but to correct the command
and try it again.

Now run through the following list of PRINT
commands and predict what the computer will do
with each one. Show how the results will be
spaced: this is just as important as getting the
results right in themselves. On the other hand,
don’t bother writing down READY. each time.

Some of the commands may contain
deliberate errors.

Check your answers on the computer. If you
have made any mistakes, and can't see why
you've made them, go back and repeat the whole
experiment, until the ideas become clear in your
mind.

Note that the computer always carries out
caleulations involving multiplication and division
before addition and subtraction. As examples:

PRINT 5+2%7 will give 19
and

PRINT 54+2+6/3—3 will give 6.

Command Your prediction

The computer’s result

PRINT 94

PRINT8 —5

PRINT3 * 2+ 5

PRINT “OH DEAR”

PRINT ENOUGH

PRINT “1 /3"

PRINT 3; 47

PRINT 2+2;2—-2,2%2,;2/2

PRINT “CLOUD"; “BURST”

PRIN8 —7

PRINT “18", “MICE"

PRINT 53+ %7

PRINT —1;,-2;-3

Experiment 4.1 Completed

| |

EXPERIMENT

42

If a computer could only do one command at
a time, it would not be specially valuable to
anyone. At best, it would be about as good as @
(non-programmable] calculator. Most useful
computer jobs consist of whole sequences of
commands, controlled by sets of instructions
called “programs’’. As the commands in the
sequence are obeyed, there has to be some way
ofc‘Leeping the score’, of remembering how far
the job has gone, and of passing the results of one
command on to the next. The memory which
serves to link commands is provided in the form
of variables.

Before discussing BASIC variables, we shall
give you a human analogy. Suppose you are the
score-keeper at a football match. Your instruc-
tions could be as follows:

Before the match starts, draw two boxes,

label them with the names of the teams, and
write zeros inside them, thus:

) g

KELSO
ary

BOLTON
UNITED

VS

Whenever either side scores a godl, replace

the most recently written number in the

corresponding box by the same number,

plus one. Rub out {or cross out) the old

number.

Ecrf-woy through the match, the state could
e

g+ 2 &+ 2345
BOLTON KELSO
UNITED CiTY

When the final whistle blows, use the score-
board to display the nomes of the teams
together with the (latest) numbers inside the
boxes, thus:

BOLTON UNITED 2
KELSO CITY 5

In this example the boxes are variables; the
numbers in the boxes serve to remember the
current state of play, and change from time to
time as necessary; but the labels remain the same
for the duration of the match. The instructions for
using them are very simple, but foolproof.

The memory of the computer (it probably has
60671 or 12277 bytes — remember?) isabitlike a
large blackboard. When the machine is first
switched onthe board is wiped completely clean.
Then, whenever a variable is first mentioned the
computer “draws a box” by sefting aside part of
the memory, and labels it with @ name chosen by
the human user. Then it “‘writes a number in the
box" by storing the appropriate value in the
memory which has been set aside.

The BASIC command which makes the com-
puter do all this has the keyword LET. Let's
examine such o command in detail:

LETX=5

Here, the variable nome is X. The computer
will set up a box called X {if it has not already
done so) and will put the number 5 inside it. If a
variable X already exists, then no more space is
set aside; the 5 merely replaces the previous
value. Study the following cases:

X does notexist | X already exists
(Case 1) (Case 2)
Before | (Memory empty)
X
e | 3] | L35
X X

Resultof LETX =5

When you give a LET command, the computer
just says

READY.

There is no evidence on the screen that the
machine has done anything at oll. Fortunately, we
are helped by the PRINT command, which
displays the value of a variable whenever it is
mentioned by name. Try the following sequence
of commands:

30

31

Your results

LETZ =14
PRINT Z
LETZ = 31
PRINT Z

If you keep the right order, the first value of Z
to be printed will be 14, and the second, 31. The
first LET command both creates o variable called
Z, and gives it the value 14; the second one
merely changes its value to 31.

At this stoge we have to give you a few
simple rules about variables and their names.

There are two kinds of variables in BASIC:

@ Numeric variables, for storing numbers.

® Stringvariables, for storing strings (e.g. words
or phrases).

The choice of names for variables is quite
restricted. A numeric variable can be called by a
single letter, a letter followed by o digit, or by two
letters. Some examples of possible names for
numeric variables are

A, X, Z,B5, TX, PQ

Names for string variables always end in
the $ sign, but otherwise the rules for string
variabies are the same as for numeric variables.
Examples are

(%, 28, P7%,DB%
To show the use of string variables, try typing
LETT$ = “"GOOD ~
PRINT T$; “MORNING"

The value which follows the = signina LET
command doesn’t need to be a simple number or
string; it may be an expression, and furthermore it
can use the current values of variables by
referringto their names. For example, look at the
following sequence of commands:

LETQ =5
LETS = Q+3

The first one creates a variable called Q (itis
a number variable because of its name) and sets
its value to 5. The second one makes a variable
called §. It then takes the value of Q, adds 3, and
puts the resultinto S. To illustrate the point, try
running these two commands, and inspect the
result by typing:

PRINT Q; S

Now look at the following sequences and
predict the outcome of the PRINT statement in
each case:

LETAA =15

LET B = 33—AA

PRINT AA B

LETD =3
LETE = D*D+7
LETF=E--D

PRNTEED |
LET F=4

LET F=F+1

PRINT F

Did you get the last one right? Some people
might find it a bit tricky.

There is no limit to the number of different
values a variable can hold, as long os it only
holds one at a time. A command like

LETF = F+1

means: Firstwork out the expression (by taking
the value of F and adding 1)

Then putthe resultinbox F, replacing the
previous value.

In other words, the command makes the
computer add 1 to the current value of F.

The signs which allow us to combine numbers
in various ways are called arithmetic operators.
Theyare +, —, * and /. BASIC alse allows strings
to be manipulated in various ways by using string
operators. Only one of them combines two
strings; it is called “concatenation’ and is written
as a + sign. The operator simply attaches the
second string to the end of the first, so that

“"DOG” + “ROSE” = "DOGRQSE”

Look atthe foliowing sequence of commands,
and predict the outcome of the PRINT's. Then try
the sequence on the computer; remember to put a
spocecLefore each of the closing quotes:

LET B$="DOG

ercs.ores N -
LET D$="MAN m

LET E$= B$+C$+D$
LET F$= D$+C$+BS
PRINT E$ | I

PRINT F$ L 1

PRINT and LET are the two most frequently
used commands in BASIC. It is worth remember-
ing that when you use the computer you are
allowed to replace the word PRINT by a single
symbol: the query (2). LET can be omitted
altogether. A valid sequence is

A=5
B=17

¢AB

The program which comes with this unit is
designed to give you plenty of practice with PRINT
and LET commands. It is called UNIT4DRILL.

You can stop the program when you are sure
you fully understand the use of numeric and string
variables.

Experiment 4.2 Completed

32

UNIT:5

EXPERIMENT 51 PAGE 35
EXPERIMENT 5-2 37

35

EXPERIMENT

51

The time has come to look at stored
commands. Let's begin by showing that the
computer really can put commands away in its
memory, and then fetch them out again later.

Start up your machine (or if it is already
running another program such as SPEEDTYPE,

RUN
stop it by typing) and give the command
NEW (followed, as usual by the

KN ..

This command makes the computer wipe its

memory clean, just as a teacher cleans the

blackboard at the start of a lesson. You won't see

anything happen except the READY. response,

because the memory is all inside the computer,
Next, type the labelled command

1@ PRINT 13+59

NQTE: “one zero”, not “eye oh”i
and follow it by pressing the key.
The only visible result is that the machine moves
the cursor to the beginning of the next line. The
result of the sum 13+5%9* is not worked out or
displayed on the screen. Instead, something
invisible has happened: the computer has
remembered the command and put it away in its
internal memory.
To verify this, first clear the screen (using the

m and % keys) and then give the

command

—

LIST

If you have done everything the right way, a copy
ofyfhe labelled command reappears on the
screen. This proves that it was in the machine all
the time.

An alternative way to give the LIST command

is o hold down the m key and hitthe long

“There is nothing special about the sum 13+59.
Any other PRINT command would have done
equally well for this example.

key marked (inihild .

So far, our PRINT command hos been stored
and retrieved, but it hasn’t actually been obeyed.
The computer is still to tell us what 13+59is! To
find out, we type

GOTO 19

remembering to use letter Oh's (not digit zeros) in
GOTO.

This tells the computer to execute the
command labelled 10", It does so, and the
answer finally appears. You can do this as many
times as you like. |t does not destroy a command
to have it listed or executed.

The computer can remember many
commands at the same time. [The limit is set by
the size of the memory: it takes one byte to hold
each character in a command, plus a little bit of
overhead for the command as a whole.) Every
command must have its own label in front of it,
and ail the labels must be different. The machine
always stores and lists commands in increasing
order of label, and obeys them in this order too
unless it is commanded not to.

Try typing NEW

10 PRINT “FIRST LINE"
20 A=5

33B=10

49 PRINT A;B;A+B

5@ STOP

Remember to end each command with

RETURN

Now try a LIST, and then a GOTQO 10, and
check that the results ore those which you expect.
The STOP will make the computer stop and
display a READY when it reaches the end of the
sequence of commands.

The sequence in which commands are stored
is kept right even if you type them in a different
order from their label numbers. For instance, if

you had typed:

30B=10

10 PRINT ““FIRST LINE"”

4@ PRINT A;B;A+B

50 STOP

20 A=5
these five commands would still have been listed
and obeyed in the order 18, 29, 38, 49, 5@. Clear
the machine with a NEW, and try it for yourself,

Always start by making numbers go up in
steps of 10. if you decide later to slide some extra

commands in between the others, this rule makes
it much easier: you can then use intermediate
label numbers such as 15 or 38.

Why bother storing commands at all? There
are two good reasons:

® Commands which are fetched out from the
computer’s own internal memory are
executed much faster than if they are typed in.

® Commands which have been typed in once
can be obeyed many times over. Practically
every useful job done by a computer involves
repetition, and it is only sensible to put the
commands into the computer’s memory,
where they are easy and fast to get at.

Perhaps the easiest way to get repetition isto
store a labelled GOTO command. Consider the
following program:

19 PRINT “NORTH"
20 PRINT "WEST"
3@ PRINT “SOUTH"
40 PRINT “EAST"”
50 GOTO 10

When it is started at label 18, the computer
obeys the first four commands in sequence. The
next command sends it back to label 10 so that it
starts the sequence all over again. It just keeps
going round and round, and only stops when you

type
@ or turn the machine off.

Now clear the machine ond type in the
program. Start it by giving the initiol command

GOTO 14

You will see the machine obeying the lines of your
program, much faster than you can read them.
You can slow the machine down by pressing and

holding G (ry it), or you can stop it in the
RUN
usual way with the Kl key.

At this point, we will actuaily show the
advantage of using label numbers separated by
10. Suppose you want to alter your program so
that it includes the diagonal direction

NORTH
NORTH-WEST
WEST
SOUTH-WEST

etc,

You need four new instructions in between
the existing ones. If you number them 15, 25, 35
and 45 they will go in just the right places. Type
the following:

15 PRINT “"NORTH-WEST"”
25 PRINT “SOUTH-WEST"
35 PRINT "SOUTH-EAST"

45 PRINT "NORTH-EAST”

Now LIST your progrom, and check that your
new lines have been inserted between the old
ones, in the right places. Run the program and
see what happens,

Now write and test your own program on the
same lines. If you use graphics characters in the
strings instead of letters, you can get some
interesting patterns on the screen.

The GOTO 1@ command you have been
using to start your program has a more con-
venient equivaient: RUN. RUN simply makes the
computer start obeying commands at the one
with the lowest number.

When you put o semicolon after a string, the
computer doesn't take a new line between that
string and the next one when itruns your program
(but of course you must still end each command

with the key). Instead, it starts a new

line across the screen only when it reaches the
right-hand edge. A simple program like the one
below will quickly fill the whole screen with
curious designs; try it, and explain its action.

10 PRINT “ — —~ —
20 GOTO 10

Experiment 5.1 Completed

36

37

EXPERIMENT

52

A sequence of commands which is repeated
over and over again is called a loop. A loop may
include many different sorts of commands,
including a LET, which gives a new value to a
variable. Look at this program, and try to predict
its action:

16 LET A =1
20 PRINT A
30 LET A=A+1
40 GOTO 29
Pretend you are the computer and do exactly
what the computer does, patiently, step by step.
Write down what happens to the variable A and

its values. Don't read on until you have thought
hard and filled in your answer.

(and so on)

Now enter the program and run it, holding

down the B key to slow it down. {But don't

touch @ until you have typed m

after RUN.}

I'm sure you found this problem quite easy,
but here is an explanation of what you saw.

The program begins by obeying the com-
mand labelled 16, which gives the variable A the
value 1. The next command displays this value on
the screen.

Command ‘30’ replaces Aby A+1. Thisis the
same as adding 1 to the old value of A, so the
result (this time) is 2. The next command is a
GOTO, and maokes the computer return to
command 20! The value of A is displayed again,
but now it is 2, The machine again works through
the sequence 2@, 38, 48 and again, and again, but
each time round the value of A is increased by 1.
This gives the sequence 1,2,3. ..

To give you some praclice, try predicting the
tirst few lines displayed by these two programs
(remember, * means “times”):

16 B=0 1A=1

20 PRINT B 20 B = AxA

30B=8+3 30 PRINT A.B

40 GOTO 20 40 A=A+1
50 GOTO 20

And now check to see if you were right.
You can do the same kind of thing with
strings. Try this progrom:

'IB X$ = l‘l*ll
20 PRINT X$
30 X$ = X$ + "

40 GOTO 20

The successive values of X$ as the program
goes round the loop will be %, % &, * 244
* A4 #, and so on. The string X$ gets longer and
Ion%er, and uses up more space on the screen
eachtime it is printed. After some 45 seconds, the
string gets so long that it won'tfit in the machine’s
memory (the largest number of characters
allowed is 255}, and the machine reports a fault:

2 STRING TOO LONG
ERROR IN 3@

The line ERROR in 3@ means that the
command which tried to store the offending string
was the one labelled 30.

Here are some more programs for you to
predict.

10 AS ="++" 10 A% = "XY”
20 PRINT A$ 20 PRINT AS

30 AS ="A"+A$+"—"| 30 A% = AS+AS
49 GOTO 20 40 GOTO 29

Remember that if a letter comes inside a
string, it is just a letter and not a variable name.
50 X" has nothing to do with variable X or X$.

As atinal exercise, write a program with @
simple loop, and run it for exactly one minute,
timing it with your watch. Then stop it, see how far
it has gone, and calculate how many commands
the machine has obeyed in the time. Reduce your
figure to the number of commands per second,
ond write your answer here:

Experiment 5.2 Completed

The self-test quiz for this unit is called
UNIT5QUIZ.

38

UN IT @

EXPERIMENT 6-1 PAGE 42
EXPERIMENT 6-2 43
EXPERIMENT 6-3 45

EXPERIMENT 6-4 47

4]

The purpose of this whole course is to heip
you learn how to design and build your own
programs. To back up your growing knowledge
of programming you will need a collection of
techniques or ""tools” to organise your work, and
to help in putting things right if they go wrong.
This unit is a tool kit and puncture outfit, It isn’t
about programming as such, but the contents will
be useful in an emergency. Read the unit
carefully, get to know the techniques it describes,
and give ita permanent place in your mind as you
go further into the course.

If you are using a cassette recorder to load
your programs you can skip this section.

If you have a disk drive, we would like you to
format a new disk before starting Experiment 6.1.

As you already know, a single disk can be
usedto store many different programs. Every disk
has an exira item; it is an index or ‘directory’
which lists the names and sizes of the programs
on that disk.

Try the following experiment. Load the
program disk supplied with the course and type

DIRECTORY

This command will fetch the directory from
the disk into the computer and display it on the
screen. It will read something like:

@ “ITB PROGRAMS " DT 2A
12 “TEST PROG” PRG
23 "HANGMAN" PRG
13“SPEEDTYPE” PRG

and so on, downto
470 BLOCKS FREE

This listis worth studying. The top line, which
appeors in reversed characters, gives the
identity of the disk itseif. In this case the nome,
ITB PROGRAMS, was chosen by Commodore.
The “DT 2A" is a serial number which also
belongs to the disk.

Next there is a line for each program. The
first entry gives the size of the program in biocks.
Each block holds 256 bytes, so that you can see
that— for example —— HANGMAN is 23 x 256, or
5888 bytes long. The second entry gives the name
of the program, and third, “PRG", is the same for
every program.

The line at the end of the directory tells you
how many blocks are still left unused. ITB
PROGRAMS has room for another 20
HANGMAN -sized programs, or more if they are
smaller. The capacity of a completely empty disk
15 664 blocks.

Another, faster, way of getting a disk
directory is to strike the MR <oy (by itself).

Now you understand how program disks
are arranged, you can go on to the next step.

Get a new blank disk of the right type,
preferably from your Commodore dedler.
Make sure that the slot on the left as you load the

disk is clear —not stuck over with a silver label*
like the ITB PROGRAMS disk.

Turn onthe drive, and load the disk. Then
type

HEADER "disk name”’,D0,101

where “disk name” stands for any title you want
to give your disk, such as SUE'S PROGRAMS. The
title can be up to 16 characters long. DO is the
drive number. The sequence which follows the
comma is a serial number. It must start with the
letter I.

The actual line you would type might be

HEADER “SUE’S PROGRAMS”,DQ,101

RETURN

Wait about a minute, until the red light on the
disk drive stops glowing. Then type

DIRECTORY HEIUHY

You will get an empty directory; it just says,

@ “SUE'S PROGRAMS " 01 2A

664 BLOCKS FREE

You have just formatted a disk. Every new
disk you buy has to be formatted just once in its
lifetime, although it needs to be initialised every
time it is loaded. If you format a disk which has
already been used to store programs, you will
destroy everything recorded on it. You have been
warned!

Take your formatted disk out of the drive,
write its title on the label and set it aside.

*The label makes it impossible for the disk drive
to record anything on the disk, and is a way of
preventing the course programs from
accidentally being destroyed. Since you will
eventually be recording your own programs
on the new disk, you don't need profection!

EXPERIMENT

6-1

Load and run the Unit é program, called
SENTENCES. Take a look at the ‘random’
sentences it displays. These absurd statements
are constructed by a form of internal ‘conse-
quences’, where each word or phrase is selected
by chance from a short iist of possibles. Here we
shan’t worry about how the program works
{although it is quite simple in principle) but we'll
use it as an example in showing you how fo list,
alter and preserve large programs.

When you have seen enough of the sentences,

stop the program with the % key,anddo a
LIST. The program is far too long to fit on the
screen, and as the listing runs most of it disappears
from the top of the frame. Atthe end, only the tast
eleven commands can be seen.

The BASIC language includes some special
versions of the LIST command to allow for this
situation. There are five possibilities, which you
should try out as you read about them:

@ You can list the whole program by typing LIST

or by hitting the SHiFTed BB key. This, asis
now clear to you, has certain drawbacks if the
program is too long.

You can list a selected command by giving its
number. For example

LIST 1100

will display command 1108 (and no other).

You can list all the commands up to a given
label number by puttinga — signinfront of the
number. Thus

LIST — 80

shows all the commands from the beginning
of the program up to the one labelled 8.

@ You can ask for all the commands from a

given label number up to the end of the
program by putting a — sign afterthe number:

LIST 9890

® Finally you can list all the commands between
any two numbers by quoting both numbers:

LIST 2600 — 2090

Now use some of these types of LIST com-
mand to look at various parts of the program.
You will quickly notice that the label numbers
don’t always go up in steps of 10; this is because
the program was altered many times after it was
first written.

At the head of the progrom and in several
other places you will see commands with the key-
word REM, followed by descriptive statements in
English. REM is short for “remark”. These lines
play no part in the program itself, but are included
to make the program easier for people to read.
When you begin to write complicated programs
you should always use plenty of REMs to explain
what you are doing.

When you are satisfied that you have fully
understood the various forms of the LIST
command, try some experiments to see what
happens if:

(a) The command you refer to isn't there.
{try LIST 650)
(b) The label numbers are in the wrong order.
(try LIST 1100 — 1000@)

(c) The LIST command is included in a program.
iTt?fpe NEW, then type in this program and run
19 PRINT “LIST TRIAL”
20 LIST

30 GOTO 10

Hold down the @ key so that you can see
exactly what is happening. Eventually stop the

program with the % key.

Experiment 6.1 Completed

42

43

EXPERIMENT

6-2

This experiment discusses how programs
can be altered and modified. At present you will
be making changes to a program originally
written by someone else, but later most modifica-
tions you make will be to your own progroms.

There are three kinds of change you can
make to a program:

{a) Removing existing commands
{(b) Adding new commands

(c) Amending or replacing existing commands.

Removing Existing Commands
There are eight ways to get rid of a labelled

command in the computer’s store, but five of them
involve deleting or changing the entire program
and are quite drastic in their effect.

A whole program can be deleted by

@ Swiiching the machine off.
or @ Typing NEW

or @ Loading o new program from cassetle
tape or disk.

or @ Pressing the RESET button.

or @ TypingSY$32768 m
An individual command can be removed
® By typing its label number alone

@ By typing another command with the
same label number.

A group of commands can be removed by
typing DELETE followed by the line numbers of
the first and last lines you want o get rid of. For
example,

DELETE 150-230

will remove line 150, 230 and all the lines in
between.
DELETE has almost the same variants as LIST:

DELETE —100 will discard all lines up to 100.

DELETE 120— will throw away each line from
120to the end of the program.

DELETE 200 will remove only line 200.

DELETE by itself does not erase the whole
program; itis reported os a SYNTAX
ERROR.

If you use DELETE at all, do so with great
care. A single mistake can do a great deal of
damage to your program!

Reload the SENTENCES program and delete
a few lines which have the REM keyword. Check
that the deletion has worked by LISTing an
cﬁpropricfe part of the program both before and
after.

Adding New Commands

A new command can be odded to a progrom
by typing it, with a suitable label number. The
command is inserted at the place determined by
the label number.

We have aiready practised inserting com-
mands in Unit 5, but you can take this opportunity
to insert a few REM commands. Make sure you
don’t replace any existing statement, or the
program won’t work.

Altering Existing Commands

The most drastic way of altering a command
is to retype it, using the same label number.

Lel’stry an alteration. Begin by replacing the
copyright line (label 5) with aline containing your
own name. The dialogue might go:

LIST 5

5 REM COPYRIGHT © ANDREW
COLIN 1984

You type 5 REM CHRIS BLOGGS
LIST 5
5 REM CHRIS BLOGGS

Try altering a few more lines, but keep to
those with REM keywords, otherwise you will
almost certainly damage the program and
Freveni it from working properly. A program is
ike a living cell; random mutations are nearly
always bad and usually fatal.

