
Retro Sprite Workshop ver1.4

User Manual

Application and Documentation was Created by TCFS

This application is a professional tool for retro game developers, especially for Commodore 64/128

or Commodore 264 series. This program produces output formats which can be used in external

development tools, such as Macro Assembler.

The usage of this program assumes that the user is experienced in VIC and TED graphics, knows the

difference between high resolution (1 bit per pixel, 2 colors) and multicolor (2 bits per pixel, 4 colors)

and the pixel arrangement of the color modes.

What you can see after start

The application starts with a default, empty project. Everytime when you want to create a new,

empty project, just restart the application or click on Create Project in the File menu.

This image below shows the screen of an empty project.

You can swith between the images and the project metadata page using the tabs on the upper left

corner of the working area.

The blank project contains one sprite with no pixels. To open the sprite for editing, double click on its

name on the left-side list.

On the top of the Image Editing Panel, the basic settings can be changed related to this sprite. The

width and height is about the dimensions, the Multicolor switch changes between 2 colors and 4

color mode. The Byte Order selection controls the rendering of the byte stream in case of exporting

the sprite for external development tool, for example Macro Assembler.

Understanding of the Byte Order Setting

Horizontal

This setting is suitable for the Commodore 64/128 hardware sprites.

Vertical

This arrangement is the optimal data structure to create images for software sprites.

Mixed (Character-Based)

Best selection for rendering images used for character screens.

Working with Byte and Character Indexes during editing

When you are moving the mouse over the Raster

Editing Area, the status bar shows different

information, based on the current Byte Order setting.

The position information shows the x and y

coordinates within the image and the Byte/Character

indexes, where the zero index is always the top left

corner of the image.

Drawing Sprites

Please note that this tool is not a professional image editing

tool. Do not expect extended graphic functionality, such as

shading, layering or masking.

The image area provides basic retouching functionality to put

and remove pixels. Just click on the grid to cycle through the

available colors.

Right-clicking on the editing area will open a context menu

with basic image manipulation possibilities, such as

flipping/mirroring, shifting and rotating.

The Rearrange Color Pixels option is a common way to refactor your images when the color pixels

should be swapped, for example exchanging Multi1 (01) color bits with the Character (11) color bits.

Rearranging the pixels is not for changing the colors of the pixels. That option physically rearranges

the bit patterns of the image regarding to the settings.

Changing the rendering colors

Below the Raster Editing Area, two or four color buttons are visible,

depending on the Multicolor setting of the sprite. Click on the

appropriate button and the color selector will allow you to pick a

color from a palette. Please select a platform-specific palette for

best color match. This color selection will help you to visualize how

your sprite will look like on the target platform, when the

appropriate color registers are set.

Sprite Medatada and Settings

The second tab of the Image Editing Panel is the

metadata page which allows you to enter

additional information about your sprite.

When the Pre-render Software Sprites option is

turned on, the export functionality will generate

the bitwise-shifted frames of the sprite with a

given precision, configured on the Rendering

Precision combo box. The Final Compiled Size data

shows, how many bytes will the sprite occupy in

the memory of the target platform. This value is

dinamically recalculated when you require

prerendering with different precisions. The Sample >> link will open a small animation showing the

prerendered sample frame regarding to the selected color mode and precision. Please note that in

case of Multicolor (2 bits per pixel) mode sprites, the prerendering precision will be halved due to

color limitations, where 1-bit step is not available).

Manipulating the Project

Right-clicking on the project image list will allow to select

from several options related to the project. These options

can be found in the Edit menu of the top menu bar as well,

when this image list is visible on the screen. Holding the

Ctrl or Shift key while clicking will select multiple images at

once. Some operations (Delete, Reorder, Clone, Recolor)

will be applied on all selected images when multiple

sprites are selected. Reordering the image list is important,

because the final byte stream will be rendered from the

first sprite to last in order, regarding the Byte Ordering of

each individual sprite.

Interoperability with External Development Tools

Please open the Export as Source Code options from the File menu. The Export to File option will

allow to browse a target file and gives the possibility to select the output format.

The .bas extension will export the data in BASIC language format with decimal numbers in DATA

lines.