When a line needs only a minor change, it is
often easier to alter the original (which is already
on the screen) than to type a new version. This is

INST
done with the cursor and possibly with the R
key. When the changes are complete, the

key will make the computer register
the new command in place of the oid.
Suppose you want to alter line 100, so that it
reads

100 REM MAIN STUPID SENTENCE GENERATOR

LIST command 18@, put the cursor on the S of
SENTENCE, and insert 7 blanks (use

INSY
and &kl). Then type the word STUPID, check

that all is correct, and strike . Do
another LIST 10@ as o check.

Try a few more alterations of this type,
always keeping to REM commands. Remember

if you don't strike after
changing a line with the cursor, the machine
won't register your changes!

Now give a RUN command. If the program
doesn’t work any more, you must have made a
mistake in editing, such as erasing or altering a
statement without noticing. Don't be upset — this
is quite common. Just reload the program from
the cassette tape or floppy disk.

You must hove observed that the SEN-
TENCES program makes statements about well-
known figures. The lists of possible choices are
very short: they are in commands 9078 (for men)
and 9108 (for rcdies). For the final part of this
experiment you are invited fo alter these lists so
that the progrom makes up sentences about your
family and friends instead.

Each of the two commands 9970 and 9100
has the keyword DATA. This is followed by the list
of names, separated by commas. The last name is
followed by a comma and the letter Z .*

There can be as many names as you like. If
the names runto more than 2 lines, use a second
DATA command {with a label number one up on
the first one). Third and fourth commands can
also be used. Only the last DATA command in
each group needs the Z at the end.

Some possible alternatives for lines 9970

and 2188 could be:

90 7@ DATABILL,GEOFFREY,PERCEVAL MR.SOPHOC
LES, THE HEADMASTER,Z

919 @ DATAGRANNY,SUSAN, VIOLET MRS.PINKERTO
N, THE GYM MISTRESS, AUNTIEFLO, RACHEL
GggygATAPEN NY,KATE,LAURA, FRANCES, NORAH, V
ICKY,

When you've made these changes, run the
program again. If it comes up with complete
nonsense check that you have put a comma
between each name (but not two commas) and
that the lost name is followed by a Z.

Once you've got the feel of making changes,
you can apply your imagination to the other lists
of words in the program. They are:

9000 Actions that people do by themselves
{intransitive verbs)

9013 Actions that people do with each other
(transitive verbs) ~

9920 Actions that people do with clothes {transi-
tive verbs)

9030 ltems worn by men
9040 ltems worn by ladies

9850 A list of adverbs and adverbial phrases,
describing actions that peopie do with
each other,

90460 A list of adverbs and adverbial phrases,
describing actions that people do by them-
selves

9070 Men's names
9080 Adjectives describing men
9090 Various sorts of men
9100 Ladies’ names
118 Adjectives describing ladies
9120 Various sorts of ladies
Alter the lists in any way you like. Remember
to keep them consistent. If you alter 9928 1o
actions dealing with food, you must alter 9930

and 9040 accordingly, otherwise you may get
sentences like

SUSAN ATE HER WELLINGTON BOQOTS

*The use of Z at the end of a DATA command is a
feature of this program only, not of BASIC in
general. DATA commands in mast other pro-
groms don’t need the Z at the end.

Experiment 6.2 Completed

44

45

EXPERIMENT

0-3

When you have altered the SENTENCES
program to say amusing things about your
friends, you may want to keep the new version to
show at parties, etc. This section explains how to
preserve the program on a cassette tape.

If you possess a disk drive, skip this section
and read the next one instead.

Get hold of a blank tape, or one with nothing
on it that you need to keep. It should be of good
quality, and as short as possible: you are only
goin%to use up about one minute’s worth of tape,
and there is no point in paying for more. The
special cassettes made by Commodore are ideal.

Load the new tape into the cassette unit in
place of the SENTENCES cassette, and rewind it.
Release all the keys on the cassette unit. Then stop
the SENTENCES program, and type

SAVE “FAMILY"

(you can use any name you like instead of
FAMILY).
The machine replies

PRESS RECORD AND PLAY ON TAPE

Follow these instructions, pressing both keys
on the recorder at the same time.
tf the RECORD key won't go down, check
that the tape you are using hasn’t had its ‘write
ermit’ tobs taken away. These tabs are at the
ack of the cassette, like this:

v JF
A/ - ommm @

0
U

TABS

i the tabs are broken off, it is almost
impossible o put any new material on the tape.

The idea isto protectimportant recordings which
mustn’t be destroyed, so get yourself another
tape.

If ali is well, the machine says
SAVING FAMILY
and a moment later,

READY.

In theory, your program is now recorded, but
itis better to check. Various things may have gone
wrong: you may have forgotten to rewind the
tape, or to press the RECORD bution, or the tape
itself could have a small bald patch which
prevents it from making a correct copy of the
program. These things shouldn't happen, but in
practice they do!

To check your tape, rewind it, and then type

VERIFY “"FAMILY" [
The machine replies
PRESS PLAY ON TAPE

Press the PLAY button {but not RECORD this
time). The machine then looks for your program
on the tape, and checks it against what is in the
memory. Naturaily you mustn't make any altera-
tions between the SAVE and VERIFY commands.

If all is well, the messages you will see are:

VERIFY “FAMILY"
PRESS PLAY ON TAPE
OK

SEARCHING FOR FAMILY
FOUND FAMILY
VERIFYING

OK

If the machine finds an error, or doesn’t get
as far as FOUND FAMILY, you must go back to
the beginning and try the SAVE command all over
again. If the frouble persists, try another tape (or
the other side of the first one). If you still can’t
make the system work, take the computer and the
cassette unit back to your dealer for a check-out.

Once a program has been SAVEd, it can be
stored and LOADed at any time, with a command
such as

LOAD “FAMILY”

To save your program on a disk, remove the
ITB PROGRAMS disk and load the one you
formatted at the start of the unit.

Now record your version of the program
with the command

DSAVE “program name” m

where "program name’’ is a title you choose for
yourself. For example,

DSAVE “FAMILY"
If allis well, the machine says

SAVING 0:FAMILY
and a moment later

READY.

To make quite sure that the program has
been recorded correctly, type

VERIFY “program nome” 8
(where “program name’’ is your program.)

MNotice that in the VERIFY command {uniike
DSAVE] the program name must be followed with
the sequence ,8.

The machine replies

SEARCHING FOR program name

VERIFYING

OK

READY.

This process will practically always work as it is
described; but if it doesn't try it again carefully,
from beginning to end. If it still fails get advice
trom your Commodore dealer.

When you have DSAVEd the program and
VERIFYed it, load and list the directory. Your
program should now be included.

A quick way of typing the sequence DSAVE"

is to hit the (NN key while holding down SHIFT.
Once a program has been DSAVEd, it can be
reloaded in the ordinary way, by a command like

DLOAD “FAMILY"

Now that you have o formatted disk, you can
keep on storing more programs on it, until the
space runs cut. Occasionally you will want to get
rid of a program and replace it by a newer
version with the same name. If you just give the
command

DSAVE “program name”
and a program of that name 1s already on the
disk, the red warning light will flash and nothing
else will happen. To dispose of the old program
you must use an extra character in front of the
program name: @ . The command now looks like

DSAVE “ @ program name”’

It is bestto follow this kind of DSAVE with the
special command

OPEN1,8,15, V"
and wait until the red light goes off. This gives the
machine a chance to collect up the space freed by
the removal of the old program so it can be used
again.

A program doesn’t need to be perfect to be
SAVEd. If you are writing a very long program
(or even copying one from a book) it pays to save
your work every half-hour or so. This is because
the computer’s memory isn’t as reliable as a tape
or floppy disk in a drawer. The machine itself

is unlikely to break down, but other

accidents can happen. Thunder storms have
been known to corrupt the information in @
computer store: there may be a power cut, or
your baby sister can trip over the mains lead and
lerk the plug out of the wall. If you lose six hours
of work through such an incident, you may feel a

little upset. If you have been taking regular half-

hourly dumps you can reload the most recent
version and go on with only a small loss of your
time.

To make the system absolutely safe, you
should SAVE or DSAVE on two different tapes or
disks alternately. Then even if the machine stops
during a SAVE, with half the old version
obliterated by half of the new one, you are still
protected.

Experiment 6.3 Completed

46

47

EXPERIMENT

6-4

In this section we point out a subtle and
dangerous trap which lies in wait for
COMMODORE computer programmers, and
tell you how to clamber out if you do fall in.

To begin, we'll try to drop you straight into a
simple example of the trap. Type NEW to clear
the store, and then enter the following program,
inserting all the spaces shown carefully, and
watching the screen as you type.
seict [1for |

1.8,
(2.8,
Now do a LIST and check the program, which
should appear exactly as shown.
You would expect the program, when typing
RUN, to display the message

A FRIGHTFUL AND APPALLING TRAP

over and over again until it is stopped. Try it and
see. It is likely to come up with

A FRIGHTFULAND APPALLING TRAP 20
2SYNTAX ERRORIN 1@
READY.

Even if your program does work correctly,
read on and find out |ust why you managed to
avoid the pitfall.

The reason the machine failed to run your
program {assuming that is what it didj is by no
means obvious. You could show the program to
the world’s greatest experts on BASIC, and they
wouldn’t see anything wrong with it,

The difficulty arises becouse of the narrow
screen width of the computer. Inside the machine,
any BASIC command may be up to 75 characters
long. The screen is only 40 characters wide, so the
displayed version of a command can spread
over 2 screen lines.

When you type a command and the cursor
reaches the end of a screen line, the system
moves it on to the beginning of the next line; but it
still assumes that you are typing the same
command. A command is only ended by the

S TeRD T T Al (e R | I g FEL T
: r@lﬁhlm‘f”“ﬂwwﬂqw‘1*D!MVPPPFvWﬂ‘FﬂKﬁ'

m key.

ltyou fell into the trap (as you were supposed
to), here is what happened:

You typed the first command (which was care-
fully designed to fill up the whole of a screen line).
You then c?;ound the cursor ot the beginning of the
next line and naturally typed the next command,

RETURN

ending it with @ . Since you didn’t

end the firstline witho RETURN , the system
thought that both lines were part of the same
command, namely

10 PRINT “A FRIGHTFUL AND APPALLING
TRAP" 20 GOTO 18

This “command’’ is not correct BASIC, and
gives rise to a syntax error when the machine tries
to execute it

This type of error is particularly difficult to find
unless you know what you are tooking for. You
are most unlikely to notice the mistake as you type
the program — even experienced programmers
often forget to end their commands with

m if the cursor is at the beginning of

anew line. lf you LIST the program, or even the
section which includes the error, the faulty
command looks exactly like two correct ones,
and the fault is invisible.

Fortunately, the error can be pinpointed by
LISTing justthe command in which the error is
reported. If you type LIST 10, out come lines 10
and — apparently — 20! This must be wrong,
since you only asked for 18. To correct the
trouble, retype both commands completely,

remembering to end each one with
In summary:

(a) Always end every command with
REIUEN , no matter where the cursor
may be.

(b) if the computer reports an errorin @
commond and you can’t see anything wrong
with it, LIST it out by itself and check whether it
runs on into the next command in the
program.

Experiment 6.4 Completed

UN IT ®

EXPERIMENT 7-1 PAGE 50
EXPERIMENT 7-2 31
EXPERIMENT 7-3 54

49

The programs we wrote in Unit 5 were
undisciplined. Once they were started, it needed
drastic action to stop them and most, if left to
themselves, would have gone on and on for ever.
This unit is about how to control programs, and
make them stop when they have gone far enough.

The topics described in this unit are funda-
mental to computing. When you master them, you
take the biggest single step towards being a
programmer. Read the unit slowly and carefully,
and if you are in any doubt about some point, go
back and read about it again. It is well worth
doing because these ideas, once you understand
them, will take you a long way forward.

The control of programs depends on a key
concept, which may be new to you: the condition.

When people talk, they mostly make
statements which are true, or which are at least
supposed o be token as trye:

““My train broke down on the way in.”
"l love you.”

A condition is a special kind of statement
which is not necessarily true, but might equally
well be false. In English we use conditions after
the word ‘if’. In the tollowing sentences the
conditions are printed in bold type:

“if the last train has left, you'll have to
spend the night in Aviemore.”

“|f the program doesn’t work, find the
fault and fix it.”

The speakers of these sentences are not
insisting that the last train has gone, or that the
Erogrom really doesn’t work; they simply don’t

now, and are making plans accordingly. In
English, a condition can turn out to be true or
false, without the speaker being called a liar.

In BASIC, conditions also come after the
keyword IF. They involve the various ‘objects’
used in programs: number variables, string vari-
ables, numbers and strings. The conditions, which
can be etther true or false in any instance, are
built round one of six relationships. This is best
illustrated by example:

Consider the BASIC condition:
A<h

{where < is a sign which means “is less than").
This condition istrue if the value of the variable A
reclly is less than 5 (say 0 or 3 or 4.98). ltis false if
A is worth 5 or more.

Another example, this time using strings, is

N$<=>"JIM"

(where <> means "is different from”’).

This condition is true if the variable N$ has
any value except “JIM"; thus it is true if
N$="JACK" or N$="JIMMY"", ltis only false if

N$ actually is “JIM".
The full set of relationships you can use in

BASIC are these:
e (is the same as)
(is less than)
(is more than)
<> (is different from)
<= (is less than or equal to}

>= (is more than or equal to}

The relationships <>, <= and >= are each
typed with two key depressions. These symbols
may be more familiar to you in the forms #, <
an =, but the designers of BASIC had to accept
the fact that computer keyboards don’t usually
have keys marked with these signs.

The relationships can all be used either
between pairs of numbers, or between pairs of
strings to make conditions. Numbers and strings
%ﬂn e represented by appropriate variables.

us

5> 4 is true because 5 is greater than 4

7 <=6 s false because 7 is more than 6
ifA=10andB=7,

A >=Bistrue,andsoisB<=7.

When relationships are used between strings
they imply alphabetical (dictionary) order, so that

"DOG" = "CAT" istrue,
and “JIM” > “JIIMMY" is false.

EXPERIMENT

71

\

Suppose that the computer has obeyed the
following three statements:

LET AS = “JOAN"
LETX =5
LETY =7

Work down the following table, and mark
each condition as false or true:

Condition Value (true or false)

AS+"“NE"<="JOANNE"
5=X

Condition Value [false or true)

X<7

X>=5

A$<>HXH

Y<>X

A% < “"FRANCES”

A$ > “JOAN”

Y=38

The quantities on either side of the relation-
ship con be expressions, justas in LET
commands. The expressions can be as complex
as you wish, but the important thing is to compare
like with like: a condition which had a number on
one side and a string on the other would make the
computer stop and report a fault.

Assume the values of A$, X and Y are the same
as above, and work out each of the following
conditions:

X+¥Y<>13
X+2=Y

Now check your answers, which are given in
Appendix B.

Experiment 7.1 Completed

30

51

EXPERIMENT

72

The chiet instrument of control in BASIC is the
IF command. It consists of the keyword IF, a
condition, the word THEN, and a label number. It
is very like a GOTO, but with one difference: the
jump only happens if the condition is true.

An example of on IF command is

IF X$ <> "“ABBBB" THEN 20

Here the condition is X$ <> “ABBBB” and
the whole command tells the machine to jump to
20 it X$ is different from ““ABBBB". If this condition
is false, the machine continues obeying com-
mands in their numerical order.

i you are like most people, your first reaction
to this command is that it is a bit absurd. “’Either
X$ is different from that string with the A and B's”

ousay, “Oritisn't. lt all depends on what comes
efore, but in any case when the programmer
wrote that IF command, he must have known!”’

Your view is understandable, plausible, but
wrong. There could be two entirely different
reasons:

® Suppose the IF command is in a loop where
some variable has its value changed every
time round. The condition could well be true
for some of the values, but not others.

Suppose again that you are writing a program
for someone else to use. Then you won'tknow
in advance what the useris going to do with it,
but the actions of the program must still
depend onwhat he or she actually does. If you
want a good example, the author had to make
the various quiz programs respond ina
sensible way to your answers even though he
had no idea how you were going to reply to
any of the questions.

Putting an IF statement in a loop gives a good
way of stopping it when it has gone round enough
times. Type in and run the following:

10 X$ = "A”

20 PRINT X$

30 X$=X$ + “B”
40 GOTO 20
50 STOP

This program runs on, filling the screen with
ever-lengthening strings of B's until it runs out of
space. The STOP at line 58 is never reached.

Now stop it and replace line 48 with

40 IF X$ <> “ABBBB" THEN 20
When you run it, it displays

A

AB

ABB

ABBB

and stops!

The reason lies in the condition
X$ <> “ABBBB". As the program goes round
and round the loop, the condition is at first true
{because X% is AB, and then ABB, and then ABBB,
all of which are different from ABBBB). In each of
these cases the IF command behaves like a
simple GOTO 20 and sends the machine round
the loop another time. Eventually, X$ gets to
ABBBB. The condition is now false; the jump
doesn’t happen and the machine drops through
to the end of the program where it stops.

Now try altering the condition in various
ways, and observe the effect when you run the
program, Whatever string you use, make sure
that the condition eventually becomes false,
otherwise the program will never stop.

Possible conditions to try are:

X$<=="AB"
X$<>"ABBBBBBEBBBB"”
X$<"ABBA"

The same control technique can be used with
numerical variables,

Type in10P =0
20 PRINT P, PxP
30 P=P+1
40 GOTO 20
50 STOP

Run this program, see what it does, stop it,
and change line 44 to read

AQIFP <11 THEN 20

Now run the program again. It displays fwo
cotumns of figures which look familiar, and could
be useful to someone who didn’t know the
squares of the numbers by heart. As a working
program there is only one thing wrong: the
display isn't labelled, and its meaning is not
immediately obvious to anyone but you.

We caon fix this defect by adding a heading,
or line at the top which identifies each column,
like this:

NUM SQUARE
0 0
] |
2 4
£, 9
etc.

Clearly the heading has to be displayed
before any of the numbers or squares, so the
command which displays it must come first. Since
label 18 is already used, and it would be pointless
to change all the labels in the whole program, o
sensible decision would be to use label 5. The
command itself is a PRINT, with two strings:
“NUM" and "SQUARE". The comma between
the strings ensures that the spacing corresponds
to the spacing between the columns of figures.

The who?e program now reads:

5 PRINT “NUM","SQUARE"
10 P=0
20 PRINT P,P%P
30 P=P+1
40 IF P<11 THEN 20
50 STQOP

Run the program in this form, and examine
the output.

Do you want a blank line between the head-
ing and the first row of figures? The command
PRCJINT by itself (without any value or string to
follow) will give you an empty line, so try adding
the command

7 PRINT

In a few minutes you will be asked to write
some programs of your own. Before you start,
let's take a careful look at the programs we have
already run, and draw some general
conclusions. The example programs are:

(1)

10 X$="A"

20 PRINT X$

30 X$=X$+"B”

40 IF X$ <>"ABBBB"” THEN 20
50 STOP

(2)

5 PRINT “NUM" “SQUARE"
7 PRINT
16 P=0
20 PRINT P,PxP
3¢ P=P+1
40 IFP < 11 THEN 20
50 STOP

If we forget about the heading commands (5
and 7} in the second program, both programs
seem to follow a set pattern. In each case,

1. There is a variable which changes regularly
as the loop is repeated. You'll see that it is X$
in the first program and P in the second. In
general, this is called a control variable, and it
can be either a string or a number.

2. There is a command which gives the control
variable its starting value. This command is
outside the loop (that is, it is not repeated but
only obeyed once).

3. Thereisacommand which is obeyed for every
value of the control variable. In our examples,
these are the PRINT commands

PRINT X$
and PRINT P,PxP

In practice, this part of the loop can be
expanded fo include any number of com-
mands, all of which are obeyed for each value
of the control variable. This group is called the
body of the loop.

4. There is an increment or quantity by which the
control variable grows each time round the
loop. In our examples, X$ grows by adding o
“B" and Pis increased by 1. Other increments
are possible; for instance a string could grow
by 5 symbols at o time, or a number could go
up in steps of 2 or any other number. It could
also start with a high value and go down.
The loop always includes a command which
maoves the control variable one step further
each time it is obeyed.

52

53

5. There is a final value for the control variable.
When the loop has been executed with this
value, the repetition must cease. The last
command inthe loop is an IF command, with a
condition which is true if the loop is still due to
be executed, but false when the control

varioble has passed its final value.

In the table which follows, examine each
program and fill in the name of the control
variable, the starting value, the final value, the
increment and the number of times the loop is
obeyed. To work this out, it often helps to jot
down the value of the controllied variable on the
first, second, third time through the loop, and
to see how many values there are until the final
value is reached.

Control
variable

Starting
vaolue

Final
value

Increment

No. of
times
round
loop

10 X§=""A"
20 PRINT X$
30 X$=X$ +"B"

40 IF X$<>"ABBBB"THEN 20
50 STOP

X$

HAH

H'ABBBH

HBH

4

10 P=0

20 PRINTP,P %P

30 P=P+1

40 IFP < 11 THEN 20
50 STOP

10

+1

11

10 Y$="Z"
20 PRINT Y$

30 Y$=YS+"XY"
4P IFYS <=>"ZXYXYXY"THEN 29
50 STOP

10 R=5

20 PRINTR, R/8

30 R=R+3

40 IFR < 17 THEN 20
50 STOP

10 C=27

20 H=30-C

3@ PRINT C,H
40C=C-5

50 IFC>2THEN 20
60 STOP

When you have completed the table, check
your answers against those given in the back of
the book {Appendix B).

Experiment 7.2 Completed

EXPERIMENT

73

When you construct a program, you should
begin by doing some design, and then writing out
the whole program on a piece of paper. Use
pencil and rubber! Some people compose their
programs directly on the computer keyboard, but
this method is only for geniuses or morons — it is
definitely not recommended for ordinary people.
The reason is quite plain: if you start without
plans you have about as much chance of success
as a builder who puts up a house without any
drawings, making up the architecture as he goes
along. He might just produce an architectural
iewe?, but he is much more likely to end up with a
eaky hovel which will blow open at the first storm.

When you design a loop for a program, you
have to decide all the essential items for yourself.
They include the name and type of the controlled
variable, the starting and ending values, the
increment, and the details of the body of the loop.
When you have made up your mind on these
points, you can put them together in the standard
paftern.

Here is a worked example.

One pound sterling {£1) is worth 2350 Italian
Lire attoday’s rate of exchange. We need a table
which gives the ltalian equivalent of Sterling
amounts from £5 to £75, going up in steps of £5.
The display is to start:

£ LIRE

5 11750
10 23500
and so on.

Let's think about the loop first. The control
variable will clearly be a number, and we can
call it PS (this stands for “Pounds Sterting” and is
as good as any other name). The starting value
will be 5, the final value 75, and the increment 5.
The body of the loop isto printavalue in£'s, and
the corresponding value in Lire, which is 2350
times more.

o4

35

The elements of our loop con now be jotted
down. They are:

PS=5 4 (Sets initial value)
PRINT PS, 2350 %PS < (Body)
PS=PS+5 4 (Increments PS)

IF PS<8@ THEN 4 (Checks if final value possed)

STOP (Stops program)

The label number following THEN is left blank
because we don't know what it is going to be.

Before writing down the whole program, we
should consider the heading. Suitable commands
would be:

PRINT “£”, “LIRE"

and PRINT ¢——— (To get a blank line)

Now we can assemble the parts and write
out the whole program:

13 PRINT “£"”,”LIRE"”
20 PRINT

30 PS=5

40 PRINT PS, 2353 % PS
50 PS=PS+5

60 IF PS < 80 THEN 40
7@ STOP

Atthe risk of becoming boring, let me
repeat: don’t short cut the design process: don’t
improvise your program straight into the
computer. If you do, you'll never make a good
programmer.

Now try these examples:

1. Write a program which displays a pattern of
stars, thus:

upto
A e o A ok ok ko A ok

Write a program which gives the equivalent
of $US for sums of British money between
£10 and £30, going up in Steps of £2.

(Take £1 = $1.43))

3. The relationship between the Fahrenheit and
centigrade scales is expressed by this
formula

F=18xC+32
Write a program which tabulates Fahrenheit
equivalents of Centigrade temperatures
between 15* and 30°, going up in steps of 1.
(HINT: the body of your program could be
F=18%x(C+32
PRINT C, F

This has implications for your choice of name
for the controlled variable.}

When you have written and run all these
programs, check your solutions against those in

Appendix B.

Experiment 7.3 Completed

26

57

People who like school Mathematics and are

ood at it sometimes get confused by the way that

the =" signis used in BASIC. f this doesn’t apply
to you, you can safely skip this section.

In Mathematics, =" is used in equations, to
assert that two different expressions really have
the same value. The equation tells you something
which is true. For instance, if the Maths teacher
writes on the board

"% +5=9"

you can be sure that for the particular x the
teacher has in mind, the statement is right. If this
weren’t so, you can imagine the following
conversation:

Pupil puts hand up.

Teacher: Yes?

Pupil :xistwo

Teacher: No. The answer is seventy eight
Pupil :Eh2ldon't understand.
Teacher: | lied when | said 2x + 5 = 9!

In BASIC =" is used in two different senses,
neither of which is the same as the mathematical
one.

tn a LET command, the sign means
“becomes”. I's an instruction to calculate the
value of the expression on the right, and to put this
value into the variable on the left, Instructions
aren’t statements, and it doesn’t make sense to
say that they are, or aren’t true. (They may be
wrong in a particular context, but that is a
different matter.] The trouble is that if LET is left
off, the command looks like an equation. It isn't.
Let's make this clear:

In BASIC
Y=X+2

doesn’t inform the computer that Y equals X+2; it
orders it to work out the value of X+2 and put the
result in variable Y. Here are some points to
ponder:

® Q=Q+5 is a reasonable and useful
BASIC command

® P=Q Are not the same in their

and Q=P effects

® X+1=5 is not a legal BASIC

command

In each case do you see why? Try to explain it
to yourself in your own words.

The other use of =" is in conditions. You'll
remember thot = is one of six possible relation-

ships between quantities. Examples of its use are
IF X=Y+2 THEN 100
IF N$="YES” THEN 150

Again, there is no implication that the condi-
tion actually is irue; instead the command is an
order to work out whether the condition is true,
and to take certain action if itis. In conditions ="
has the same logical force as any other relation-
ship such as < or >=, It is best to avoid the word
“equals” and to call the symbol “is the same as”".

To summarise:

BASIC uses “=" in LET commands, where it means
“becomes”, and in conditions where it means “is
the same as”, but what it says isn't necessarily
true. Got it2

The self-test program for this unit is called
UNIT7QUIZ,

®
EXPERIMENT 81 PAGE 63
EXPERIMENT 8-2 64
EXPERIMENT 8-3 66

59

At this point in the computer course you are
just beginning to write your own programs. The
first ones are short and simple. Later, as you
develop your knowledge, experience and skill,
you are certain to design and write programs of
ever greater complexity and interest. The table
gives you some idea of how far you can go:

Program Number of
Commands

Converting ltalian Lire to 7

£ Sterling (Unit 7)
Unit 3 quiz program about 100
Chess playing program about 5000
Program to control an

industrial robot about 25000
Program which runs a

computerised airline about 5000000

booking system

Naturally, any program with more than
about 5000 commands is always the result of o
team effort (it would take too long for one persen
to write) but there is still plenty o?scope for the
individual programmer.

As you work at programming, you will often
find yourself stuck. A program you have just
written and keyed in with great care simply
doesn’t do what you expect. This unit describes
some of the ways you can get over this difficulty.
Read it now, and do the exercises; but remember
that you can always refer back to it again when
(not if) the need arises.

When people come to their first program-
ming difficulty, they react in different ways, Some
feel angry and insulted; some immediately give
up in despair, and decide that programming is
not for them; and some pretend that the program
is “ninety nine percent right” and go on to the next
problem! None of these reactions makes good
sense. The only thing to do is to find the mistake
and put it right. It can be a great comfort to
remember that every programmer sometimes
gets stuck, even those who have been working
with computers for 25 years.

Program errors fall into three groups. The
first and most common type is the one which
comes up with SYNTAX ERROR when the
computer tries to obey a particular command.
This means that the command doesn't follow the
rules of the BASIC language. For instance, it might
have a spelling mistake in a keyword, or there
may be too many (or too few) double quote signs.
Most syntax errors are caused by typing mistokes
and are obvious once you know they are there;
but Appendix C gives a checklist of the kind of
error to look for if you are in difficulty.

The second type of program error arises
when the computer finds a particular command
impossible to obey. Suppose the machine came
to the command

138 GOTO 500

but there was no command labelled 500. This
would make the machine stop and display an
error message:

UNDEFRNED STATEMENT IN 13¢

Unfortunately the error messages tend to be
in programmer’s jargon rather than plain English,
but they are fully explained in Appendix C.

When you get an error message, a useful
command is HELP. This command makes the
computer display the program line which caused
the error, with the faulty section is reversed
characters.

To see the effect for yourself, type and run
the program

10 PRINT1;2:3; 4

{where the : is a deliberate error).
The progrom will fail after displaying 1 and
2. When you give the HELP command you will see

10 PRINT1;2:3; 4

(with the 3; 4 flashing} which shows that the error
was somewhere near the 3,
The HELP facility isn’t always so clear (try

PRINT 14+2+3%%x4)

but it is still worth using.
You can call the HELP command by hitting

the \alENEdR ey, as well as by typing the letters

H-E-L-P -

The third sort of program fault is the most
difficult of all to find and put right. There are no
error messages; instead, the computer simply
displays the wrong answer to your problem or
bogs down in @ loop without displaying anything
at oll. The first and most ebvious thing to do is to
stop the machine, LIST the program and examine
it caretully. This will usually help you pin-point the
error. However, suppose it doesn't; let's imagine
that you have spent a good few minutes
examining each command, and you still can’tfind
anything wrong.

At this stage you need a more powerful
method of investigating the warkings of your
program. The method ts catled ‘program tracing’
and consists of pretending that you are the
computer. You start at the beginning of the
program and work through it, command by
command, until you get a sudden insight into the
cause of the trouble. You will need to be patient
and methodical, and above all you'll need to
switch offyour intelligence, and work through the
set of instructions like a stupid robot, without

RETURN

trying to moke “plausible guesses” generalisa-
tions, or use any other type of short cut.

To imitate the computer, you must first have a
good idea of how it works. Suppose you could
somehow “freeze” the computer between two
commands in the middle of running a program,
open it up and look inside. You would discover™:

First, the program itself, stored in the memory
in much the same form as it was originally typed.

Second, the variables the program has used
up to this point. Each variable occupies some
room in the memory, and has a vaiue, which
could be a number or a string.

Third, you find that the computer has kept
track of its place in the program. Somewhere
{actually, in a special variable called the
“program counter”) it remembers the label
number of the next command it is due to execute.

Now let’s unfreeze the computer just a little,
long enough for it to execute one command. The
command the machine chooses will naturally be
the one remembered by the program pointer.
When you look again, there will be certain
changes, and they depend on the command
which has just been obeyed. Here are some of the
possibilities:

{a) aPRINT command wiil make something
appear on the screen.

(b) a LET command will create a new variable if
one is needed, and put a new volue into it

Both the PRINT and the LET commands will
also move the program pointer on to the next
command in sequence, so that when the
computer is restarted it "knows’ which
command to obey next.

{(c) a GOTO will not display anything or alter
any variables. It will simply resetthe program
pointer so that it indicales the command men-
tioned in the GOTO. For example, the
command

136 GOTO 270
will put 278 in the program counter.

(d) the IF command works in the same way,
except that the condition is worked out first. if
it 1s true, the program counter is set, just like in
a GOTO. If itis false, the program counter is
simply moved on to the label of the next
command in sequence.

Look at: 120 IF X = 5 THEN 170
130 PRINT "NO”

*If you took the cover off the computer you
wouldntactually see these things, butonly a few
silicon chips and other components. However,
the appropriate electronic instruments would
certainly show you the items we mention.

If X does have the value 5, the condition is

true, and the program counter is changed to
173. Otherwise, if X has some other value, the
program counter is simply advanced to 130.

(e} the STOP command indicates that the pro-
gram has ended, by displaying a BREAK
message. There is no point in continuing the
program beyond this point.

To imitate the computer accurately, you'll
need to see all these parts clearly: the program,
the variables, the display and the program
counter. A good method is to use a “program
trace chart” which you drow on a piece of paper.
Arrange it like this:

PROGRAM COUNTER 18
VARIABLES
DISPLAY PROGRAM
18 A=5

20 PRINT “ALPHA="; A
J0A=A%3

40 B=A+37

50 PRINT “BETA="; B
60 STOP

The program you plan to frace is filled in on
the right, and the starting value of the program
counter — that is, the label number of the first
command to be obeyed — is ot the top. Make
sure that the progrom is an exact copy of the one
which is giving you trouble: if it isn't, your frace
will be a waste of time.

Now you are ready to start. The program
counter says ‘10, so take and interpret the com-
mand lobelled 10", lt says A=5, sot mustbe a LET
command. Look in the box marked VARIABLES
foran A.Thereisn'tone, sowrite down an A", a
colon and the value 5. Finally, move the program
counter on to the next command in sequence,
putting a line through the previous value:

60

61

PROGRAM COUNTERAG 20
VARIABLES A: 5
DISPLAY PROGRAM
10 A=5

20 PRINT “ALPHA=""; A
30 A=A*3

43 B=B+37

5@ PRINT "BETA="; B
60 STOP

The next command is interpreted inthe same
way. You forget the ‘purpose’ of the program, or
any knowledge you may have about sequencing,
and take command 20 only because the program
counter says so. The command is a PRINT, and
you can work out that it will display “ALPHA = 5",
Put this down in the DISPLAY section, and
advance the program counter, giving:

PROGRAM COUNTER 428 30

VARIABLES A:5

DISPLAY PROGRAM

ALPHA =5 10 A=5

20 PRINT “ALPHA="; A
30 A=A%3

40 B=A+37

50 PRINT “BETA="; B

60 STOP

The next command gives a new value to an
existing variable A. You first work out the expres-
sion A*3 using the old value (5) and record it,
crossing the old value out, like this;

A:-515

The command after that creates a new vari-
able. Continue tracing until you reach STOP. The
final result is: :

PROGRAM COUNTER 48-28-30--48-56- 60

VARIABLES A: 515 B: 52
i DISPLAY PROGRAM
ALPHA =5 18 A=5
BETA =52 20 PRINT “ALPHA="; A
BREAK IN 60 30 A=Ax3
READY. 40 B=A+37
50 PRINT “BETA="; B
60 STOP

The next example involves a simple loop:
10 P=1
20 PRINTP; PxPxP
30 P=P+1
40 |F P<c4 THEN 20
50 STOP

The trace of this program as far as line 30 is
straightforward:

PROGRAM COUNTER -Hr 28 36-40

VARIABLES P: 42
DISPLAY

11

PROGRAM
10 P=1
20 PRINT P, PxP=P
30 P=P+1
40 |F P<<4 THEN 20
5@ STOP

The next command at 40 is an IF. To imitate
the computer, evaluate the condition P<4. Since
the current value of P is 2 (that's what it says inthe
VARIABLES section), and 2 is clearly less than 4,
the condition is true. All you do, therefore is to put
20 as the new value of the program counter. You
get

PROGRAM COUNTER Jr.20-3¢ 48 20

VARIABLES P: 4 2

DISPLAY PROGRAM
11 18 P=1

20 PRINTP; PeP=%P
30 P=P+1

40 IF P<4 THEN 20

50 STOP

The trace continues this way, until at last the
condition is false, and the program reaches
STOP. The final result is:

PROGRAM COUNTER 1g26- 3¢ 48-2¢ 3¢

L A3t AR 50
VARIABLES P: 422 4

DISPLAY PROGRAM
11 10 P=1
2 8 20 PRINT P; PxPxP
3 27 30 P=P+1
BREAK IN 50 40 {F P<4 THEN 20
READY. 50 STOP

Enter this program into the computer and run
it. Check that the results tally.

Now enter the program to print ALPHA and
BETA again into your computer and run it. You
should get the display

ALPHA =5
BETA =52
BREAK IN 60
READY

The computer has a remarkable facility of
doing its own tracing. To try it out, iype the
command

(which stands for “TRace ON"} and RUN your
program again. The values of the program
counter now appear in square brackets, like this:

(18] [20] ALPHA =5
[30] [40] [50] BETA =52
[60]

BREAK IN 60

This tetls you that the program obeyed lines
10,20, 30, 40, 50 and &9, in that order. The output

ALPHA =5

was produced by line 28, just as you expect.
To turn the trace off, type

TROFF m

From now on, you can use TRON and TROFF
to help with your tracing. You will soon learn to
use these commands with care, because a
program with loops generally obeys avery large
number of commands, and the lists of line
numbers can easily swamp your screen.

62

63

EXPERIMENT

31

a

Now practice your tracing with the following

Erogroms. Use a pencil, and have a rubber
andy in case you make a mistake:

PROGRAM COUNTER 18

VARIABLES

DISPLAY

PROGRAM
10 X=5

0Y=7

30 Z=X+Y
40W=Y-X

50 PRINT X;Y;Z;W
60 STOP

Cx

PROGRAM COUNTER 10

VARIABLES

DISPLAY

PROGRAM
10 Q=1

20 PRINT “SHE LOVES
ME”

30 PRINT “SHE LOVES
ME NOT”

48 Q=Q+1
5@ IF Q<3 THEN 30
6@ STOP

When you have completed these two
experiments check your answers by running the
programs on your computer with the Trace
switched on.

Experiment 8.1 Completed

EXPERIMENT

82

How can tracing be used to find mistakes? it
depends on switching between a state of robot
obedience, and a state of human intelligence.
First you become a robot and trace a command
exactly as the computer would have executed it.
Then you go back to being a person, and ask, “Is
this what [expected?” If so, you carry on the
trace. if not, you will have a good clue as to why
the program is going wrong.

Here is a simple example. Suppose you've
written a program fo display the 12 times table.
The display you expect is

TWELVE TIMES TABLE
1x12=12
2%x12=24
3*x12=36

{and so on down to}

12 %12 =144

Your program has all the right parts: a loop,
a command to display a heading, and a PRINT
command to display each line of the table. It
reads:

10 PRINT “TWELVE TIMES TABLE"
20P=1

30 P=P+1

48 IF P< 13 THEN 39

SEPRINTP; “*12="; P12

6@ STOP

When you run this program, the results are a
bit disappointing. All you get is

TWELVE TIMES TABLE

13%12=156

BREAK IN 60

READY

Not what you expected! The mistake may be
perfecily obvious, but let's pretend you can't spot

it. You begin fo trace, and after a few steps you
get

PROGRAM COUNTER 48-2¢36- 483048 30

VARIABLES P: =234

DISPLAY

TWELVE TIMES TABLE

PROGRAM

10 PRINT “TWELVE TIMES TABLE"

20 P=1
30 PP 11
48 IF P<< 13 THEN 30

50 PRINTP; “"#12="; P%12

60 STOP

64

65

and you suddenly realise that the value of P is
working its way up to 12 without anything being
displayed. It is now clear that the PRINT command
ought to be inside the loop, not outside. The right
place is between commands 20 and 30. The IF
command also needs to be changed 1o jump
back to the PRINT. A quick edit produces

10 PRINT “TWELVE TIMES TABLE”
20 P=1

25PRINTP; “#12=". P12
30P=P+1

40 IFP < 13THEN 25

6@ STOP

Program tracing is an extremely useful tech-
nique if you have the patience to do it step by step.
If you make guesses about whole sections of
program, you are likely to make the same
mistake as you did when you wrote the program
in the first place, and the trace won't reveal your
error.

To save time you will often use the CBM's
own trace mechanism to tell you the sequence of
commands obeyed. You will still need to analyse
the list of line numbers very carefully — TRON is
not a substitute for thought!

Sometimes you will be sure that most of a
program works correctly, and to avoid a flood of
irrelevant line numbers you will only want the
trace facility to be switched on for a small section
of the program. This can be done by putting
numbered TRON and TROFF commands into the
program itself like this:

10—
20 —
105 TRON

118 —
120 — Part of program traced
185 TROFF

196 ——

200 —

When you have debugged the suspicious
part of the program, you can easily take the
TRON and TROFF commands out again.,

There are a few circumstances under which
the tracing method as described doesn’t work,
and you should know what they are:
® [faprogram is very large, a straightforward

trace would just take too long. More appro-

priate methods will be described later on in
the course, at the time you may actually need
them.

® Ifyousimply don't believe that you can make

a mistake, then tracing won't be much heip.

Maost people, when they write down the last

line of a program, experience a strong morall

certainty that ““This time it's right”. The feeling
only comes because you haven’t been
conscious of making any mistakes, and is
extremely misleading. It is much better to say
to yourself “This time it's wrong. Let's find the
mistakes”. But you'll need to swallow your
pride!

@® If you have misunderstood some fundamental
aspect of BASIC, a trace will again be of little
help. To take a crude example, imagine
someone who believes, firmly but mistakenly,
that in BASIC the sign “—" means
“addition”’. He writes @ program to add two
numbers like this:

10 A=34
208=19

he thinks this means
”plUS”!

30 PRINT "A ="; A
4G PRINT“B=";B
50 PRINT “APLUSB ="; A~B

60 STOP
When he runs this program, it displays

A =34
B=19
APLUSB =15
BREAK IN 60
READY

which is clearly wrong. On the other hand,
when he traces it, he finds that command 50
gives

APLUSB =53

which is what he expects. As long as he really
believes that “—" means “add”, he will
never find the error!

Of course most misunderstandings are much
more subtle than this one. Nevertheless, if your
trace comes out differently from the result dis-
played by the computer, and keeps coming out
differently when you repeat the frace, this is clear
evidence that there is something about the art of
programming you haven’t understood correctly.
If you can, get advice from someone who knows
BASIC better than you do*; but otherwise go back
to the beginning of the text-book, and check
every single item of your knowledge against
what it says. This will nearly always bring the fault
ta light.

*There are now plenty of people who understand
BASIC. If you don’t know anyone personally, an
advertisement in a locaf shop window will
usually find help.

Sometimes—very very rarely—your difficulty
may be caused by a mechanical fault in the com-
puter. Modern machines like the computer are
extremely robust and reliable, and when they do
break down, itis usually cbvious: the cursor
waon't come up when you switch on, or you find it
impossible to load programs. In practice you
should never blame the computer for not running
your program until you have examined every
other possibility two or three times over. When
you send your machine to be repaired, you must
explain exactly why you think it is broken, and
nclude a copy of the program which it refuses to
run correctly.

Here are two programs with mistakes for
you to find and correct.

{a) This program is supposed to display a con-
version table for gallons to litres, starting at 1
gallon and ending at 10 gallons {1 galion =
4.5 litres)

10 PRINT “GALLONS", “LITRES”
20 G=1

30 PRINT G, 4.5%G

40 G=G+1

50 IFG =11 THEN 30

60 STOP

(b) This program is supposed to be a solution to
problem 1in Unit 7, to display a triangle of

stars. It was actually written by someone
learning BASIC:

10 A$ = ""x"
20 PRINT AS
30 A =""w%"

40 IFAS<>"%wrkk kr k%%’ THEN 20
50 STOP

Experiment 8.2 Completed

EXPERIMENT

83

The program UNIT8PROG is supposed to
display the 7-times table, but contains several
errors. Load i, find and correct the mistakes,
Check your answers in Appendix B.

Experiment 8.3 Completed

66

UNI1

EXPERIMENT 91 PAGE 69
EXPERIMENT 9-2 72
EXPERIMENT 2-3 73

69

Let's draw some more pictures. This time,
we'll make the computer do all the hard work and
drudgery for us.

It you think back to units 2 and 3 (look to
remind yourself if you like} you'll remember that
when you draw on the screen you can use a
number of control ‘functions”:

® Cursor movement in four different directions
® Selection of sixteen different colours

® Colour and background reversal {(on and off)
@® Flashing characters

® Moving the cursor ‘home” to the top of the
left-hand corner

@® Clearing the screen.

These functions share keys on the keyboard,

so that you often have to use or U

or to choose the function you really need.

You won't have forgotten that you can set the
frame and background colours using ‘COLOR’
instructions and code numbers from the tabie on
page 20.

The computer can also make drawings on
the screen under the control of a program. Every
program has the use of all the screen control
functions: it can select any colour for its charac-
ters, it can clear the screen whenever it needs fo,
and it can move its own cursor (which is invisible
to you) to any position using the cursor control
functions.

Of course the machine only does these things
when obeying the commands you have given it.
To put screen control functions into a command is
easy: we simply include them in strings alongside
the other characters to be displayed. You might
find this a bit puzzling at first, Surely, if you type a
string and include a screen-clear function in it, the
whole screen will disoppear as you type? In fact
this does not happen, as the next experiment is
designed to show.

EXPERIMENT

9-1

Do you remember that in Unit 2 we said,
“Dont use the double quotes, they're funny!””
Now you are going to find out what effect they
really have, and why they're so useful.

When you start typing a command (say after

a READY ora RETURN) the computer is in
‘normal’ mode. Control functions like colour
selection or cursor movement work in the way
you have come to expect. As soon as you type a
double quote character to mark the beginning of
a string, the machine changes to quote mode.
Ordinary characters such as letfters or graphics
are still treated in the normal way, but control
functions are not obeyed: instead they are put
into the string as ‘special’ characters, mostly
letters, signs or graphics on a reversed back-
ground. The machine switches back to normal
mode when you type a second double quotes
character (so ending the string) or if you give a

Start up the computer, type a double quote
ond then give all the control functions, one by one.

See how each one looks on the screen, and
fill in the table on the next page.