The .inc format is a Macro Assembler (or compatible) formatted file where the bytes and the sprite

labels are rendered respectively.

When the Export with Comments and Metadata option is turned on, the output file will be more

verbose, containing sprite comments from metadata.

Using the Automatically export source code on

save option on the Project Metadata and

Settings page, each time when the sprite project

is saved, the preferred export file is also placed to

the selected path. By default the export file is

placed into the directory where the project file is

opened from. Click on the … button next to the

path will allow to specify the target directory and

format.

The exported files can be processed using the

include command, provided by the used

assembler or BASIC compiler.

Compatibility settings

When your external assember/compiler requires different syntax as the code generator provides by

default, go to the Project Metadata and Settings tab and click on Advanced button. This opens a

dialog box where you can adjust the code generator settings. For example the line comments syntax

can be changed from ; to // when your compiler needs different notation.

Example export of a sprite project in Macro Assembler format. (The Export with Comments and

Metadata option was turned on.)

Pre-rendered software sprites

Source sprite (8x8 pixels, 1 bit per color mode)

Exported output of the sprite above

Please note that each individual rendered frame is labeled correctly for later reference from the

code. Each frame contains a „bitwise shift right” version of the previous one. The original 8x8 pixels

image became 16x8 (2 bytes width) with an additional column of bytes to make room for the shift

operation.

Capturing sprites from emulator screenshot

When you are porting existing program from one environment to another (for example from

Commodore 64 to Commodore Plus/4) the capture tool is a powerful solution to grab the graphic

elements. Instead of figuring out how the graphic elements are stored in the memory (checking

emulator memory snapshots), you can capture the graphic elements right from the emulator

screenshot.

When you get a standard 320x200 pixels image from an emulator screen (sample images can be

found here: https://mozai.com/writing/brucemap/) Please make sure that the picture is not anti-

aliased or filtered/compressed. The best effect is a pixel-to-pixel representation of the original screen

in a lossless image.

To add new sprite to your project from a screenshot, click on Capture new from Screenshot button

ont he project image page. (Or Edit menu -> Add New Sprite -> Capture Sprite from Screenshot

command). The capture tool will appear and offer possibility to open an image from file or use the

image currently available on the Clipboard.

When the proper image is loaded, the screen will look similar to this:

On the right side, the Sprite Capture Settings are available. Here you can specify what kind of image

element you want to capture. The Palette Mapping list contains all colors available in the screenshot.

One-by-one you should define the behavior of each colors of the screensot. The Preview Captured

Sprite area is the final representation of your captured image.

After an image is loaded, you can drop the Capture Frame (Cutter) wherever you want ont he screen.

Later, you can drag and drop the frame to a different location. After setting the size and the position

of the capture frame, the preview are shows the final result. When necessary, adjust the Palette

Mapping to match the colors correctly.

It is strongly recommended to zoom the screenshot to higher ratio (above 500%) to make fine

positioning of the Capture Frame available.

Strange results after dropping the Capture Frame

This is an example of the bad mapping.

The most common reason for this kind of result is a wrong color

mapping between screenshot image and target pixel roles.

Two different colors in the Capture frame are mapped to the

same target color and the resulting sprite was generated

incorrectly. The green area consists of the same color and we

lost the possibility to distinguish the leg from the background.

The role of the dark gray color is specified incorrectly. It is

configured as character color, but definitely that color is a

background color from the point of sprite’s view. When that

color is defined as Background, the preview image will be rendered again, showing the proper image.

When you are not sure where is the given color in

the Palette Mapping list, you can map the color

directly from the image. Carefully right-click on a

pixel in the screenshot and select the Map Pixel

Color as menu item from the context menu, then

select the appropriate role.

Ok, the sprite looks better now, but the colors are not matching

in the captured image. The reason is that the image was

rendered correcly and the pixels are set regarding to their real

roles, but the sprite colors should also be set tomake a lifelike

rendering. Right click on the preview area and set the character

color accordingly.

When you pick a black color,

the sprite will look similar to

the screenshot. Keep in mind

that the sprites are containing

„palette color indices” from

0-3 and their real colors are

provided by the proper TED or VIC registers.