Function

Symbol displayed

Clear Screen

CLR
SHIFT
and HOME

Cursor home

o %
= ~
w
=
[
o
=

e
5
=
[2a)

Cursor up

Cursor down

Cursor left

Cursor right

Black d TR
White ond AR
Red and m
Purple and R
Green and JERR
Blue El .-
Yellow ond R
Brown nd R

Yellow green

Q
=
o

=
Pink and & =
Blue green Ta
Blue d KR
Gk blue d SR =
Light green . R FE
e | B T2]
Reverse off ES..A B
e iR HE
Flash off ot BER =

70

/1

Now let's try some of these controls in action.
First make sure your TV set is properly adjusted
for colour, by using the TESTCARD program if
need be. Make sure you have o white background
by typing the command

cotoro.2 RN

Next get the computer to display the word
“EDINBURGH" inblue. Type in the command

v s R

EDINBURGH"
while
hold down YO TRES

What actually appears on the screen (all still
in black} is

PRINT* sl EDINBURGH". The reversed «—

reversed

symbol is the code for “blue”.

Now hit the key. The word

EDINBURGH appears on the screen, in blue.

This experiment illustrates the principle quite
clearly: when a control function is typed inside a
string, it is not put into effect when it is typed, but
only obeyed when that string is displayed by the
computer,

You will see that the flashing cursor has been
left blue. Change it back to black by typing the
correct control function — without quotes.

A PRINT command which gives you a colour
change can be made part of a program, just like
any other command. Key in and run the
following:

18 PRENT”cnd & GLASGOW"”
20 PRINT mand E INVERNESS”
3@ PRINT ond E ST.

and IR AnDREWS”

40 STOP

Command 308 shows that you can put more
than one control function into a string; also that
ellow letters are hard to read on a white
Lockground.
Screen and cursor control functions can also
be put into strings. Type the following:

- I .. D
and E PARIS”

On the screen this comes up as

LN @ QQQ |] | £ IR

reversed symbols

When you strike m , the control

functions are actually obeyed. The screen is
cleared, the cursor is moved three places down
and three along, and the word PARIS appears in
red half-way towards the middle of the screen.
Try it for yourself.

In general, you can get the computer to paint
words and symbols anywhere you like by
including the right number of cursor shifts in a
string.

When you get the computer to draw a picture
on the screen, you don’t want 1o spoil everything
by displaying READY and the flashing cursor. A
way out of this difficulty is to use a loop stop’, ora
GOTO which jumps to itself. Once the computer
reaches this command, it will start chasing its own
tail, and it won't display READY until someone

RUN
hits the Gllad key. This program, for example,
will display LONDON in white in the centre of a

black screen: _
12 times

18 COLOR®, 1

P ——
QQPRINT"ond@
T ond m LONDON"
Nematle. commge’ ‘

17 times

30 GOTO 30

Key this program in, run it, and then stop it

RUN
with the Qi@ key. The screen will stilt be black

and the cursor white, but you can quickly get
back to the normal state of affairs by holding

down % and pressing the RESET button on the
side of the computer. When you see the word

MONITOR, type X and . You'll

remember you can always do this if the machine
gets stuck for any reason; it is better than
switching on and off because your program isn't
lost when you do it.

As a short exercise, get the computer to
display words and patterns of different colours at
various positions on the screen. Remember that

HIFY .
the (I and w function clears the screen,

| |

so if your program has a sequence of PRINT
statements, only the first one should begin with
this function — although some of the others could

CLR
well start with el by itself.

Experiment 9.1 completed

EXPERIMENT

9:2

You will know that modern clocks and
watches are controlled by quartz crystals, and
are extremely accurate over long periods ot time.
The computer also incorporates a quartz crystal
vibrating several million times every second, and
it is used — among other purposes — to control
an internal digital clock. This clock doesn’t have
its own dial; instead, it is treated just like a string
variable, so that you can display the time on the
screen whenever you need. The name of the clock
variable is TI$.

When you first start up any clock, you have to
set it to the right time. The 16 and Plus/4 are no
exception. You can adjust the clock from the
keyboard, by typing a command like

TI$ = "193746" m

This would set the clock to 7.37 and 46
seconds in the evening.

If you want to set the clock very accurately, it
is best to wait for — say — the nine o’clock news
on the radio. Just before it starts type

TI$ = “@90000"

and then hit as you hear the last

‘pip’ of the time signol.

Once the machine’s clock has been
adjusted, itwill keep time, to within a few seconds
a day, until the machine is switched off or
completely reset. There is no need for you to reset
it or change the time from within a program.

To display the time, you simply mention TI$ in
a PRINT command.

Now set up the computer’s clock, using your
own watch (it doesn’t matter if the setting isn’t
very accurate). Then display the value of TI$
several times, using a PRINT command. See how
the seconds change from one time to the next.

Now display the time continuously, by
running the program.

10 PRINT TI$
20GOTO 10

72

73

Stop this program, wait a few minutes, and
restart it. You will see that the time is still correct,
and that the clock has been running all the time,

This method of displaying the time is not
attractive. You can make the computer into o
respectable digital clock by a program as follows:

command 10: Selects a purple frome
command 2@: Selects a yellow background
command 3@: Ciears the screen

command 40: Moves the machine’s cursor home
then down 9 lines and across 6
spaces; no new line needed

r

command 5@: Displays TI$ in blue

command 6@: Jumps back to command 44.

Write down the code for this program in the
box below; then enter it on the computer
keyboard and try it out. If you get really stuck,
look up the correct version in Appendix B, but
don’tgo on until you have studied it carefully and
found out how it works.

Experiment 9.2 Completed

EXPERIMENT

9-3

Controlled loops are often useful in drawing
shapes on the screen. Suppose you wanta 18x 10
block of red dots in the top left-hand corner. This
can be done by displaying ten lines, each with ten
@® graphics:

cLA
10 PRiNT”m and Wil ;
20 =1

30 PRINT”ondE o009 00

LA X 2 2 B
40 J=1+1
50 IF J<<11 THEN 30
60 GOTO 60

This program combines several of the ideas
we have already met in previous units. The semi-
colon at the end of command 10 prevents the
machine from starting a new line after clearing
the screen, so that the first line of red dots
appears at the top. Statements 20 to 5@ form a
confrolled loop and 60 is a loop stop.

Enter the program and run it as it stands.
Then stop it, and try for yourself the effects of

{a) removing the semicolon after * % ”

(b) changing the 11 in command 5@ to some
other value (say 15)

(c} removing command 60

You can of course make these changes by LIST ing
and editing. Remember to get the cursor colour
back to blue or black before you start!

To get a solid block of colour we use
reverseg spaces. Try changing line 30 to

PRINT N ond m CTRL e
m — 10 spaces —"

and run the program again.

What happens if we want more than one
block of colour in the same picture? The trick is to
move the machine’s cursor to the first line of the
area, and then to fill it in, without interfering with
the colour already on the screen. We'll look at
two examples:

(a) To paintablue 18 x 18 block just below the
red one:

The lower half of the screen is empty, so we
don’t need to warry about spoiling anything
else. Furthermore, after drawing the red
block, the cursor will be in the right place. We
con extend the program by adding

60 J=1

70 PRINT “c:nd & cTRt
m‘— 10 spaces —*"

80 J=1+1
90 IFJ <11 THEN 70
100 GOTO 100

Notice that the loop stop has been moved to
the end of the program where it belongs. J is
used as control variable in both the red and
blue ioops: this is perfectly alright because
the red block is completely finished before
the blue one is started, and Jisn'tasked to do
two |obs at the same time.

{(b) To painta 10 x 10 black block beside the red
one.

The starting line is the top one, so in drawing
the black area we have to be careful not to
domage the red block which is already there.
This can be done by moving the cursor home,
and displaying 1@ lines, each of which begins
with 10 ““cursor right”” movements to jump
over the red. The program extension is

100 PRINT “ & & .
/'IO times
110 J=1 g m—
120 PRINT *
and
m «~ 10 spaces —"
130 J=J+1
140 IF J < 11 THEN 120
150 GOTO 150

and

Now assemble this program, type it in and
try it out. Note that it has three separate loops
which are executed one after the other.

Try extending the program to put o purple
block under the black one. . .

As a final exercise, try writing programs to
display some simple flags, or other patterns
which fill the whole screen. You will need your
wits about you, because various pitfalls lie in
wait.

® The normal meaning of a semicolon at the
end of a PRINT command is “Don’t start a
new line”, If the computer is made to put a
character into the right-most position of a
line, it automatically moves its cursor to a
new line. Displays which are meant to fili
complete lines should therefore be followed
by semicolons unless you actually want a
blank line to follow.

® There is no way of using a PRINT command
to write a character into the lower right-hand
corner of the screen without moklng the
whole screen move up.
The way to get this square the right colour is
to select the entire background colour
accordingly.

You should plan your painting carefully,
using squared paper as a guide. When you come
to write your programs, be prepared to make
plenty of mistakes, and don't be upset if it takes
several tries to get things right. Remember that
you learn by success — not by failure — so don't
just give up!

To start you off, we'll gwe you a program for
the French flag.

blue white red

We'll make the central white stripe 14
characters wide, and the other two 13 each.
13+14+13=40

Appropriate starting colours are a red
background and a black frame.

We can build up the flag by displaying 25
lines, each with thirteen white squares and
fourteen blue ones. Remember that the last one
must be different, because it mustn’t be followed
by a new line. We can put the first 24 lines into a
controlled loop, but the last will need a command
on ifs own.

74

75

We arrive at

180 COLOR 4,1

20 COLOR, 3

30 PRINT “ m and g
40 J=1

so e~ (T oo SR ...
m«-- 13 spaces —» ond

£

<« 14 spaces —'
60 J=J+1
70 IF J<<25 THEN 50
g0 prinT [T oo A T
mF 13 spaces — and
m — 14 spaces —"

90 GOTO 90

Run this program and study it carefully until
you understand every symboi. Now try some of
your own flags, but keep off from ones with
diagonal elements! Try the iceland flag which is
shown on page 23. You can check your answer
with the one shown in Appendix B.

Experiment 9.3 Completed

The self-test program for this unit is called

UNITSQUIZ.

UNIT:10

EXPERIMENT 10-1 PAGE 78
EXPERIMENT 10-2 7%

77

In the previous units we came across the idea
that commands can be written once, but obeyed
many times over. This happens whenever you put
a command in a loop.

On a much larger scale, a similar thing
occurs with complete programs. Most programs
are designed to be useful, which means that they
are stored and distributed on tapes, disks or
ROM-packs and used many fimes by different
people. If you want an example, look at the
various programs which form part of this course.

Let’s begin by considering all the programs
which you personally have written so far. The
drawback with every one of them is that no matter
how many times you run it, it always produces the
same result. Hardly very useful!

To give a specific example, let’s go back to
the program which calcuiates and displays a
conversion table between £UK and ltalian Lire. It
was:

10 PRINT “£", “LIRE”
20 PRINT

30 PS=5

4{ PRINT PS, 2358%PS
50 PS=PS+5

60 |F PS<<80 THEN 40
79 STOP

On the day the Unit was written, the rate of
exchange really was 2350 Lire fo the Pound, so
the progrom would have given correct results, By
today, however, the rate has fallen to 2175. Any
bank which used this original program to sell Lire
in exchange for Pounds would be seriously out of
pocket.

How could matters be improved? If you are
a programmer one obvious approach would be
to alter line 40 to read

40 PRINT PS, 2175%PS

Unfortunately this idea won't take you very far.
Most people who use computers aren’t program-
mers, or even if they are, they are just not interested
in the guts of your program!

To make programs more flexible, more
adaptable o everyday needs, we need a new
facility: one which lets the user supply information
which the programmer couldn’t have known
when the program was written. A program which
allows this can be used by lots of different people,
and lets each one solve their own particular
version of a problem. For instance, suppose that
the money conversion program allowed the user
to tell it the current rate of exchange every time it
was used; it would immediately become useful to
banks all over the world, and it would work
properly for any imaginable exchange rate.

Suppose you are designing a program for
someone else to use. You begin by deciding which
quantities you are going to leave undefined, and
your program is going to ask the userto supply. In
our example the rate of exchange is clearly one
such quantity: it must be unknown to the pro-
grammer, butknown to the user! You allocate the
unknown quantities to variables, and give them
names accordingly. For instance, o suitable name
for the rate of exchange could be RE. You can
then write your program using symbolic names
instead of the actual values {which you cannot
know in advance}. Thus line 40 of the exchange
program could read

40 PRINT PS, RExPS

Of course there is something missing from
this description. You may not know the values of
the variables, but the machine must do so when it
runs your program. The command which lets the
user put in the missing information has the key-
word INPUT. This is followed by the name {or
names) of the variables needed. When the INPUT
command is obeyed it waits for the user to type a
value, which it then stores in the named variable.
The rest of the program, which uses this variable,
can now be obeyed.

Before giving an example, we stress one vital
point: every program with an INPUT command
must tell the user exactly what is wanted of him.
This can usually be done with PRINT statements.

EXPERIMENT

10-1

Study the following program carefully:
3 PRINT “TYPE TODAY'S”
4 PRINT “RATE OF EXCHANGE"
5 PRINT “BETWEEN £ AND LIRE”
6 INPUT RE

1@ PRINT “£","LIRE"

20 PRINT

306 PS=5

40 PRINT PS, RE%PS

50 PS=PS+5

6@ |IF PS<80 THEN 40

70 STOP

Notice how the program doesn’t assume any
particular rate of exchange, but uses the variable
RE to represent it wherever it is needed. The
program begins by telling the user what is needed
and asking him to supply a value.

Enter the program, check it carefully, and
type RUN. Now pretend you are a user: a money-
changer who knows nothing about program-
ming. On the screen the machine is asking you to
type something, so you enter the appropriate

figure, and then strike the m key.

As soon as you do this, the screen fills with o
conversion lable that lets you start business today.

Run the program many times, and notice
how well it can handle different rates of
exchange. Even if the Lira were to be revalued to
o level of 23.7 to the £, the progrom would still
produce sensible answers.

Now switch back to your personality as pro-
grammer. When the program was running,
showing a cursor and waiting for the user to type

his information, it was actually obeying the INPUT
command.

The INPUT command comes in severall
slightly different forms. We'll look at some
examples, and mention a few general rules.

1. Clear the computer by typing NEW and type
in

10 PRINT “WHAT'S YOUR NAME" .
20 INPUT N$

30 PRINT “HELLO m NG

Run this program and see what happens. The
example shows how the INPUT command
works with strings as well as numbers. You
could use this sequence — or something like
it — near the beginning of any program
where you wanted the computer to be
‘triendly’ to the user. If the progrem was a
quiz of some kind, you could use the value of
N$ in commands like

40 PRINT “NO m "y N§,” YOU

CAN DO BETTER THAN THAT”

(if you are in any doubt about what this
command displays, tack it on to the end
of the program already in the computer,
and run the program again.)

2. Try
10 INPUT "NAME";N$

20 PRINT “"GOODBYE m "iN$

This example shows how a short piece of
descriptive information can be included in
the INPUT command itself. The information
shows up on the screen as a guide fo the user,
just before the 2.

Command 10 in the example is equivalent to
the sequence

PRINT “NAME";
INPUT N$

Notice that the string of descriptive words
must be foliowed by a semicolon.

3. Laostly, try

1@ PRINT “GIVE TWO NUMBERS TO
BE ADDED”

20 INPUT A,B
38 PRINT “SUM="; A+B

40 STOP
The INPUT command now expects two

/78

79

values, and the user must type them separated

by a comma or by pressing the RETUR

key. (That is, he or she could type either —

say 43,19
43
or { 2

In general, the INPUT command may ask the
user for any number of variables, but it is better to
keep the number down to two to prevent confu-
sion. In the command itself, the names of the
variables are separated by commas.

When you have run this program a few times,
pretend you are a really stupid user and try typing
nonsense — for example

DONALD,DUCK

The computer will accept anything at all as o
string, but i it is trying to input a number, and is
given something which couldn’t possibly be a
number, it will display the message

REDO FROM START

and give you another try.
Sometimes you want to stop o program when
it is obeying an INPUT command and displaying

RUN
acursor. Under these conditions the §lki# key by
itself is disabled, and stopping the program is
more compltccted than usual. Hold down the

key and press the RESET button. You will
see the cursor come up on a screen which is blank
apart from the word MONITOR and a few letters

and figures. Now type X and the

READY. message appears, showing that you are
back in control.

Be careful notto press RESET by itself, as this
will destroy your program.

Experiment 10.1 Completed

EXPERIMENT

10-2

Writing useful programs is easy provided
you remember that the programmer and the user-
are two different people. The user can’tbe
assumed to understand programming (so he
cannot be expected to LIST your program to find
outwhat itdoes). Ingeneral the programmer may
not ‘talk to” the user except by making the
computer display messages on its screen, and the
user can't get back to the programmer at all, so
the program had better not leave any questions
unanswered!

When you are designing o program, pretend
you are afly on the wall watching someone trying
to use it. Try to imagine everything that could go
wrong, and try to prevent it by making sure the
program gives the user plenty of guidance.

When your program is written, you can
exercise it by pretending you are a user; loter, as
a final test, bribe a friend or relative to be
‘guinea-pig’ and to try the program out for you. if
your guinea-pig has to osk you any questions
about what to do, or what the answers displayed
actually mean, your test has failed and you
should redesign your program accordingly.

Write programs to do the following jobs: (b) To ask the user {who is assumedto bea

married man) for his surname, and then for

(a) To display any multiplication table selected his wife’s Christian name; and thento display
by the user. his wife's full name.

Solutions are given in Appendix B, but don't
look at them until you have done everything you
can to write these programs by yourself.

Experiment 10.2 Completed

The quiz for this Unit is called UNITTOQUIZ.

80

UNIT:

EXPERIMENT 11-1 PAGE 83
EXPERIMENT 11-2 87
EXPERIMENT 11-3 93

83

One of the most interesting features of
programming is its richness and variety. The
same computer, if properly programmed, can be
made to serve as a calculotor, ateaching
machine, a musical instrument, a monitor to lock
after asick patient in hospital, oralmost anything
else useful you can think of. This power comes
from the huge number of ways that a few basic
types of command can be put together.

So far, our total vocabulary of commands
used within programs is only seven:

PRINT, LET, GOTO, IF, INPUT, STOP and
COLOR

Of course there are other BASIC commands you
still have ta learn about: but in this unit we'll
explore the potential of the commands we
already know.

The most flexible command of all is the IF. In
previous units it's been used to control loops, but
itis also useful in many other ways. For instance it
can test dato or items of information supplied by
the user, so as to steer the computer along the
right course of action.

EXPERIMENT

11-1

Let's imagine you are setting up a computer-
ised marriage bureau, and the first facility you
plan to provide is a program to advise on the
ages of the partners your customers should look
tor. By tradition a man should marry a girl of half
his age, plus seven. This implies, if you think
about it, that a girl should look for a husband who
is double her age, less 14.

Clearly, the advising program must begin by
asking for the client’s age. Then, to give the right
advice, it has to find out whether the client is a
man or woman. The program will be used both by
men and women, so it must include a separate
group of commands to give advice to each of the
two sexes. Finally there must be an IF command
to select the group actually needed on a
particular occasion.

A first version of the advising program is
given below. Study it carefully and work out
exactly why each command is included:

10 INPUT "WHAT IS YOUR AGE";AG
20 INPUT “MALE OR FEMALE"”;SX$
30 IF SX$="MALE”" THEN 70
40 PRINT "YOU SHOULD LOOK FOR”
50 PRINT “A MAN OF”;2%AG—14
60 STOP
70 PRINT “YOU MUST FIND”
80 PRINT “A GIRL AGED"”; AG/2+7
90 STOP

You will have spotted that the variable AG is
used to hold the client’s age, and SX$ his (or her)
sex. The condition SX$="MALE" is true if the
client answers MALE to the question “MALE OR
FEMALE?", The expression AG/2+7 is BASIC's
way of saying "half your age plus seven”, and
2%AG —14 means “twice your age less fourteen”,

When you have looked at the program, test
your understanding by predicting as accurately

as you can what will appear on the screen (a) for
aman of 20, and (b) for a girt of 22, Use the boxes
below. The first box is partly filled in for you.

RUN RUN
WHAT IS YOUR AGE? 20
MALE OR FEMALE?
(a) Now enier the program into the computer. (b)
Try it out, on behalf of various sorts of client, and
check that both your predictions are right.
This simple example shows you that the
action of the computer needn’t be fixed in advance
by the programmer, but can be made to depend
on the information supplied by the user.
Programs often have complicated sets of
decisions to make, so to plan them we use a
special type of diagram called a flow chart. The
flow chart for the advising program is like this:
INPUT AGE
Y
INPUT SEX
DISPLAY: "YOU TRUE FALSE | DISPLAY:“YOU
MUST FIND A SHOULD LOOK FOR
GIRLAGED A MAN OF
]/2 AGE + 7” 2* AGE_']4H

84

85

A flow chart consists of a number of blocks
connected by arrowed lines. There are four kinds
of blocks:

(a) A square or rectangular box. The box holds
the description of a simple action, which can
later be translated into one or two BASIC
commands. In cur somple flow chart, the top
two blocks are examples of this type. The
arrowed lines show that the program starts
by obeying the first block, and then goes on
to the second one, in that order.

(b} A diamond holds a condition, which may be
either true or false. The diamond has one line
going into it, but two coming out, labelled
TRUE and FALSE (or sometimes YES and
NOj. The diamond corresponds fo an IF
command. It instructs the computer to test the
condition, and to follow either the TRUE or
the FALSE line according to the result.

(c) The terminal block, which tells the computer

to stop obeying the program. It is a small
circle with the word STQP.

(d) The cloud {(which doesn’t appear in our
example). This is a symbol for an action
which is too complicated to be described in
detail. Usually, the cloud con be expanded
into another complete flow chart, just as a
country-wide road map is backed up by
detailed plans of different towns.

A flow chartis really a ‘map’ of a program. A
computer running a program is a little like some-

one playing a board gome. At the beginning the
player’s token (motor-car, top hat or whatever)
goes on the first block. Whenever the action
described in a biock has been completed, the
token is moved along the arrowed line to the next
block.

When the token lands on a diomond, the
player looks at the condition und decides whether
itistrue. If it is, then he moves his token to the box
ot the end of the TRUE line, but otherwise, he
follows the FALSE line. Eventually he reaches a
STOP block, which is the end of the game.

The point of this illustration is to help you see
two very important things about computers:

@ A computer can do only one thing at a time
{not several)

@ The order in which the computer does things
is determined by the program.

It often surprises peaple that there is no flow
chart symbol for a simpte GOTO command. This
is because the GOTO doesn't specify any action
atall; itonly affects the order in which commands

are obeyed. It is well represented by a connecting
line. For instance:

16 Q=1

20 PRINT Q; Q*Q
30 Q=Q+1

40 GOTO 20

has the flow chart

LETQ =1

DISPLAY Q
AND Q?

ADD1TOQ

Now draw a flow chart for the following
program. Use the plastic stencil for your blocks:
10 5=1
20 PRINT §,12%S
30 5=S+1
AQIFS < T3 THEN 20
50 STOP

(Check your answer in Appendix B.)

Experiment 11.1 Completed

86

87

Let's do some more exploring. One feature of

our marriage guidance program was that if you
give it incorrect data, it gives you silly answers.

The name for this fact is “GIGO"’, which stands
for “Garbage In, Garbage Out”". For instance, a

girt who gave her age as 6 would be toldto find a
husband aged —2: not even a gleam in his

. parents’ eyes! Furthermore, if the user gives any
answer other than MALE to the second question,
the program assumes she is female. Someone

who replies “M" or "MAN" or “MASCULINE" or
"BOY"” will be told to find @ man as partner.
There are plenty of programs which do
behave in this idiotic way, and they have given
computing something of a bad reputation. In

practice you can avoid the worst of these troubles

by passing the user’s information through a filter

to make sure that it is ot least sensible.

To begin with, we'll draw a new flow chart
for the whole program, replacing the detailed
input boxes with a cloud:

GET SENSIBLE
VALUES FOR
AGE AND SEX

DISPLAY: “YOU
MUST FIND A
GIRL AGED

Y2 AGE + 77

DISPLAY: “YOU
SHOULD LOOK FOR
A MAN OF

2% AGE— 14"

We use a cloud because we haven't yet fixed
the details of what we actually mean by
“sensible”. The cloud is useful because it atlows
us to plan the program as a whole unit, but it
involves an obligation to work out the action in

reater detail. Atthe stage we have reached now
the planning is not complete, but that doesn't
mean that the main flow chart is useless or wrong!

Well, what does “sensible’”’ mean? First let’s
think about the age of the user. The lowest likely
value is 18, because people under 18 don't often
come to marriage bureaux. The upper limit is
harder to decide, but occording to the Guinness
Book of Records the oldest living person is 115.
We'll take this figure as a guide.

We'll design the program so that when the
computer asks for the client’s age, it decides
whether to accept it as reasonable. If not, it

displays a reason, ond invites the client to give a
more realistic figure. Look at this flow chart:)

|

3

INPUT AGE

DISPLAY “YOU ARE
TOO YOUNG TO
GET MARRIED"

DISPLAY I DON'T
BELIEVE YOU"”

When it comes to the second question, there
are lots of ways the client could indicate whether
they're male or female. In fact there are so many
that we could never think of them all. Instead we'll
make the progrom “‘understand” only two
words: MALE and FEMALE. Ifthe reply isgivenin ¥
any other way, the program will ask for it o be

A

repeated. The correct bit of flow chart is

INPUT SEX

DISPLAY "YOU MUST
ANSWER MALE OR
FEMALE"

A

88

89

Now we can put these two fragments
together to give a complete flow chart for the

cloud which is to get sensible values for AGand ¢
SX3.

INPUT AGE

AGE <=115¢2

A

DISPLAY “YOU ARE
TOO YOUNG TO
GET MARRIED"”

DISPLAY “I| DON'T
BELIEVE YOU"

Yy

Y

INPUT SEX

Once a set of flow charts has been carefully * TRUE
drawn, translating them into a program is a
straightforward job. We start at the main flow
chart, but the first block there is a cloud, so we
refer to the subsidiary flow chart and translate it.

Then we go back to the main chart for the rest of
the program.

You wiil notice that two of the diamonds in
the subsidiary chart have a TRUE line which goes

A

DISPLAY "YOU MUST
ANSWER MALE OR
FEMALE”

sirui?hf to the end. The simplest way of filling in
label numbers of the corresponding IF command
is to put a REM at the end of the cloud and use its
label number. The REM does nothing but act as o
convenient anchor point;
We get:
10 INPUT“WHAT IS YOUR AGE"”; AG
20 IF AG >=18 THEN 50

30 PRINT “YOU ARE TOO YOUNG TO BE
MARRIED"

40 GOTO 10

50 IFAG<=115THEN 80

60 PRINT "1 DON'T BELIEVE YOU”

70 GOTO 10

80 INPUT “MALE OR FEMALE"; SX$

90 {F SX$="MALE"THEN 130
100 IF SX$="FEMALE" THEN 130
118 PRINT”YOU MUST SAY MALE OR FEMALE"
120 GOTO 80
130 REM AG AND SX$ HAVE SENSIBLE VALUES

This is followed by the rest of the program as
before (but with adjusted label numbers).

140 IF SX$="MALE"” THEN 180

150 PRINT “YOU SHOULD LOOK FOR”
160 PRINT “A MAN OF”; 2¢AG - 14
170 STOP

180 PRINTYOU MUST FIND”

190 PRINT”A GIRL AGED"”; AG/2+7
200 STOP

Enter this program into the computer and try
itout, For sensible values of age it will behave just
like the first version, but it will be much better at
detecting and refusing silly answers. It has the
important quality of robustness, or the ability to
stand up to abuse.

To end this unit, you will write a program of
your own. Before you start, here are some points
of advice:

1. Get plenty of clean paper, a pencii and a
rubber. Switch off your computer,

2. Study the problem carefully, and work out
one or two simple examples yourself. Keep
the answers to check against the computer.

3. Begin by deciding what variables you need.
Jot down their names, types and purposes in
a “glossary”. For instance, the variables for
the advisory program would have been
noted down as:

Name Type Purpose
AG Number Age of Client
SX$ String Sex of Client, as

“MALE" or “FEMALE"

4. Draw a flow chart for the program. Be
prepared to make lots of mistakes, and don't
be surprised if you redraw the chart half a
dozentimes over. Keep on until you are satis-
fied. Programming is hard work, and this
part of the job — flow charting — is where
most of the effcrt comes.

5. Now translate your flow chart into BASIC.
This should be easy. If it isn't, it means that
you haven’t done your flow charting
properly, so go back and do it again.

6. Now — at last — switch on your computer,
and enter the program. Apart from a few
typing mistakes, it should run without any
bother. Test it out on as many different
examples as you can, including one you
worked out earlier. Finally, preserve the
program on tape or diskette (if you want to
keep it) and file away your flow chart and
variable glossary.

| have just described the way a good profes-
sional sets about programming. Lots of people
don’t do it that way at all — they sit down in front
of their computers and compose their programs
straight on to the keyboard. This method some-
times works for very small problems, but usually it
leads to long, incomprehensible programs
which only work some of the time, and which the
programmer finds impossible to alter or put right.
It alsotakes much longer to get anything working
at all. However, this fact isn't at all cbvious — it
seems quicker to ignore all the planning and get
on with the job. This, in truth, is why so many
people program so badly.

You have a choice; you can either do as
advised and guickly become a competent
programmer, or you can learn the hard way,
which will take you very much longer.

90

91

Now plan, flow chart, write and test a
program for the following problem:

In Ruritania the house-tax is levied as follows:
For each door: £57
For each window: £12
For each thatched roof: £38
For atiled roof: £94

Assuming all houses must be either thatched
or tiled, write a program to ask for the details of
any house and display the house-tax payable.
For instance, the right answer for a thatched
cottage with one door and two windows would be
£(38+57+2%12)=£119.

Get your programto disploy the rates for the
following houses (assume all the doors and
windows are at the front):

Check your answer in Appendix B.

Experiment 11.2 Completed

92

93

EXPERIMENT

11-3

Load and run the program UNIT11PROG.
When you have listed it, examine the code, and
draw up a flow chart and a glossary for it.

Experiment 11.3 Completed

UNIT:12

EXPERIMENT 121 PAGE 96
EXPERIMENT 12-2 99

95

You don't have to look deep into any
program to find a loop somewhere. Loops are so
common, and so important, that the BASIC
lenguage gives you a short-hand method of
writing down the essential details.

You'll remember that there are four vital
parts o the control of any loop:

® The choice of control variable

® The starting value for the control variable

® Thelastorfinal value for the control variable
®

The increment, or amount by which the
control variable grows every time round the
loop.

All these parts can be fitted into one special
command which uses the keyword FOR. This is
oll that is needed to set up a loop except for a
NEXT command to mark the end of the loop body.

Compare the following two programs, which
give exactly the same result:

10J=4 16 FORJ=4TO 20 STEP 2
20 PRINT J J%7 20 PRINT J, Jw7
30 J=1+2 30 NEXT J

40 IF J<22 THEN 20

(Using IF... . THEN] {Using FOR ... NEXT)
In both coses:

Control variable is J

First value is 4
Last value is 20
[ncrement is 2

The example shows how the FOR command
is built up

Always TO and
STEP

FOR| | J|

Control
variable

The NEXT command mentions the name of
the control variable, as a check to help you read
the program.

Every FOR command must have a corres-
ponding NEXT, and between them they enclose
the body of the loop.

in flow charts we show loops in a special
way, using blocks which can't easily be mistaken
for other kinds of action:

Control
variable

NEXT J

The computer goes
back along this line
as long as the loop
has still to be
repeated.

When the loop body
ends (that is, when the
control variable reaches
its final value) the
computer goes down this
line.

EXPERIMENT

12-1

To help fix the details of the FOR command in
your mind, look at the following short programs
and write down what you think they will make the
computer display. Then check your answers on
the machine itself:

(i) 10 FORQ@=1TO 16STEP5
20 PRINT Q;
30 NEXT Q
40 STOP

Now transiate the following program into to
FOR-NEXT notation. Check your answer by
running both versions on the computer and
ensuring that they give the same answers:

10 PRINT “NINE TIMES TABLE”
205=1

30 PRINTS; “TIMES 9 =";

40 PRINT 9%S

50 §=5+1

60 IF S<13 THEN 3@

78 STOP

Your translation:

Your prediction:

(i) 10 FORR=38TO 50 STEP 3
20 PRINT R; 50—R
30 NEXT R
49 STOP

Your prediction:

There are o few points about the FOR and
NEXT commands which you ought to remember:

(@) Iftheincrement or stepssizeis 1, the “STEP 1”7
atthe end of the FOR command can be left
off. The computer understands what is
meant.

(b) The loop control can be made to count back-
wards by using a negative step size. The
program
10 FORX=10TO 5STEP -1
20 PRINT X;

30 NEXT X

0 9 8 7 6 5

will display:

in that order.

(c) The body of the loop is always obeyed at
least once, even if the final value is less than
the starting value. For example,

10 FORR=5TO3
20 PRINTR

30 NEXTR

will display 5

(d) The values inthe FOR command needn’t be
numbers but can be expressions which
include other variables. For example, the

96

97

following program will display the number
of heart symbols requested by the user. Try it
out and study it carefully:

10 INPUT “HOW MANY HEARTS'; H
20 FORK=1TOH
30 PRINT cnd v

40 NEXT K
58 STOP

(e) The control variable can't be a string. For
instance, the “command”

would give a SYNTAX ERROR, and you
aren’t allowed to use this construction.
Using this knowledge, predict the outcome
of the following programs, and check your
results on the computer:

(i 1BFORA=1TO4
20 PRINT A%A;
39 NEXT A
49 STOP

(i} 1@ FORB=3TO @ STEP -1
20 PRINT B;
30 NEXT B
49 STOP

(i) 19FORC =5TO 4
20 PRINT C;
30 NEXT C
40 STOP

{iv) 18 X=5
20Y=9
3¢7=2
A FORW=XTO Y STEP Z
50 PRINT W;
60 NEXT W
70 STOP |

So far we've been concentrating hard on the
details of FOR and NEXT commands, so we have
caretully chosen the bodies of the loops being
controlled to be as simple as possible. In practice

the body of a loop needn’t be short and simple,
but can be as complex as you like — the thing to
remember is that it gets executed every fime the
computer goes round the loop.

Suppose you've been asked to build o
square-based pyramid, out of cannon-balls.
We'll number the layers 1,2, 3, starting from
the top. Layer 1, being the point, will need just one
cannon-ball. Layer 2, the second one, will need
four balls arranged like this:

|
\

NN\

Layer 3 will need nine balls, layer 4 — sixteen,
and so on.

Clearly the number of cannon balls you need
for the whole pyramid depends on how many
layers you plan to build. A three-layer pyramid
needs 1 +4+9 or 14 cannon balls; one with four
layers will require 1+4+9+16 or 30.

If you plan a very large pyramid, these sums
will get rather long and boring, and you might
decide to write a computer program to do them
for you. This program will answer the question,
“"How many cannon balls will | need for a
pyramid of ‘so many’ layers2”’.

In designing the program, a key factor is the
number of cannon balls in each layer. The
numberst 4 9 16....andso on look familiar,
and in fact you soon spot that the number of balls
in each layer is the square of the layer number.
ll;or instance, layer 7 will need 7 % 7, or 49 cannon

alls.

Now for the details of the program. Let's
begin by thinking about the variables we'll need.
Ovur overall plan will be to consider the

layers one by one. We will get the computer to
work out how many balls are needed for that
layer, and add this number to a ‘running total’. At
the beginning the running total must be set to
zero. At the end, when all the layers have been
taken into account, the running total will show the
number of cannon balls wanted for the whole
pyramid. This is the answer to the problem.

A suitable name for the running total is RT.
We need two other variables:

(1) The number of layers in the pyramid.
Remember that the programmer doesn't
know this number; it is up to the user to
supply any value he wants. A good name for
this variable is L.

(i1} As the program runs it will deal with layer 1,
then layer 2, then layer 3, and so on. We
need a variable fo indicate which of the L
different layers the program is dealing with

at any moment. A suitable variable name is
V. Since V is going to take all the values
between 1 and L, the number of the bottom
layer, we can guess that it will be the control
variable in a FOR command, thus:

FORV=1TOL

NEXTV

The glossary for our program is thus:

Name Purpose
RT To keep running total of cannon balls
L Number of layers in pyramid
v Number of layer being dealt with at
any moment,

Next, we'll write down some of the actions
our program needs to take:

Add V squared (This adds in the number of

to RT cannen balls for layer number V)

Print RT (Displays result)

Set RT=0 (Starts RT off from zero)

Input L (Asks user how many layers
there are in his pyramid)

FORV=1TOL (Loop control fortaking every

NEXT V layer into account)

STOP

These are all the fragments of program we
need, but they have still to be put together in the
right order. We have already decided that there
must be a loop, and it will greatly help us if we
can say, for each command, whether it should be
executed

before the loop starts
or inside the loop [as part of the loop body)
or after the loop has ended.

We can use various clues. The program has
to know how many times to go round the loop
before the loop itself can start, so input L must
come before the loop. So must the command
which sets RT to zero.

The total number of cannen balls for the
whole pyramid includes at least some for each
layer. The command to add a layer’s worth to RT
hos to be repeated many times, and so it goes
inside the loop.

Finally, the computer can't give you the right
answer until it’s taken all the layers into account,

so the PRINT command can only come after the
loop has ended.
Now we've got far enough to draw a flow

chart. ltis

g
INPUT L) 3
R
53
| = E
gL
RT=0) 1
2%
0
{
FORV
1 L 1
‘f
A
ADD VYV
TORT
\—<—C NEXTV J

1

DISPLAY
RT

And the corresponding program is
10 INPUT "NUMBER OF LAYERS”; L
20 RT=0
30 FORV=1TOL
40 RT=RT+V*xV
50 NEXT V
60 PRINT RT;”CANNON BALLS NEEDED”
70 STOP
Enter this program and fry it out.

Now here is a problem for you. In the game
of cricket, a player can have a number of separate

98

99

‘innings’ during the season. Each time he scores
some ‘runs’: many if he is a good player or lucky,
or only a few (or even none) if he isn't so skilful. If
you want to know how weli someone has played
over the whole season, you work out the average
number of runs per innings. You get it by adding
up all the runs he gains over the season and
dividing by the number of innings. For instance, if
he plays three times and scores 2@, 3G and 78, his
average is (28+30+70) -3 or 4@ runs per innings.

Consider a program which does this calcula-
tion for you. It has to ask you for the number of
innings, and then the score for each one, so thal it
can add them up together, The overall display
would be like this:

RUN

NUMBER OF INNINGS? Q
SCORE? Numbers
SCOREZ (30— hyped by
SCORE? e

AVERAGE = 40

Your [ob is to write the program for this
problem. To make it easier, we'll give you a
glossary and all the commands, but in jumbled
order and with their labels stripped off. Begin by
drawing a ‘skeleton’ with the loop commands,
and then slot in the other commands in the right
places. Finally, run the program on the computer
and make sure that it works. Hf you get really
stuck, look up the correct answer in Appendix B,
but remember: this is an admission of failure!

The glossary and jumbled commands are:

Name Purpose
J Number of innings during season
Q Control variable for loop

RS Used to add up the total runs scored

S Score for each separate innings

NEXT Q

INPUT“NUMBER OF INNINGS"; J
INPUT“SCORE"; S
PRINT”AVERAGE= ";RS/)J

STOP

RS=0
FORQ=1TO
RS=RS5+S

Experiment 12.1 Completed

EXPERIMENT

12-2

We end this section with a problem which
you must solve without any help. If you go to the
Post Office, you are quite likely to get stuck in a
queue just behind someone buying a huge
amount of stamps. You hear her saying:

“Eighty-three ot 12%2p
and One hundred and seventeen at 16p
and Thirty-five at 75p”
and so on. When all the stamps have been
counted out, the clerk spends ages working out
how much it all costs.

Write o program to help the clerk. The
display should be something like this:

RUN

NUMBER OF BATCHES?

BATCH 1

NUMBER OF STAMPS?2

VALUE (EACH)2
BATCH 2

NUMBER OF STAMPS?

VALUE (EACH)?
BATCH 3

NUMBER OF STAMPS?2

1asn Aq padAy siaquinp

VALUE (EACH)2
BATCH 4
NUMBER OF STAMPS2 (180

VR 97 e

VALUE (EACH)?
TOTAL DUE=2079 PENCE

The program should be 18 commands long
{including STOP). Four of these commands will
form the %ody ot a loop, obeyed once for each
batch. However, don't try fo write the program
yourself until you have a proper design, with
glossary and How chart. Take plenty of time.

If, after spending a good deal of effort, you
stitl can’t get this problem right, go back a few
units to a place where you feel confident, and
work through the course material again.

Finally compare your answer with that given
in Appendix B.

Experiment 12.2 Completed

The self test quiz for Unit 12 is called
“UNIT12QUIZ".

100

UNIT:13

EXPERIMENT 13-1 PAGE 103
EXPERIMENT 13-2 106

103

EXPERIMENT

13-1

This unit is about a topic which is both easy
and fun: using the computer to make sounds and
musical notes.

Load the program entitled SOUND DEMO,
turn up the volume on your TV set, and play
through the selection of sound effects in the
program, They are wide-ranging and give you
some idea of what the computer can do in the
way of sound production.

In due course you will want to design and
program your own sounds, and this is what the
unitis all about.

Sound production on the computer is
controlled by two commands: VOL and SOUND.

Let's begin by explaining VOL, since it is the
easier of the two. In a program, the keyword VOL
is always followed by a number (or an expression)
in the range @ to 8. The command controls the
loudness of sounds the computer makes; it is, in
effect, a “volume control”’. The sounds are at their
loudest when you have given

VOL S8
and reduced to silence when you give

VOLO

Intermediate degrees of volume are selected
by VOL 2, VOL 4, and so on.

When you write @ program which includes
sounds, you should always put

VOL7

near the beginning. When you run the program
you must also turn up the volume control on the
television receiver (or monitor) otherwise you will
hear nothing.

The command used to produce an actual
musical note is SOUND. Every note has two
important qualities:

@ its pitch (whether it is high or low).

@ ifs duration (how long it lasts).

In a SOUND command, the keyword is
followed by three numbers or expressions, like
this:

SOUND 1, 800, 20

voice Torati
number urahion
@ number

The computer has three different voices,
which are numbered 1,2 and 3. At present we

shall only be using voice number 1. All our
SOUND commands will start

SOUNDT,...

The pitch of the note is controlled by the pitch
number, which can have any value between @
and 1023. In broad terms, the higher the value,
the higher the note, but the spacing of the notes is
not at all regular. The following short program
plays every possible pitch between 0 and 1023,
and lets you hear the limits of the machine’s vocal
range:

10VOL7

2B FORJ =0TO 1023
38 SOUND1,J,1

40 NEXT J

The chart below shows you how the pitch
numbers are related to the notes of the musical
scale. This information will be useful when you
come to write music for the computer.

-
¢
%
=
X
')
-
¢
Al
®

=] -
— = NN oW A H£ WG LWL W
i & = & &R & = > 2 B N 0
® © ~wRN G 0 Hho &= = =

]

N ,
*_ vy = # - @
Y - @ a7 =
¥ /anY [~ bl -
ol
J v
- # o o o ~ 0~ ~ o~ ~N N @ o e o w o
e o B S AW G~ © 0 = R E G &
@ a5 5 T &F =B N D = E o o N B = B b
o S
Wi o s s e e
N P -2
7 ﬁu i]
L]
¥ 1
) ’
j=a] o0 (=2 B = o] N 0 g L 0 0 ~0 ~0 D SO
~ oo 2} ~0 o = 7l RN W W b £
[} = o~ b= N W ~0 B I oW
Figure 13.1

The length of the note, in jiffies (or 1/60ths of
a second] is set by the duration number. For
example, the note sounded by

SOUND 1,900,120

will last for exactly 120 jiffies or two seconds.

One of the simplest and most rewarding uses
of sound is to inform a user whether the reply
typed to some question is acceptable. Considera
program where the computer asks someone to
say if they would prefer red wine (R}, white wine
(W), beer (B) or nothing {N). The user is invited to
type the initial letter of his choice. If he types
R,W.B or N [as he should) the machine gives a
cheerful ‘pip’ and continues to the next question.
If the user types something else, the computer
sounds a low and mournful tone and repeats the
choice again. The code for such a sequence
would be as follows:

10VOL7
20 PRINT “RED WINE (R),
WHITE WINE (W}”
30 PRINT “BEER (B) OR NOTHING (N}
40 INPUT “PLEASE GIVE INITIAL LETTER”;
L%
50 IF L$ = “R” THEN 140
60 IF L$ = "W* THEN 140
70 IFL$ = “B” THEN 140
80 IF L$ = “N” THEN 140
90 PRINT
100 PRINT ““PLEASE ANSWER R, W, B ORN”
110 PRINT
120 SOUND 1,20,70 : REM LOW TONE
130 GOTO 20
140 SOUND 1,930,12 : REM PIP
150 PRINT “OK””
160 . ..

104

105

Another use for the SCUND command is in
making your computer play tunes. Each note of a
melody can be played by its own SOUND
command. Here is a well-known Scottish tune,
"The Road to the Isles”,

The Road To The Isles

Scottish Trad.

|
1\

Y Iy g7
8 N -

e
» o
oo

}\IK\L PO [l\h
— P A

. N |
. = = i
O !
T
A
u a §Fe * e -
] & i l
3 L I N
. e T L - — £
y 1 Y
') e Fe . @
A
N A
T &
J
Figure 13.2

The first part of the melody has been coded
up as program TUNE, which you should load and
run. When you list the program, you will see how
the coding has been done. Each note is translated
into one SOUND command. Every beat of the
tune is 32 jiffies long (this gives a metronome rate
of 60%60/32 or 112 beats per minute). The first
note is a dotted quaver or “three-quarters note”
pilched at D, so it is coded as

SOUND 1, 643, 24

pitchfor D three-quarters of 32

One of the most widely used devices in music
is the ‘rest’ or beat of silence. Normally, you can
make the machine pause for any length of time by
giving it an empty loop, like this:

FORJ=1TO 1000 : NEXT J

With music, however, matters are not so
simple. Clear the machine and type

18VOL7

20 SOUND 1,400,120

38 FOR J =1 TO 1006:NEXT J
40 SOUND 1,400,120

When you run this program, the expected
rest between the two notes 1sn't there! Why not2
Because the SOUND command merely starts a
note off. The voice then keeps on sounding the
note while the machine goes on with the rest of
the program. The computer is only held up when
it fries to sound a note before the previous note is
ended.