When the preview looks correct, click on the Capture button. The Capture window will close and you

will get back to the sprite editor to retouch and finalize the sprite when necessary. When you need to

capture a new sprite, the Capture tool will appear with the same image and settings loaded.

You can initiate capturing from the editing window of an

existing sprite. Using the popup menu from the Raster

Editing Area, the Capture tool will be opened using preset

size and color mode settings from the current sprite.

Supporting character mode screen and Building Character Set

The Capture tool offers functionality to build Character Sets and build character screens using the

loaded screenshot.

For building a Character Set , define a 8x8

pixels Capture Frame size (VIC and TED

supports 8x8 pixels characters) and capture

an image exactly from a character boundary

(The grid lines can be turned on and aff using

Ctrl+G or using the View menu Gridlines

command.) Please be careful, characters

captured off the character boundaries will

prevent the function working properly. When

this sprite is captured and avaiable in the

project image list, the Capture tool is able to

match the presence of the existing 8x8

sprites from your sprite collection.

To display matched characters, go to the View menu and click on Match Characters from Sprite Set

command or press the F5 key.

Warning: Using this calculation-intensive functionality might degrade performance on slower

computers.

When the matching against existing sprites feature is turned on, the screen will mark the matched

items with a crossed character section. The status bar on the lower left corner summarizes the

number of matched characters and the positions for statistical purposes. When you hover the mouse

over a marked character, a popup bubble will display which sprite is found on that position and how

often that character is used on the screen. Please keep in mind that this tool relies on the current

Palette Mapping settings. When the palette mapping colors are set incorrectly, characters cannot be

matched (or not all characters are available for matching).

The „[index: xx]” indicator in the bubble shows the index of the matched sprite. It is recommended

to not mix bigger images within the 8x8 sprites in sequence. When your project sprite set starts with

the characters and later the bigger sprites, the character matching will provide you proper

information about the character codes found. When your character set finally assembled to the

begin of a character set on the target platform, the index 0 means the @ character, the index 1 is for

letter A and so on.

Recommended practice to reference character codes in source code

When you are using this project

to define a character set,

containing readable letters

…instead of referencing

hardcoded character codes

like

...use dynamic references like

The _char_index suffix for the sprite name equals to the Char: value from the Index column of the

image list. When you dynamically relocates the characters in your set (for example adding new

characters before the letter „A”) your code will reference the proper character code during

compilation.

In case you are combining multiple projects into one character set, the project included later into

your code would restart the character indexing which brings negative effect to the character

referencing.

Due to the character index counter starts with 0 for each project, the upper chars part will start also

with 0 by default. When you are referencing the first character from upper chars by _char_index, you

will get value 0 instead the expected 128. To avoid this, the „characters 128-255.prj” file

should be configured to start character indexing with 128.

To do that, use the Char Index Offset settings (on the Project Metadata and Settings tab) to control

the initial value of character index setting. This change will immediately recalculates the Char: value

on the image list view.

Version History

ver0.9 Initial Release

ver0.9a Added new menu item to Sprite Capture tool to make one-pixel horizontal

alignment for supporting multicolor sprite cutting

ver1.0 Added Char Index information for GUI and for exported file format. This

shows the exact character code of the image within a character set.

This data also included in assembly export format.

ver 1.1 Copy/Paste support for moving sprites from one project file to another

ver 1.2 Char Index Offset settings added to Project Metadata tab page

ver 1.3 Code Generator compatibility settings on Project Metadata tab

Added Grid and Cutter color scheme selector for better visibility

Added Border Size setting to support screenshots opened directly from

emulator containing borders

ver 1.3 Added image manipulation commands to the Sprite Editor area context

menu: Insert/Remove Row/Column

Retro Sprite Workshop application for Windows was developed by TCFS in 2022 for internal, advanced development

purposes. The author holds no responsibility for any data- or hair loss caused by this product.

The above mentioned „Macro Assembler” is a product of Alfred Arnold, Stefan Hilse, Stephan Kanthak, Oliver Sellke and

Vittorio De Tomasi