Now we can see exactly what happened
when you ran your program, The machine started
the first note, and immediately went on to the idle
loop in line 30. After one second it completed the
loop and tried to start the second note — but the
first one was still sounding. When the first note
ended the second one started immediately,
without any gap.

The solution to the problem is now clear. If
you want a note to be followed by a rest, the idle
loop has to swallow up all the time the note lasts
as well as the silent time. For example, if you want
a note of a second followed by a second’s rest,
the loop must take up two seconds of computer
time.

A similar problem arises it you want to play
two naotes of the same pitch. The sequence

SOUND 1, 400, 30

SOUND 1, 400, 30
is indistinguishable from

SOUND 1, 400, 60

because the two notes are run together without
any gap. You need to put

SOUND 1,400, 30
FORJ=1TO 500: NEXT J
SOUND 1,400,30

As an exercise, complete the coding of “The
Road to the Isles”. Pay special attention to the
repeated notes.

Experiment 13.1 Completed

EXPERIMENT

13-2

The shortest note you can play on the
computer is only one jiffy long. This makes it
possible to produce some interesting effects by
playing many short notes of variable pitch. The
following example will make this clear:

10VOL7

20 FOR X = 700 TO 900 STEP 4
30 SOUND 1,X,1

40 NEXT X

50 GOTO 20

For another effect, try adding
35 SOUND 1,X+50,1

Now we'll consider the other two voices on
the computer. Voice 2 by itself works in exactly
the same way as voice 1. If you try to use both
voices together, you'll get severe electronic
interference between them; the effectis
interesting but hardly harmonious! Voice 3 is
used fo produce a type of sound often called
‘white noise’ — a hiss with a poorly defined pitch.
This type of sound is excellent for imitating steam
engines, jet planes, rockets, and alien space-
ships — if you know what they sound like. Try

10 VvOL7

20 FOR X=850 TO 600 STEP —1
30 SOUND 3,X,2

406 NEXT X

and a more complex example:

1B VvOL7

20 1=50

3BFORL=1TO 100

40)=0 .97 %3

50 M=J+15

60 SOUND 3, 860—M,M/3

70 FOR K=1TO 4#*M: NEXT K
80 NEXT L

Experiment 13.2 Completed

106

UNIT:14

EXPERIMENT 14 1) PAGE 112
EXPERIMENT 14-2 15

109

In this unit we'll look at an extremely common
type of computer application: one where the
machine is made to input and digest a large
number of separate items of information, and to
display a summary of its results. For instance, if
you wanted to keep track of your bank account,
you could feed in the details of every cheque you
write, and every credit you pay in fo the bank, and
the machine would tell you your balance at the
end of the week. To give another example, a
school teacher could give the computer all the
exam marks gained by the pupils in the class, and
the computer would display the overall average
mark,

All programs of this type conform to the
same basic pattern, which has a flow chart
something like this:

Y

Input and digest
an item of
information

Any
more items

Yes

A very simple example is this program which
inputs 10 numbers and finds their average value:

10 5=0
Initialise
20 P=1

30 INPUT X }
Read and digest an item
40 S=5+X
50 P=P+1 }
Any more items?
60 IFP < 11 THEN 30

70 PRINT”AVERAGE-"; 5/10 } Display

summary

80 STOP

Glossary

S: Used to add up values of items
P: Used fo count the items
X: Used to input individual items

If you don't understand how this program
works, frace it with the input values 3,6,2,7,0,9,
8,3,12,10.

In this example, we've used an IF-THEN for
the loop control to make the construction of the
program more clear. In practice we would write
the program with a FOR . . NEXT, like this:

105=0

20FORP=1TO 10

30 INPUT X

405 =5+X

50 NEXT P

60 PRINT “AVERAGE IS”; S/10
70 STOP

Let's think about the part of the program
which says "“any more items”’. In the first example
the question was answered by keeping a simple
count, and using the condition P < 11, which was
true untif the tenth item was input and added o
the running total. This method depends on the
programmer knowing in advance how many
items there are going to be. The method is olmost
useless in prachice because it is so inflexible: you
would need different programs to find the
average of 11, or 20 or any other number of
numbers.

You can write a much better program if you
assume that the user can tell the computer how
many items to expect. The following program will
work for any number of items:

16S=0
20 INPUT “HOW MANY NUMBERS”; N
3 FORP=1TON

40 INPUT X

Note use of N
50S=5+X instead of 10
60 NEXT P

70 PRINT “"AVERAGE IS”; S/N
80 STOP

Glossary

S: Used to add up value of items
P: Used to count the items
X: Used to input individual items

N: Used to hold the aumber of items

So far we have been on familiar ground; but
what about the case where the user has to feed in
a large number of items (like a thousand or
more)? It is unfair to make him count the items in
advance, and unreatistic to suppose that he'll get
the number right.

Adifferent way of controlling a loop is not to
use a predetermined count at all, but simply to tell
the computer when the stream of items has
ended. We could, for example, get the user to
answer the question “any more items’” each time
round the loop. This would lead to a program like

10 S=0

20 N=0

30 INPUT “NEXT NUMBER"; X

40 S=5+X

S0 N=N+1

60 INPUT “ANY MORE NUMBERS”; M$
7@ IF M$ = "YES” THEN 30

83 PRINT “AVERAGE 1S”; 5/N

90 STOP

Glossary

S: Used to add up values of items

N: Used to count items

X: Used to input individual items
M$: Used to hold answer to question

“Any more items’’2
T

If you ran this program, the display might be:

NEXT NUMBER? [4 |

ANY MORE NUMBERS? |YES|——

NEXT NUMBER? [7 |
ANY MORE NUMBERS? [YES ———

NEXT NUMBER? [10}

ANY MORE NUMBERS?

AVERAGEIS 7

User
types

BREAKIN %0
READY

The drawbacks of this scheme are clear. The
unfortunate user has to keep typing YES after
every number except the last. This takes double
the time, and doubles the risk of mistakes. A
better method is to mark the end of the stream of
items with a special value called a terminator, A
good choice for a terminator is a value which
couldn’t possibly occur as one of the items. For
instance, if you plan to use the program to
average football scores, you could use the
number 1000000, because you may be sure that
no team can ever score a million goals in one
match,

110

111

The display produced by a program written
an these lines could be:

USE 1000000 TO
END INPUT

NEXT NUMBER? [5 |-
NEXT NUMBER2 [7 |-
NEXT NUMBER? [0}
NEXT NUMBER? [2}

NEXT NUMBER? [1} r~
NEXT NUMBER? [1000000] 3;22
AVERAGE IS 3

BREAK . ..

To use this system we have to re-arrange the
overall flow chart; in particular, the question
“any more dota” must come before the block
which digests each data item — otherwise the
terminating value would be treated as an
ordinary item and would upset the summary.

Input item

Is it the
terminator?

The corresponding program for finding an
average is quite straightforward:

10 PRINT “USE 1006000 TO”
20 PRINT “END INPUT"
305=0

40 N=0

50 INPUT “NEXT NUMBER"; X
6@ IF X = 1000000 THEN 100
70 S=5+X

BON=N+1

90 GOTO 50

100 PRINT “AVERAGE ="; S/N
118 STOP

Glossary

S: Used to add up values of items

N: used to count items

X: Used to input individual items

To summarise, we have looked at four dif-
ferent ways of indicating how many items of
information are to be input by a program. They
are:

1. Number of items is specified by the
programmer, Used only by beginners and
useless in practice.

2. Number of items is specified in advance by
the user. A good method if there are 20 items
or less.

3. Userindicates affer each itemif there are any
more 1o follow. Intolerably tedious.

4. Siream of items ends with special value. A
good method, generally better than the
others.

EXPERIMENT

14-1

Write a simple banking program which
inputs your old balance, and details of all the
cheques you have written, and then displays your
new balance or overdraft. Use the number zero
as a terminator, because you will never write a
cheque for £0.08. Don't worry about credits.
Design your program so that it could produce
either of the two displays which follow:

(a} OLDBALANCE?| 5.24

TYPE DETAILS OF
CHEQUES, USEG TO END

AMOUNT?Z| 1.73

AMOUNT?] 2.00

AMOUNT?
YOUR BALANCE IS £1.51

(b) OLD BALANCE?| 402
TYPE DETAILS OF

CHEQUES. USEQ TO END

AMOUNT? | 3.50

AMOUNT2| 1.50 Typed by

AMOUNT?| 3.00

AMOUNT?| §
YOUR OVERDRAFT IS £3.98

Hint: Your disploy section will be a little more

complex than usual. If B is a variable which
gives the current balance, then it will be
negative (or less than zero) if you are over-
drawn at the bank. The right condition to
check this possibility is B < 8. Your solution
should include a flow chart and a glossary.
Check it against the answer in Appendix B.

Experiment 14.1 Completed

112

13

in some problems the various items in the
stream have to be treated in different ways. The
corresponding programs generally have ‘IF’
commands inside their main loops. For exampie,
let's suppose that affer a run of very bad luck in
gambling you became suspicious that a coin was
biased, so that it came up ‘heads’ much more
often than ‘tails’. You could follow up your hunch
by tossing the coin a large number of times, and
counting the number of heads and tails which
came up. You might want the computer to help
you keep the score, so you would write o
pregram which produced a display like this one:

TYPE H FOR HEADS

TFORTAILS

EFOREND

NEXT THROW? | H Typed by
user

NEXT THROW? | H

NEXTTHROW? | T

. and so on for 547 lines

NEXT THRCW?2 | E

OUT OF 547 THROWS
THERE WERE 4990 HEADS
AND 57 TAILS

READY.

And you could draw your own conclusions
about the bias of the coin.

Let's design and write this program, from
glossary and flow chart down to BASIC
commands.

The sample output shows that we use a
special value, E, 1o terminate the stream of data
items. The outline flow chart will be the same as
the one on page 111, and all one need do is
expand the clouds.

The program cbviously needs three
variables:

H: To count number of heads

T: To count number of tails

1$: To input an item

(As usual, the names H and T are freely chosen.)

Some people might be tempted to include o
fourth variable to count the total number of
tosses, but there is hardly any point; the total is
always given by the expression H + T {the
number of heads plus the number of tails).

Nextwe can work outthe initiclisation section
of the program. There are two things to do:

® Setvariobles H and Tto zero
® Display the heading message.

Next we turn to the cloud inside the main
loop, which digests each new item. By this stage,
the ‘E’ will have been filtered out, and every item
ought to be an H or a T. The basic job the cloud
hastodoisto add 1 either to the heads total, or to
the tails total. One possible approach would use
the argument “Is it an H2 If not, it must be a T,
This would result in a flow chart like

Yes Add I to
H

A

In practice, this method would never be used
by a good professional programmer, because it
doesn’t allow for the user’s typing mistakes. If the
user hits a J instead of an H {they are nextto each
other on the keyboard) the program would count
itas a T, which is most unlikely to have been what
the user wanted.

Itis much better to allow for the possibility of
errors, like this:

Y| Addlo |
H
No ¥
Yes| Addite |y
T
\
No
Displayan g
error message.
 J

A program which allows the user to make
mistakes without disastrous consequences is
called robust.

Finally, we can expond the “‘summary” cloud
to give the three-line report at the end of the
display. The expanded flow chart looks like this:

|

Set: H=0
T=0

Dispiay:

Type H for Heads
Tfor Tails

E for End

Y

A

Y

nput 1%

A

H=H+1

T=T+1

Y

Display:

Display:

Qut of {(H+T) Throws
there were H Heads

and T Tails

Wrong item

114

115

The corresponding program is written out
below. Notice that the code for the main loopisa
bittangled. This is unavoidabie since we have to
force a two-dimensional flow chart into a single
stream of instructions.

10 H=0
20T=0
30 PRINT "TYPE H FOR HEADS"
40 PRINT “T FOR TAILS”
50 PRINT “E FOR END”
60 INPUT “NEXT THROW”; 1%
70 IFI$="E" THEN 16¢
80 IF 1$="H" THEN 120
90 [F1$="T"THEN 140
100 PRINT “WRONG ITEM”
110 GOTO 60
126 H=H+1
130 GOTO 60
140 T=T+1
156 GOTO 60
160 PRINT “OUT OF"”; H+T; “THROWS"”
170 PRINT “THERE WERE"’; H; “HEADS"
180 PRINT “AND"; T; “TAILS"
190 STOP

EXPERIMENT

14-2

Sy

(@) Waprogram has a great deal of input, the

b)

user may stop looking at the screen as he
types. As we explained in Unit 13, itis a good
idea to make the program react with sounds
as well as displayed messages. You could,
for instance, use a ‘pip’ for an item which is
occeptable, and a rude noise for one which
isn’t.

Look at the heads and tails program. Every
time the user types an H the machine obeys
the commands at lines 120 and 130. We
could insert a suitable noise by adding the
commands:

123VOL7
125 SOUND 1,900,1

Load the HEADS program from the cassette
tape (this saves you keying it in for yourself)
and edit it so that it answers each input (right
or wrong} with a suitable sound.

At one time, clocks were liable to a curicus
form of tax, which was calculated as follows:
I the price ofthe clock was less than £12, the
tax was one-third of the cost.

Ifthe price was between £12 and £16, the tax
was £4.

If the price was over £16, the tax was one-
quorter of the cost of the clock.

Write a program which inputs a tist of clock
prices, ended by 0, and displays the total to
be charged tor each clock (including cost
and tax).

Note that this program will have one or more
PRINT commands inside the loop, and
doesn't need a summary block. You will find
a good flow chart indispensable.

(c) Write a program which inputs a stream of
numbers ended by @, and displays the
largest.

Hint: use a variable to record the largest
numberso far, and update itevery time
round the loop.

Experiment 14.2 Completed

Now check your answers in Appendix B.

116

UNIT:

EXPERIMENT 15-1 PAGE 19
EXPERIMENT 15-2 124
EXPERIMENT 15-3 124

EXPERIMENT 15-4 127

119

This unit is about three important features of
Commodore BASIC which are useful in games,
quizzes and other programs where the machine
and its user work closely together.

We'li begin by having a look at “REACTION”,
one of the programs you'll find on the cassette
tape or diskette. A person’s “reaction time” is a
measure of how quickly they can respond to an
unexpected event. A safe driver should have a
fast reaction time, so that he or she can put the
brakes on quickly when a child runs out into the
road in front of the car, A good reaction time is
also useful in most sports and many professions.

Most people, if they are paying attention,
have reaction times between 0.2 and 0.3 of @
second (twenty to thirty hundredths of a second).
a time of less than 0.2 suggests someone who is
quick on the uptake, whilst a reaction time of
more than 0.3 is usually due to a few drinks too
many!

EXPERIMENT

15-1

Load the REACTION progrem, and use it
to measure your own reaction time. Run the
program severaltimes, and ignore the first two or
three results, since they will not be typical. Keep
trying the program until you are satisfied that you
understand it thoroughly, and could confidently
use itto measure the reaction time of a friend who
had no knowledge of computing.

You may notice three aspects of the program
which are not immediately obvious:

First, when the instructions say “any key”,
they really mean it. You will find that function keys

' INST
like and wark just as well

DEL
SHIFT
as letters or numbers, but E - and

CTRL

have no effect.
The only ones you mustn't use are the long

F1 FAe2 £5 3 FB
eys lobellec (RS , RS

kete + > B
and - , since they all produce several

characters when pressed.
as letters or numbers.

Second, the time you must wait before
hearing the tone is always different: it varies
between 1 and 6 seconds in a way you cannot
predict in advance.

Third, if you press a key before the tone
starts, you get a message, “TOO SOON".

Now we'll examine the program in detail,
and explain how itworks. Let's start by examining
the flow chart and BASIC program, which are
shown below:

Clegr screen and

give instructions Cloud 1
Wait for user to
Wait a random time
between 1 and é Cloud 3
seconds
Make sound:Record Cloud 4
current hme
Wait for user to
Cloud 5
Eloudé
Display user’s
Cloud 7

10 REMREACTION TIME PROGRAM

20 PRINT" m and @ g

30 PRINT"TO MEASURE YOUR
REACTION TIME HIT ANY”

40 PRINT”KEY, AND THEN WAIT FOR
THE TONE.”

Cloud 1

50 PRINT"WHEN YOU HEARIT,
STRIKE ANY KEY AS”

60 PRINT“FAST AS YOU CAN. GOOD
LUCK!”

Cloud 3 (and see below) Cloud 2

Cloud 4

Cloud 5

Cloud 6

Cloud 7

Part of Cloud 3

70 REM WAIT FOR ANY KEY
80 GET A%
90 IF A$=""THEN 80

/100 REM WAIT A RANDOM TIME

118 PRINT

120 PRINT"WAIT FOR [T

130 PRINT

140 Q=TI+INT(68+301 *RND{0))
150 GET AS

160 IFA$<>""THEN 310

170 IF Tl<Q THEN 158

180 REM START TONE AND NOTE TIME
190 VOL 7

200 SOUND1,950,4

210 X=Tl|

220 REM WAIT FOR ANY KEY

230 GET A%

240 IFA$=""THEN 230

250 REM GET RESULT

260 R=TI

270 REM DISPLAY RESULT

280 PRINT”YOUR REACTION TIME 15”
290 PRINT(R—X)/6@; “SECONDS"
300 STOP

310 PRINT"TOO SOON"

320 STOP

READY.

120

121

The program has been marked so that the
commands which correspond to each cloud in the
flow chart are clearly visible.

The first cloud (lines 10 to 68} consists
entirely of PRINT commands and is quite straight-
forward.

The second cloud, lines 78 to 98, makes the
program wait until the user types a key. The cloud
uses a command with a new keyword:

GET A%

This command is in some ways like INPUT; it
transfers information from the keyboard to the
computer. However, there are some very
important differences:

1. The keyword GET must be followed by
exactly one variable name.
For example

GETQ

GETX$ but

GET PR$ GET Y$, Z% ¥—Not BASIC
(aliowed) {forbidden)

2. The GET command doesn’t wait for the user
to do anything; it simply examines the key-
board at that instant and indicates which key
has been typed since the last GET or INPUT
command was obeyed. If a key has been
struck, it is made into a one character or
numeric value and put into the variable
mentioned in the GET command. If no key
hos been newly struck, the variabie is set to
the null string or @. This is a string with no
characters, and is normally written as " or @
for numeric values.

To illustrate this rule, imagine that we start off
the computer on the following looped
program, and watch what happens inside
the machine:

10 GET X$
20 GOTO 10

The computer will go round this loop about
50 times a second. As long as the user
doesn’t touch the keyboard, X$ will be set to
the null string : ' *".

Now suppose the user presses down akey —
say the one marked U. As soon as the GET
command is obeyed (i.e. within a fiftieth of a
second) X$ will be set to the string “‘U".
However, this only happens once for each
key depression; the next fime round the loop
X$ will again be setto ", and this will
continue until the U key is let go and another
key (or possibly the same key) is pressed.
The only exceptions to this rule are the so-
called repeating keys like space.

3. The GET command doesn't freat certain

INST
. RETURN
control characters like ,-

or cursor controls as special cases, butdeals
with them all in the same way, except for

AUN
illd , which interrupts the program.

4. Any character which is detected by the GET
command is not displayed on the screen.

With these points in mind, you can now begin
to make some sense of line 83 and 98 in the
REACTION program. Command 88 examines
the keyboard and delivers a string in A$ which is
null unless o key has been pressed. Command 90
tests A$, and makes the computer loop back to 80
untilthe user types any key, atwhich the program
is allowed to drop through fo line 100.

The point of this cloud is fo hold the program
up until the user shows he is ready 1o have his
reaction hme tested. Why do we use a loop with a
GET, instead of a single command like

INPUT “READY"; A$ ¢

There are two reasons. First, INPUT always

expectsa m after the user’s message.

This implies a minimum of two characters to be
typed.

Second, GET treats nearly all the characters
in the same way, so there is much less chance of
the program being spoiled if the user hits a
control key instead of a letter or number.

Cloud number 3 makes the machine wait a
random (that is, an unpredictable) time between
the user’s ‘ready’ signal and the tone. The waiting
time must be variable, because if it were always
the same, the user would soon learn how long to
wait before the tone was due, and this wouid no
longer be an ‘unexpected’ event,

The cloud uses two facilities which you
haven't met before: the random function and the
internal timer.

The rando r function 1s g way of making the
machine produce an unpredictable” number. E
Every e the machine works out the exprassion |
RMD D it gets o diffeient value somewhere |
between Qand 1. |

in most prochical cases, we don't need o I
rendons frackon between 8ond 1, but g random |
whole number within limits which depends on the |
problem to be solved. For instance, if you mcke ¢
ihe machine imitate scmeone throwing a é-sided i
die™*, you expect a number between 1 and &; or it |
you mode! a (European] roulette wheel, you need
a number which is between 0 and 36.

To get @ whole number in any specified
range, we use a shghtly different expression:

INT!x -y % RNDIO);
~hore ¥ s the lowest number we need
v 15 the pumber ot different possibilities

So0.to getanumber between 1 and 6, we
wouldg put

I3

(Lowest number expected
/ ’_/_/\M
INT {1 - 6 « RND{0)) \
- T T
Or, for o number between @ and SA \
|

INT (0 + 37 * RND(0}; ? @

Number
of diferent values

*The number isn't really unpredictable because
everything which happens in a computer
depends on what happened previously.
However, each new ‘random’ number s derived
from the previous one by a complicated process
of squaring it and shuffling the digits of the result,
and unless you know exactly how itis done you
cannot tell what number is coming next.

An expression of this sort can be included in
a loop, so that it is worked out many times, Type
the following program, which imitates 120 throws
of a die:

NEW

10FORJ=1TO120

20'S = INT(1+6* RND(0))

30 PRINT §;

40 NEXT |

50 STOP

Run this program, and count the number of

1's,2's ... &'s which appear on the screen. Enter
your results in the first row of the table below:

No. of throws (1)

No. of throws (2)

Is the program a good imitation of a fair {or
unbtased) die?

Now run the program again, and fill in the
second row. Examine the results and note that
they are different from the first run, just as you
would expect with o real die.

The other important feature in cloud 3 is the
internal timer, Tl. We have already met the clock
TI$, which keeps time in hours, minutes and
seconds; but the special variable Tl (which is not
a string but a number) is infended to measure
much shorter periods of fime. Ti is set to zero
when the computer is started up, and from then
on, no matter what else happens, it hos 1 added
to it every 660th of a second. This interval, a
sixtieth of a second, is called one "jiffy”. You can
get the current value of the internal timer at any
time in [iIffies by using the name Tl in an
expression; but you can’t alier the value in the
way you can set TI$.

Give the command

PRINTTI

The machine will respond by displaying «
fairly large number (60%6@ or 3608 jithies for
every minute you’ve had the machine switched
on}. Now try the command again, and observe
that the value has gone up by a few hundred or
so. Finally, try to reset the value of Tl and see what
happens!

Tl can be used to measure periods of time in
two different, but related ways. In neither of them
are we interested in the number of jiffies since the
computer was switched on; instead, we use the
fact that the duration of any length of time is given

**That 1s: one of a pair of dice.

by the difference between Tl at the end of it, and

122

123

the value it had at the beginning. For instance, at
the end of a period of 5 seconds, Tl will be 5 * 60
or 380 more than it was at the beginning. This is
true whether the machine has been switched on
for 5 seconds or 5 hours.

In the first way of using the internal timer, we
make the machine measure a period of time
which is known in advance, and tell us when
that time has elapsed. The method is simple. At
the beginning of the period the program looks at
Tl and predicts what it should be at the end of the
period; then it waits in a loop until Tl reaches (or
passes) that value. This is very like what you do in
the kitchen, when you say, “These potatoes must
boil for 25 minutes. Now it’s ten past four, so I'il
take them off at 4.35".

To illustrate the point, here is a general
purpose timer program, which you could use in
the kitchen, the laboratory, etc.

10 INPUT "HOW MANY MINUTES”; M
20 R=TI +M %3600

30 IF TI<R THEN 30

40 PRINT “TIME UP!”

50 STOP

If you try this program out, use @ small
number of minutes, otherwise you'll spend a fot of
time waiting. As you study the program,
remember that Tl is moving up all the time, so that
eventually, after M#3600 (iffies, the condition
TI<R wili be false,

In the second variant, we want the computer
to tell us how long it takes from a given moment
until some event occurs. We get the machine to
record the value of Ti at the beginning of the
timing period. When the event comes, the differ-
ence between the value of Tl now and the value
recorded is a measure of the length of time, in
jiffies. It is rather like the mountaineer who says,
"] remember that | started climbing this hill at 5
o’clock. | have just gotto the top at eleven o'clock,
s0 it must have taken me six hours.”

A program which measured time in this way
would have commands something like this:

R=TI (Stores value of Tl ot beginning of
period)

and later
E=TI Gets value of Tl at end of period
D=E-R Gets difference of times (in jiffies)
S=D/6@ Gels time difference (in seconds)

PRINT“THAT TOOK"; §; “SECONDS”

Now we can piece together the commands in
cloud number 3.
We want a waiting pericd of between 1 and

6 seconds. This is between 60 and 360 jiffies, to be
decided by the machine in an unpredictable way.
The appropriate expression is

INT(60+307 »RND{3))

The waiting period is decided just before the
period starts, so it is known in advance (although
notto the user). We use the first method of timing,
which involves predicting the value of Tl ot the
end of the period. Command 140 makes this
prediction and records the value in Q.

If this were all that were needed, the entire
cloud could read:

140 Q = TI+INT(60+ 301 *RND(0))
170 IF TI<Q THEN 170

Asitis, we have to check that the user doesn’t
hit a key before the tone is sounded. Commands
150, 16@, 319 and 320 are included simply to
check for this possibility.

The rest of the program is now completely
straightforward. The value of Tl at the beginning
of the reaction time period is stored in X, and
commands 230 and 240 are used to wait for the
user to hit a key.

Study the program carefuily and make sure
you understand every command.

Experiment 15,1 Completed

EXPERIMENT

15-2

EXPERIMENT

15-3

—

Write a ‘stopwatch’ program. When the user
hits the ‘B’ key, the program starts timing.
When he strikes 'S’, it stops and displays the
time taken, in seconds.

Your program should display instructions, so
that it can be used by anyone without further
explanation.

Hint: use GET and TI.

ho

Write a program which imitates someone
tossing a coin. Every time the user presses a
key, the program displays either “HEADS”
or "TAILS” at random.

Experiment 15.2 Completed

Now check your answers in Appendix B.

Rondom numbers are useful in program-
ming games of chance, such as dice, fruit
machines, and so on. All these programs follow
the same basic patiern, which for one ‘throw’ or
‘spin”is like this

Ask user for details
of his bet

Use random numbers to
imitate throw, spin
etc.

Decide if player has
won or lost, and
tell him so

Let's illustrate this idea with the old game of
crown and anchor*, This is played with three dice
and a board divided into six squares*:

*Crown and anchor dice usually have different
symbols, but this doesn’t affect the principle of
the game.

124

125

The player puts his bet on any one of the

squares. For instance he mightback (%1 with
£5. Then the banker throws all three dice. If one

of them shows 8| ,the player gets back

double his stake money: |
N
up with ®] ,theplaye
.

{ two of the dice come

r gets triple the original

stoke, and if ®] shows on all three dice, the
player ts rewarded with four times his stake. All

these rewards include the
e
other hand, if no d
loses hts stake.

The program for play

original stake. On the
comes up, the player

ing one throw of crown

and anchor is given below. Using the glossary

you should have no troub

le in foilowing it:

S: Player's stake

N: Number backed b
D1

D2 } Results of th
D3

C: Number of dice sh

number.

y player

rowing 3 dice

owing N, the player’s

1@ INPUT “STAKE"; S

20 INPUT “NUMBER BACKED (1-6}"; N

30 D1 = INT{1+6 *RND(0))

40 D2 = INT{1 +6*RND(0})

50 D3 = INT{1+6 *RND(@)]

60C=0
70 IFD1<>NTHEN 90

80 C=CH+1
D IF D2« >NTHEN 110
100 C = C+1

110 IF D3<>N THEN 130
120 C= C+1

130 PRINT “DICE THROWN:"; D1; D2; D3

140 IF C< =0 THEN 170
15@ PRINT “YOU LOSE”
160 GOTO 180

170 PRINT “YOU RECEIVE’
180 STOP

" S*(C+1);"POUNDS”

Throw 3 dice

Count number of dice
showing number backed

by player

Display results

Very few gamblers stop short at a single
throw. Usually people start with a certain amount
of capital and keep playing until they are broke
or— very rarely — the banker runs out of money.

Gambling programs on the computer are
better if they imitate complete sessions of this
type. Initially the player is given a certain amount
of “money” (like £100), and is then allowed to
play as long as he likes, or untit his money is used
up. A flow chart for such @ game is shown below:

Give player his
starting capital

Display amount
of capital
remaining

Ask player for
his bet

Can he

Display: "YOU CAN'T

afford it2

Imitate
one spin/throw/deal

Adjust capital
according to win
or loss

s
player
broke?

Use this flow chart to modify the crown and
anchor progrom so that it starts the user off witha
capital of £100, and lets him play as long as he
likes. When your program is complete, run it
several times, and decide for yourself whether
you would rather be a player or a banker!

Experiment 15.3 Completed

BET MORE THAN
YOU'VE GOT!”
No
tes Display:

YOU'RE BROKE! |

126

EXPERIMENT

15-4

127

Write a program to imitate any other game
of chance you know: craps, pontoon, etc.
Embellish your progrom with pictures of dice or
of cards, suitable sounds, and so on.

Experiment 15.4 Completed

Your tape or disk contains a version of craps
for you to try out. A complete listing of the
program, called CRAPS, is given in Appendix B.

AFTERWORD

129

AFTERWORD

Congratulations on reaching the end of the
course! By now you have gained a good
knowledge of the principles of programming,
and you'll be able to design and write programs
for a wide range of interesting problems and
computer applications. | hope that you've also
cultivated the habit of careful, thoughtful design,
of keeping and filing flow charts, glossaries and
notes for your programs. It is this quality of
planning and self-organisation that sets apart the
really competent programmer from the others.

At this stage, you have reached a half-way
point in your study of BASIC. There are many
important problems which need parts of the
language you haven't yet covered. For instance,
you may want to program moving pictures on the
screen, or to sort people’s names info alphabetical
order, or to store them on a cassette tape or
diskette. These topics, and many others are fully
explained in the second book of this series,
entitled

INTRODUCTION TO BASIC (Part 11}

This book is in the same style as the one you have
just fimished, and will complete your knowledge
of the BASIC language.

Programming — as we said in the introduc-
tion— is avery broad subject. Now that you have
made a start, you should broaden your
knowledge in three ways:

(0) Reod os widely as you can. Most of the
popular computer magazines particularly
Commodore Computing are worth looking
at. Books on programming are also worth
reading, even if they don't specifically refer
to the computer.

(b) Join alocal computer club. There are
Commodore user groups being set up all
over the country and details are given in the
magazine Commodore Computing.

(c) Work at your programming. Practice
constantly, and aim for perfection. Design
your programs so that they are robust, and
usable by anyone without special instruction.

Write them so that you can be proud, not
ashamed, to display the inner workings to
another computer expert.

One last point. You have found a fascinating
hobby, and perhaps a life-long profession.
Remember that with the advantages of knowing
about computers, there also comes a responsi-
bility to see that they are used humanely and
wisely. No one wants a computer-controlled
society with little work and no freedom, and it is
now up to you— among others — to avoid it.

APPENDICES

APPENDIX A PAGE 131
APPENDIX B 137
APPENDIX C 151

131

APPENDIX

Your computer is capable of large-scale
mathematical calculations; as a matter of
historical interest it can do arithmetic consider-
ably faster than most large-scale computers
instalied before 1960!

This appendix outlines some of the mathe-
matical facilities of the computer. You only need
to read the appendix and understand the
material in it if you plan to use the computer far
calculations in Mathematics, Science or
Engineering. Some of the features described are
quite simple, and can easily be grasped by
anyone who remembers the elementary
arithmetic they learned at school. Other features
need some more background knowledge, such
as that covered by an A-level course in
Mathematics. You need only go as far as your
knowledge and confidence will take you, butyou
are expected to have read all the units in the body
of the course.

1. Expressions

The expressions first mentioned in Unit 4 are
very simple examples of a.more general facility.
Thus in the commands

A=34

B=B+]

C=((X+Y)—347/(Q-3)) % (Z-3)12

the underlined portions are all expressions which
the computer works out on your behalf.

Expressions are built up of three types of
element:

Values: numerical variables or numbers
such as

B, X, Y, 34,347
Operators: the signs + — * /and |
(T means “raised to the power’’)

Brackets: {and |

Expressions in BASIC are written in the same
way as in ordinary algebra, and have the same
meaning. There are four minor differences:

® BASIC expressions are in capitals instead of
small letters.

@® Exponentiation (“raising the power’) muyst
be shown with the T sign, because the
computer screen doesn't iet you write small
numbers above the line. Instead of “32”, you
would put /312"

® Multiplication must always be shown using
the * sign. In BASIC, you would write “3% A",
not “3A" as in conventional algebra.
This rule can be a source of mistakes which
are hard to find. If you put BA where you
mean Bx A, the machine will assume that you
are talking about a new variable called BA.
It won't report a syntax error, but it will
produce the wrong answer!

@® Division is written A/B, not % If either the
numerator or the denominator of the fraction
is a complicated expression, you must
delimit it with brackets. The correct way

of writing % in BASIC is (3+5)/(7 +8). f

you leave outthe brackets and put3+5/7+8
the rules of precedence (which are given in
the next paragraph) will make the machine

treat this expression as 3+ % + 8.

When the computer works out an expression,
it takes the T signs first, then the multiplications
and divisions, and lastly the additions and
subtractions, working from left to right in each
case. Anything in brackets is worked out first,
These are colled the rules of precedence, and
they give the same results as ordinary school
algebra,

The value of numbers in expressions do not
have to be integers (i.e. whole numbers) but can
be decimals, The computer works to an accuracy
of about 8 decimal digits, which means that many
fractions (such as Y3 or 1/7) can’t be represented
exactly, You can expect small ‘rounding’ errors in
some arithmetic commands, so that a result which
you expected to be exactly 7 may come out as
"6.99999998".

To test your understanding of expressions,
work through the following examples, and
predict what the computer will display in each
case. Assume that X =3 and P = 7.

COMMAND PREDICTED RESULT

ACTUAL RESULT

PRINT3 +12—6—4

PRINT 4 +3 % 2

PRINTX +P—3

PRINTS5 +12/6—3 i

PRINT11/5—7/4

PRINT412—214

PRINT3+213—312

PRINT2*X—P

PRINT3 + 12— (6 —4)

PRINTS +12/ (6 —3)

PRINT (P + X) T (1 —X)

PRINT412—310

PRINT(P12X12)/3

Now check your results on the computer.
Rememberto setthe values of Pand X before you
start.

In BASIC, expressions are most commonly
used in PRINT and LET commands. Here is a
simple program which inputs two numbers U and
V, and displays a value F calcuigted according to
the ‘lens’ formula:

1.1 1 e]
F VvV U 1,1
Vv U
10 INPUT "V, V
20 INPUT "U”; U

30 PRINT “F="; 1/(1/V+1/U)
49 STOP

132

133

Example 1

Write a progrom which reads two values V
and R, and which displays the value of the

2
formula A = %

Example 2
Write a program which displays the values

1 for values of x between
+x?

0 and 2, going up in steps of 0.2

of the formulay =

(Hint: use a FOR loop like this:
FORX=0TO2STEPO.2

NEXTX)

(The actual answers are given.cr)fi-fbﬁe_: bock of Appendix B.)

2 Standard Functions

Like most calculators, the computer has a set
of ‘scientific’ functions. A useful one is the square
root. This is abbreviated to SQR, and can be
included in expressions like this:

PRINT SQR(5)
or PRINT SQR(B]2+C12)

The quantity in brackets is called the
argument of the function. In the case of SQR the
argument must be zero or positive,

Here is a program which dispiays the square
roots of ali numbers between 100 and 115,

18 PRINT “N"; “SQR(N}"
20 FORN=108TO 115
30 PRINT N; SQRIN}

4@ NEXTN

50 STOP

Example 3

If the lengths of three sides of a triangle are
a,bandc, theareaa of the triangle is given by the
formula a = \fs(s—a) [s—b) (s—c] where s is the
semi-perimeter, (a+b+c)/2.

Write a program which inputs three
numbers. If they can be the sides of a real triangle
the program displays the area of the triangle;
otherwise (e.g. if the numbers are 1, 1, 10) the
program displays an appropriate message.

(Hint: if the lines don't form a triangle the
value of s (s—a) (s—b) (s—c) is negative!)

Some of the more important mathematical
functions are given below. Read through them,
but do not feel obliged to learn them by heart —
you can always refer back to the list later.

SIN(X)
Trigonometrical functions, The
COS(X]) ¢ arguments must be in radians.
(1 degree = 7/180 radians}
TAN(X)
ATN(X) The arc-tangent of X. The result is in
radians, between —7/2 and 7/2.
LOG(X) The natural logarithm of X (Log to the
base e).
X must be positive
EXP(X) Equivalent to X
ABS(X) The modulus of X (X if X > @;
otherwise —X)
INT(X) The largest whole number equal to or
less than X. Note that:
INT [3.5)=3
INT (-3.5) = —4

Now check your answer in Appendix B.

134

135

You con also use the keyboard symbol 7
instead of the number 3.14159265

Here is an example to show the use of some
of these functions.

A ladder can have its length changed from 4
metres to 5 metres in steps of 20 cms. It is placed
with its base 2.5 metres from a vertical wall, and
its top against the wall. Write a program to
display the angle of the ladder with the horizontal
for each of its 6 possible lengths.

First we do the mathematics, using a
diagram. We use x to indicate the length of the
ladder, and h to be the height of the top of the
ladder, and a to be the angle with the horizontal.

N
™
AN
+ N h
™\
\
o
NN NOONON N NN N
-2 5m—
h=vx?— {252 (byPythagoras)
a = arctan (h/2.5) (in radions)
or a=(188/7) * arctan (h/2.5) indegrees.

Next we write the program, which has a
simple looped structure:

10 PRINT” LENGTH",” ANGLE”
20 FOR X=4 TO 5STEP 3.2

30 H = SQR{X]2-2.512)

40 A = (180/7) * ATN(H/2.5)

50 PRINT X, A

60 NEXT X

78 STOP

One of the most useful functions is INT. We
can use it to tell whether one number divides
another exactly. i Xis an exact multiple of Y, then
the condition

XY = INT(X/Y)

will be true; otherwise it won't.

1

A number is a prime if it has no divisors
exceptitself and 1. The following program calcu-
lates and displays prime numbers from 3 up to
any value set by the user:

10 INPUT “HIGHEST VALUE"”: H

20 FORN=3TOH

30 FORJ=2TO N—1

401{F N/J = INT{N/J) THEN 70

50 NEXT J

60 PRINT N;

70 NEXT N

80 STOP

Example 4

Study the prime number program (by tracing
if necessary) and work out how it works. Run it,
and time it for some value of H {say 500).

This method of caleulating primes is actually
very slow. Design and incorporate some
improvements to make it run faster.

Hints: (@) No even numbers apart from 2
can be primes.

(b} Intesting for possible factors, it is
enough to go as far as the square
root of the number,

Now check your answer in Appendix B.

136

137

APPENDIX NEEc—

(1) 10 P$= "=
20 PRINT P$
30 P$= PS+ "' %"
AD IFPH<> "Hedrkkkhdk k&'
THEN 20
5@ STOP

(2) 10 PRINT “POUNDS”, “DOLLARS"
20 PRINT
30 P= 19
4 PRINTP, 1.77%P
50 P=P+2
68 IF P< 32 THEN 49
70 STOP

(3) 18 PRINT “CENT”, “FAHR"
20 PRINT
WC=15
40 F=1.8xC+32
S@PRINTC, F
60 C=C+1
70 1F C < 31 THEN 46
86 STOP

Experiment 7.1:

a) T,TT,T,FFF
b) F.ETT

Experiment 7.2:

Control Starting Final Increment No. of times
variable valye value round loop

X$ “A" “ABBB” B 4
P 0 10 +] 1
Y$ g OEEXEXYT AR 3
R 5 43 4
C 27 7 5 5

UNIT:8

Experiment 8.1:

a) PROGRAM COUNTER A 28-a040--50" 60

VARIABLES X:5 Y:7 Z:12 W: 2

57122 18 X=5

BREAK IN 60 20Y=7

READY 30 Z=X~+Y
AP W=Y- X
50 PRINT X;Y; Z;W
60 STOP

PROGRAM COUNTER 2636 488 28 4658~ 60

VARIABLES Q: 423

SHE LOVES ME 12 Q=1
SHE LOVES ME NOT 20 PRINT “SHE LOVES ME"

BREAK IN 60 44 Q=Q-1
READY 50 IF Q<3 THEN 30
60 STOP

SHE LOVES MENOT 30 PRINT ““SHE LOVES ME NOT”

Experiment 8.2:
i

a) Line 5@ should be: 53 IF G<11 THEN 30
b) Line 3@ should be: 30 A3=A%+" %"

Experiment 8.3:
L |

c) Line 20: PRINT (not PRINT)
No RETURN ofter line 40
Line 68: IF X<<13 THEN 4@ {NOT X>13}
Line 70: STOP (not STGP)

138

139

UNIT:9

Experiment 9.2;

10 COLOR 4,5
20 COLOR 08

30 PRlNT” and ﬁ
40 PRINT ~ ﬂ . «— P times — .

—6times— M

50 PRINTTI$

60 GOTO 49

Experiment 9.3:

]g EEONI_(FDLRAZIC,%OF ICELAND

20 COLORB,15

20 PRINT A ond (5

30 J=1

40 PRINT * and BSHA
Hétimesﬁ and
PR - 1 space - anc AT
«— 2spaces — and [T 1 space”

50 1=J+1

60 IF J <18 THEN 40

70 PRINT and K5 and
«— 7 spoces —» and £33
— 2 spaces — and STHR
«— 13 spaces —"';

80 J=1

o5 prin - I o R (.
B » spaces-—";

100)=J+1

119 IF J < 4 THEN 90

120 PRINT * and Est
— 75paces —» m and £

CTRL
— 2 spaces — - and £TA&

I

— 13 spaces »";

7

130 J=1
140 PRINT and KSR

-] iy
.(— Htimes — .
m and £T0R& 3 space —

e ond B3 - 2 spaces -
and — 1 space —"
150 J=J+1
160 IF J<9 THEN 140

170 PRINT *
.4— × ﬁ.

and — 1 space—

m and BER 2 spaces —»
ETRL
and &R « 1 space—"";

189 GOTO 180

nd MR

UNIT:10

Experiment 10.2:

a)

=

10 PRINT “TABLE PROGRAM”

20 INPUT “TIMES”; N

30 X=1

40 PRINT X; "TIMES"; N; “IS”; N*X
50 X=X+1

60 IF X<<13 THEN 40

70 STOP

10 PRINT "WHAT IS YOUR"

20 INPUT “SURNAME"; S$

30 PRINT “WHAT IS YOUR WIFE'S”
40 INPUT “CHRISTIAN NAME"; C$
50 PRINT “HER FULL NAME IS”

60 PRINT C$+ " +5%

/0 STOP

UNIT:11

Experiment 11.1:

|

DISPLAY
S,12%S

ADD1TO
S

TRUE

FALSE

140

141

Experiment 11.2;

DISPLAY: HOW
MANY DOORS?

INPUTD

!

Glossary:

D: Number of doors
W. Number of windows
R$: THATCHED or TILED

DISPLAY: HOW
MANY WINDOWS2

1

INPUT W

|

DISPLAY: ANSWER
THATCHED OR TILED

DISPLAY: IS YOUR
HOUSE THATCHED OR
TILED?

INPUT R$

TRUE

R$=
“TILED”

TRUE

DISPLAY: RATES ARE
44+57 %D +12%W

DISPLAY: RATES ARE
38+57%«D+12+W

10 REM RURITANIAN RATES
23 PRINT “RATING PROGRAM"
30 INPUT “HOW MANY DOOKS”; D
40 INPUT "HOW MANY WINDOWS”; W
50 PRINT “1S YOUR HOUSE"”
66 PRINT “THATCHED OR"
70 INPUT “TILED ”; R$
80 {F R$= "THATCHED"” THEN 140
9@ IF R$= "TILED"” THEN 168
100 PRINT ““PLEASE ANSWER"
110 PRINT “THATCHED CR”
120 PRINT “TILED"
130 GOTO 50
140 PRINT “RATES ARE”; 38+57 %D +12xW
150 STOP
160 PRINT “RATES ARE"”; 94+57 %D+ 124« W
178 STOP

Correct answers to three sample problems are:

a) 95 b) 155 <) 364

UNIT:12

Experiment 12.1:

10 RS=0
20 INPUT “NUMBER OF INNINGS™; J
3BFORQ=1TOJ

40 INPUT “SCORE"; S

50 RS=RS+S

60 NEXT Q

70 PRINT “AVERAGE--""; RS/)

8@ STOP

1281103 st
J9pJO Jaype

Experiment 12.2:
-]

INPUT "NUMBER OF
BATCHES"; N

FORQ

Glossary

: Number of batches
Number of stamps in a batch
Value of each stamp in a baich
Running total due

: To count batch number

DALYz

DISPLAY:
"BATCH" Q

INPUT “NUMBER OF
STAMPS”; S

1

INPUT

“"VALUE (EACH)";
v

DISPLAY:
“TOTALDUE =";
T; PENCE

142

143

197-0

28 INPUT “NUMBER OF BATCHES”; N
WFORQ=T1TON

40 PRINT "BATCH"”: Q

50 INPUT “NUMBER OF STAMPS™: §
6@ INPUT "VALUE (EACH)”; V
7OT-T+S%xV

80 NEXT @

90 PRINT “TOTALDUE—"; T; “PENCE"

108 STOP

UNIT:14

Experiment 14,1:

input: “OLD
BALANCE"; B

1

Display:
TYPE DETAILS
OF CHEQUIEES.
USEB TOEND

Y

Y

Input:
“"AMOUNT"; V

A True

False

—y

SetB=B—V

True
B<®

Display: YOUR Display: YOUR
OVERDRAFT IS; BALANCEIS ;: B
—B

Glossary

B: Current balance
V. Each new transaction

190 REM BANKING PROGRAM
20 INPUT “OLD BALANCE”; B
30 PRINT “TYPE DETAILS OF”
40 PRINT “CHEQUES. USE @ TO END”
50 INPUT "AMOUNT"; V
60 IFV=0THEN 90
70 B=B—V
80 GOTO 50
90 |IF B<@ THEN 120
100 PRINT “YOUR BALANCEIS£"; B
118 STOP
120 PRINT “YOUR OVERDRAFT”
13@ PRINT “1S£"; —B
140 STOP

144

145

Experiment 14.2;
T e S

(b)

i

Display
descriptive
heading

Y

Input “NEXT
PRICE”; P

Glossary

P: Net price of clock
T: Total to be charged

T=P+1sP B
y
T=P+4
)
T=P+%P
y
Display:
TOTALTOBE
CHARGEDIS; T

10 REM CLOCK TAX

20 PRINT and % CLOCK TAX PROGRAM

30 PRINT ““GIVE NET PRICES”
40 PRINT “USE @ TO END”
50 INPUT “NEXT PRICE”; P
60 IF P=0 THEN 180
70 IF P>=12 THEN 100
80 T= P+ (1/3)%P
90 GOTO 140

108 IFP >-16 THEN 130

110 T=P+4

120 GOTO 140

130 T=P+ {1/4) %P

140 PRINT “TOTAL TO BE CHARGED"

150 PRINT “IS ¥, T

160 PRINT

176 GOTO 50

180 STOP

{

Experiment 14.2:
e

<)

Display descriptive
heading

Input L

A

Display: “YOU MUST
GIVE AT LEAST ONE

True
L=0
NON-ZERO NUMBER”

Y

False -

Y

L=X

A

Display: “LARGEST
NUMBER IS"; L

R T T L

Glossary:

L: Largest number so tar
X: Next number to be input

ﬂ

10 REM FIND LARGEST NUMBER

20 PRINT “GIVE NUMBERS ENDED"
30 PRINT “BY 9"

40 INPUT “NEXT”; L

50 IF L=0 THEN 130

6@ INPUT “NEXT”; X

70 IFX=BTHEN 118

80 IF X<L THEN 60

0 L=X
180 GOTO 60
110 PRINT “LARGEST IS”; L
120 STOP
130 PRINT “YOU MUST GIVE AT LEAST”
14@ PRINT “ONE NON-ZERO NUMBER"
150 GOTO 20

{Note: The following “’solution” won't work
if all the numbers are negative — that is, less than
zero.)

10L=0

20 INPUT “NEXT"; X

38 1F X=0 THEN 70

40 IF X<L THEN 20

50 L=X

60 GOTO 20

70 PRINT “LARGEST IS”; L
8@ STOP

Why noté

!

146

147

UN IT 15

Experiment 15.2 (1)

¥
¥

Display

instructions

f

Display:
“TIMING
STARTED”

X=TI

A

GET A%

False

True

T=(T—X)/60

Y

Display
elapsed time

A

A

GET AS

False 0 True

Glossary:

A$: Keyboard character
X: Internal time at start of interval
(jiHfies)

T: Elapsed time (seconds)

5 REM STOPWATCH

10 PRINT and m "

20 PRINT “STOPWATCH PROGRAM’’
30 PRINT
40 PRINT "TQ START THE STOPWATCH”
5@ PRINT “HIT THE B KEY"'
6@ PRINT “TO STOPIT, HITS”
70 GET A%
80 IF A$ <>"B" THEN 70
90 X=TI
95 PRINT “TIMING STARTED"
100 GET A%
110 [F A% <> S” THEN 100
120 T= (T—X)/60
130 PRINT “ELAPSED TIME WAS”
140 PRINT T; “SECONDS"
150 PRINT
160 PRINT “NOW HIT ANY OTHER KEY"
170 PRINT “FOR ANOTHER TIMING”
180 GET A%
190 IF A$S= """ THEN 189

200 GOTO 19

e

Experiment 15.2 (2):
|
Y

Y

Disploy

heading

Wait for
any key

Display:
"WAIT FOR IT!”

Wait 2
seconds

T=0or 1
at random

Glossary:

S$ Keyboard character
M: Used in loop to wait 2 seconds
T: @ {for Tails) or 1 (for Heads)

18 REM COIN TOSSING

CLR
20 e (N ons & -

30 PRINT “HIT ANY KEY TO TOSS”
40 PRINT “YOUR COIN"
50 GET S$
60 IF S$= " THEN 50
78 PRINT "WAIT FORIT!”
80 PRINT
99 FOR M=1TO 200¢
100 NEXT M
1190 T=INT (@+2*RND(8))
120 IF T=1 THEN 158
130 PRINT “TAILS”
140 GOTO 160
150 PRINT “HEADS”
160 PRINT
170 PRINT “HIT ANY KEY FOR”
180 PRINT “NEXT GO”
199 GET S$
200 tFS$=""THEN 199
210 GOTO 20

True False

Y Y
Display: Display:
“HEADS" “TAILS”

Display
instructions and
wait for any
key

|

148

149

Experiment 15.4:
5 REM CRAPS
1@ REM7
0 prn R onc
and "

49 PRINTTHE GAME OF CRAPS IS PLAYED
WITH"”
50 PRINTTWQ DICE. FIRST YOU BET AND
THEN YOU
60 PRINT“THROW. IF YOU GET A SCORE OF
70R11,
70 PRINTYOU WIN. IF YOU THROW 2,3 CR
12, YOU
8@ PRINT”LOSE. IF YOU THROW ANY
OTHER NUMBER,
90 PRINT”YOU DON'T WIN OR LOSE
STRAIGHT AWAY:
100 PRINTYOU KEEP ON THROWING UNTIL
YOU
110 PRINT"THROW THE SAME AS YOU DID
FIRST
123 PRINT"TIME (AND WIN)
130 PRINTOR
14@ PRINT"THROW A 7 (AND LOSE)
150 PRINT
160 PRINTHIT ANY KEY TO CONTINUE
240 GET A$
250 IF AS=""THEN 240
255 REM SET A$,B$,C$ TO LINES OF DICE
PICTURE
260 A$="<-4spaces — (7
«-2spaces — 7~ "
273 B%$="<4spaces — | «— 3 spaces —
| «— 2spaces — | < 3spaces - |
280 C$="« 4spaces— r——
«— 2spaces —» T T
285 REM GET STARTING CAPITAL

CLA
290 PRINT “ ond HOME g

300 INPUT” STARTING CAPITAL";C
305 REM NOW START NEXT BET

318 PRINT” HIT ANY KEY FOR NEXT BET”
330 GETR$

340 IF R$=""THEN 330

350 PRINT” YOUR CAPITAL NOW [S”;C
378 INPUT* HOW MUCH DO YOU BET";W
380 [F W > B THEN 399

385 PRINT* DON'T BE SO SILLY"

387 GOTO 319

390 IF W<=C THEN 420

400 PRINT” YOU CAN'T AFFORD IT"

419 GOTO 310

415 REM ORGANISE FIRST THROW

oorent - [..« DD R

FlRST THROW (BET_ ", W I! it

430 PRINT “ﬂ «— 7 times — "; A%

440 FOR J=1TO5
450 PRINTBS

460 NEXTJ

470 PRINTCS

475 REM SHOW 18-59 DIFFERENT FACE PAIRS

480 Q=INT(10+58%RND(2))

499 FORZ=1TOQ

500 A=INT(1+6%RND(0))

518 B=INT(1 +6%RND(@))

515 REM SOUND A NOTE WHICH DEPENDS
ONAAND B

520 SOUND 1,700+3% (A% A+BB) 4

540 PRINT”E . — 1 times — .
. «— 12times — ";AJ
” «— 11 times — ”;B

960 NEXT Z

585 REM USE LAST VALUES OF A,B

598 T=A+B

595 REM JUMP IF PLAYER WINS OUTRIGHT

600 |F T=7 THEN 1000

618 [FT=11 THEN 1000

615 REM JUMP IF PLAYER LOSES OUTRIGHT

620 IF T=2THEN 110@

632 IF T=3THEN 1190

649 IF T=12 THEN 1100

650 PRINT

660 PRINT

670 PRINT

680 PRINT” YOU HAVE TO MAKE";T;”
BEFORE 7~

708 PRINT" « Btimes— HIT ANY
KEY TO GO ON"

710 GET R$

720 |F R$=""THEN 710

720 i I B o

THROW (BET="; W;)"
740 PRINT “MAKING”; T

750 PRINT ”m «— 4 times — ”

760 PRINT A$

776 FORJ=1TO5

780 PRINT B$

790 NEXT)

800 PRINT C$

805 REM SHOW 10-19 DIFFERENT FACE PAIRS
818 Q=INT(10+1@%RND(2})

820 FORZ=1TOQ

832 A=INT(1+6%RND(@})

840 B=INT(1+46%RND(8)}

858 SOUND1,700+3* (AxA+B%x8) 4

870 PRINT”@ . — 8times— .
. — 12times — .” A .

«— 11 times —

900 NEXT Z

925 REM IF A+B=T PLAYER WINS

930 IF A+B=T THEN 1000

935 REM IF A+B=7 PLAYER LOSES

940 IF A+B=7 THEN 11060

945 REM ELSE PLAYER THROWS AGAIN
950 GOTO768

.r

990 REM PLAYER WINS

1000 PRINT" — / times — YOU WIN"

1005 REM ADD WINNINGS TO CAPITAL
10180 C=C+W

1015 REM PAEAN OF PRAISE
1817 FOR J=1TO 500:NEXT)
1020 SOUND?1,834,32

1025 SOUND1,798,24

1038 SOUND1,810,8

1035 SOUND1,834,32

1049 SOUND1,739,32

1042 SOUNDI1,770,8

1044 SOUND1,798,8

1046 SOUND1,810,8

1048 SOUND1,834,8

1059 SOUND1,818,16

1052 SOUNDI,798,16

1654 SOUNDI,770,64

1995 GOTO310

1100 REM PLAYER LOSES

110 F’R|NT” — 10times— YOU

LOSE”
1115 REM CHIRP OF VINDICTIVE TRIUMPH
1120 FOR J=1TO500:NEXTJ
1136 FOR X=8008TO 1000 STEP 4
1140 SOUND1 X1
1150 SOUNDI1,X+23,1
1160 NEXTX
1195 REM TAKE LOSSES FROM CAPITAL
1200 C=C-—W
1210 IF C> @ THEN 319
1228 PRINT"YOU ARE NOW BROKE”
1230 STOP

APPENDIX A

PROBLEM SOLUTIONS

Example 1:

19 INPUTV
20 INPUT R

30 PRINT “A="; V12/R
40 STOP

Example 2:
N
16 PRINT “X FORMULA"

20 FOR X=@TO 2 STEP 0.2
3@ PRINT X; 1/(1+X12)

Example 3:

19 PRINT “GIVE THE THREE SIDES”

20 INPUT “A”; A

30 INPUT “B"; B

4@ INPUT “C”, C

50 S= (A+B+C)/2

6@ X= Sk (S—A) % (5—B) % (5—C)

70 IF X <@ THEN 10@

80 PRINT “AREA IS”; SQR(X)

99 STOP
100 PRINT “THESE ARE NOT THE”
110 PRINT “SIDES OF A TRIANGLE"
120 STOP

Glossary:

A, B, C: Three "sides” of triangle
S: Semi-perimeter
X: Square of area (if any)

Example 4:

10 REM SLIGHTLY FASTER VERSION
20 INPUT “HIGHEST VALUE"; H
30 FORN=3TO H STEP 2
49 Q= SQR (N)
50 FORJ=2TOQ
6@ IF N/J= INT (N/J) THEN 90
70 NEXT J
80 PRINTN;
90 NEXT N
180 STOP

150

151

APPENDIX

Error Messages

This list covers errors which can arise if you
use the BASIC facilities described in this book.
Other errors can occur if you run programs of a
more advanced nature,

Division by Zero

Dividing a number by zero is not allowed.
The error may arise in commands like

10 A = 5/0
or 20B=Q/()—))

Extra lgnored

If you type too many items {numbers or
strings) in reply to an INPUT command, the extra
ones will be ignored. The program doesn’t stop.

lllegal Quantity

Anumber used inacommand istoo large {or
too small). For instance, any number you POKE
into a location must be in the range @ to 255.

This error can occur in commands like

SOUND 18, 5,37
or COLOR300.2

Load Error

Your program is not loading correctly from
the cassette recorder or the floppy disk. If using a
cassette recorder, try cleaning the reading head.
Alternatively, the program may not have been
recorded correctly in the first piace, or the tape
may have been damaged by a magnetic field.

Next Without For

The FOR-NEXT structure of your program is
wrong.

Out of Memory

The computer has run out of space in the
memory. This only happens with very long
programs, or ones which use large amounts of
data.

Redo from Start

i an INPUT command expects a number,
and you type something which isn’ta number, the
computer wili display this message and let you try
again.

String Too Long

A string formed by concatenation is larger
than 255 bytes.

Syntax Error

A “command’’ has broken the rules of BASIC
grammar. Possible couses are mismatched
brackets, mis-spelled keywords, or elements of
expressions in the wrong order.

Type Mismatch

This means that a number has been used
instead of a siring, or vice verso.

Verify Error

The verification process has failed. Try
SAVE'ing the program again.

INDEX

153

Aitering programs
Arithmetic operators
Average
Background colour
Back-up storage
Bank
BASIC
Blank lines
Bytes
Caossette Recorder
Cassette Tape
Characters
Clocks
CLR/HOME
COLOR
Colour
Colour codes
Colour keys
Comma
COMMODORE key
Concatenation
Conditions
Control function
Control variable
Correcting typing mistakes
Cricket
Crown and Anchor
CTRL key
Cursar keys
DATA command
DELETE
DIRECTORY
Disk, floppy
Disk, drive
Division
DSAVE
DLOAD
Duration of sound
Editing progrom
Environment
Exponentiation
Expression
Final value
Flags
Flexible programs
Flow chart
Football
FCR command
Formatting
Frame colour
Funchon keys

F1/F4

F2/F5

F3/Fé

HELP/F7
Gambling
Games
GET command

42-44
31

109

20,21

46

78,112
227

52

2

3,45

3,45

2

15
9,13,70-72
20,21,22
19,69-72
19-20,69-72
6,69-72
28,52
4,9-14,19
31
49.51,57,61
69,71

52,95

15

98-99

124
6,9,19,21,36,47
2,9-13,19,71
44

43

41

5

5

28,31

46

5

103

41-47

1

131

28,31

53,95
21-23
77-80
83-86,93
30

109

41

20-21

9/119
59,119
459,119
9,119
113
119-127
121

Glossary

GOTO command
Graphics

Headers

IF command
INPUT command
INST/DEL key
Internal clock
Internal timer
Kemeny 8 Kurtz
Keyboard
Keyword

Jiffy

Labelled command
Label numbers
LET command

LIST command
LOAD command
Loop

Loop body

Loop stop
Lower-case leters
Machine breakdowns
Memory

Message
Multiplication
Music

Names of variables
NEW command
NEXT command
Noise

Normal mode
Null string
Numbers

Numeric variable
Pictures

Pitch

Post Office

Power lamp

Power supply
PRINT command
Program

Program control
Program counter
Program design
Programming errors
Programming tools
Program tracing
Pyramid of cannon balis
Quuartz crystal
GQluote mode
Quote symbols
Random (RND) function
Reaction time
READY.
Relationships

REM command
Repeating keys
Repetition

RESET button
RETURN key
Reverse field
Reverse mode
Rabust program
Rounding errors
RUN cemmand

90
35-38,85
1-12

45
51,53,60,83
77-80,83,109-111,121
49,15,44
72

122

a7

29-13
18,27,28
104,106

35
35,36,55
28,30,31,32,37,57,60
35,41-42

3
37,49,54,62,69,95
52,95
71,73

1

66

2,30

4

28,31

6

31

35

109-111
105

21

121

28,51

31,51
13,22,69-75
103

99

14

1
2,3,27-29.95
3

49.57
59-62
54,59,79,97,101-111
45,61

42

59-65

97

72

69

3

121,122
119

4

49

43,90
12,121

36

2,79
2,3,9,25,35
21,69

21,69

114

132

436

1
(0 1 T T T T T T T (O T T (A AN S SN A A N S AN SN NN AN AN N SN SN BN B

RUN/STOP key
RVS OFF key
RVS ON key
SAVE command
Screen
Semicolon

SHIFT key

SHIFT LOCK key
Sound

SOUND

Spaces

Standard functions
Starting value
Step size

STOP command
Stored commands
Strings

String variables
Symbol keys
Synitax error
Terminator

T

Ti$

Timing

Trouble shooting
Tuning TV

TV set

Typing mistakes
User {of a program)
Variables
VERIFY command
vOL

VOICES

Write permit tabs
= sign

4,34,36,79
21-22,70
20-22,70,73,74
45

2
26,36,72
391011
39
103-109
103-106
28

134
5295
95-98
35,60
35-37
284967
31,49

9

4,29

110

122

68
122-123
2

1

1

13
77,110
31

45-46
103

103

45

57

154

AN INTRODUCTION TO BASIC PART 1

TAPE 1 TAPE 2
TESTCARD SENTENCES
HANGMAN UNIT7QUIZ
SPEEDTYPE * UNIT8PROG
UNIT3QUIZ UNIT9QUIZ
UNIT4DRILL UNIT10QUIZ
UNITS5QUIZ UNIT11PROG
UNIT12QUIZ
SOUND DEMO
TUNE
HEADS
REACTION
CRAPS

Each program is recorded twice, once on each side
of the tape.

ﬂ

-

=

N

=

=

-

i,

o

ﬁ

“

1

=

=1

ﬁ

=

=

=3

y

- ©Copyright Andrew Colin 1984, Ali nghts -

reserved. No part of the programs or manual "

included in this wark may be duplicated, copied,

transmitted or reproduced in any form or by any n
means without the prior written permission of the

author. =

Printed in England

_ R

Clcommodohe -

Commodore Business Machines (UK) Limited -

1 Hunters Road, Weldon, Corby, Northempton NN17 1QX, England.
| B
i

o

	Save.PNG
	Save0001.PNG
	Save0002.PNG
	Save0003.PNG
	Save0004.PNG
	Save0005.PNG
	Save0006.PNG
	Save0007.PNG
	Save0008.PNG
	Save0009.PNG
	Save0010.PNG
	Save0011.PNG
	Save0012.PNG
	Save0013.PNG
	Save0014.PNG
	Save0015.PNG
	Save0016.PNG
	Save0017.PNG
	Save0018.PNG
	Save0019.PNG
	Save0020.PNG
	Save0021.PNG
	Save0022.PNG
	Save0023.PNG
	Save0024.PNG
	Save0025.PNG
	Save0026.PNG
	Save0027.PNG
	Save0028.PNG
	Save0029.PNG
	Save0030.PNG
	Save0031.PNG
	Save0032.PNG
	Save0033.PNG
	Save0034.PNG
	Save0035.PNG
	Save0036.PNG
	Save0037.PNG
	Save0038.PNG
	Save0039.PNG
	Save0040.PNG
	Save0041.PNG
	Save0042.PNG
	Save0043.PNG
	Save0044.PNG
	Save0045.PNG
	Save0046.PNG
	Save0047.PNG
	Save0048.PNG
	Save0049.PNG
	Save0050.PNG
	Save0051.PNG
	Save0052.PNG
	Save0053.PNG
	Save0054.PNG
	Save0055.PNG
	Save0056.PNG
	Save0057.PNG
	Save0058.PNG
	Save0059.PNG
	Save0060.PNG
	Save0061.PNG
	Save0062.PNG
	Save0063.PNG
	Save0064.PNG
	Save0065.PNG
	Save0066.PNG
	Save0067.PNG
	Save0068.PNG
	Save0069.PNG
	Save0070.PNG
	Save0071.PNG
	Save0072.PNG
	Save0073.PNG
	Save0074.PNG
	Save0075.PNG
	Save0076.PNG
	Save0077.PNG
	Save0078.PNG
	Save0079.PNG
	Save0080.PNG
	Save0081.PNG
	Save0082.PNG
	Save0083.PNG
	Save0084.PNG
	Save0085.PNG
	Save0086.PNG
	Save0087.PNG
	Save0088.PNG
	Save0089.PNG
	Save0090.PNG
	Save0091.PNG
	Save0092.PNG
	Save0093.PNG
	Save0094.PNG
	Save0095.PNG
	Save0096.PNG
	Save0097.PNG
	Save0098.PNG
	Save0099.PNG
	Save0100.PNG
	Save0101.PNG
	Save0102.PNG
	Save0103.PNG
	Save0104.PNG
	Save0105.PNG
	Save0106.PNG
	Save0107.PNG
	Save0108.PNG
	Save0109.PNG
	Save0110.PNG
	Save0111.PNG
	Save0112.PNG
	Save0113.PNG
	Save0114.PNG
	Save0115.PNG
	Save0116.PNG
	Save0117.PNG
	Save0118.PNG
	Save0119.PNG
	Save0120.PNG
	Save0121.PNG
	Save0122.PNG
	Save0123.PNG
	Save0124.PNG
	Save0125.PNG
	Save0126.PNG
	Save0127.PNG
	Save0128.PNG
	Save0129.PNG
	Save0130.PNG
	Save0131.PNG
	Save0132.PNG
	Save0133.PNG
	Save0134.PNG
	Save0135.PNG
	Save0136.PNG
	Save0137.PNG
	Save0138.PNG
	Save0139.PNG
	Save0140.PNG
	Save0141.PNG
	Save0142.PNG
	Save0143.PNG
	Save0144.PNG
	Save0145.PNG
	Save0146.PNG
	Save0147.PNG
	Save0148.PNG
	Save0149.PNG
	Save0150.PNG
	Save0151.PNG

