


I i e e B B ——




Volume 5
Issue 06

Circulation 63,000

Start Address Fditorial « .o voeoveeveoscsscsss 3

Bits and Pieces . 4

C64 IRQ reset

80 Column Right-Justify

C64 Zero Page View

C64 V2 ROM Colour Memory Fix
SYScreeching Off Into Oblivion

Disabling RESTORE on c64

Fast Hi-Res Screen Clear From BASIC

In Search of. . . The perfect colour combination
Put Mental Notes on Disk (or tape)!
Assembler Programming Tip

One Line Decimal to Binary Conversion
The Bleeper

40 Column Wordpro Dump

Regain

Warm Start Border Flasher

Double Width Disk Directory Printout

C64 Easy Disk Status

Bounce 8032

Filename Extensions With SHIFTed SPACE
Easy Screen Print

Phone Speller

Assembler Programming Tip #2
154174040 Write Incompatibility Bug

Auto Keywords For The VIC, 64, PET/CEM

Letters ......... .. 17

Upgrades and Info: DOS 2.7

Clearly Inflexible: Screen Clear Routine
Protection Reflection

Unimplemented Inquiry: 6502 Ops

NewsBRK ......... 76

New 16<bit Commodores for 1985

Note to Product Review Authors

Owver 41,000 Attend World of

Transactor Disk Offer Update

[BM COMAL

The Gold Disk

Quick Data Drive For C64 and VIC-20

Software Developers Newsletter

Commodore Now Provides Ameriean

LAMP: Literature Analysis of Microcomputer Publications
Porthole

New Income Tax Program For Commodore PLUS/4
INFOQUICK Bulletin Board for the Commodore 64
The SMART 64 Terminal +4

The FONT FACTORY

CAM-64 (Call Accounting Manager)

Expandable 300/1200 Baud Modem

Printer Ribbons

Introducing VERIFIZER ................ 11

The MANAGER Column
TransBASIC Installment #2

A New Wedge For The Commodore 64 . ... 22
Keywizard For The Commodore 64 ....... 26

LINKED LISTS Part 2

A HI-RES Graphics Utility .............. 37

VIC Parameters .. ..

BIGPRINT: HI-RES Printer Dump ........ 48
Two Short Sprite Editors ................ 50

List Scrolling Routine
STP: Execute Sequential Files
Quote Killer ......

Directory Gap Remover ................ o7

Machine Language Print Loader

Aligning The 1541

Super Cat ........

Software Numeric Keypad .............. 67

Disk/Extramon 64

Drive Peeker . ... ..

File Compare

The Transactor

Volume 5, Issue 06




Transactor

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

Managing Editor
Karl J. H. Hildon

Editor
Richard Evers

Technical Editor
Chris Zamara

Art Director
John Mostacci

Administration & Subscriptions

angled top.

mode. To clarify two potential character mix-ups, zeroes will appear as ‘0’ and the letter “o” will of course
be in lower case. Secondly, the lower case L (') has a flat top as opposed to the number 1 which has an

Many programs will contain reverse video characters that represent cursor movements, colours, or
function keys. These will also be shown exactly as they would appear on your screen, but they're listed
here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you
insert will not be critical to correct operation of the program. When it is, the required number of spaces
will be shown. For example:

Lana Humphries print” flush right” - would be shown as -  print” [spacel0]flush right”
Contributing Writers
g?};}nlﬂdeﬁndersnn Cursor Characters For PET / CBM / VIC / 64
Daniel Bingamon Down - [ Insert -
Jim Butterfield Up - Delete -
Gary Cobb Right - [j Clear Scrn - [i§
John Currie Left - [Lft] Home -
glizahet_h EE?I RVS - u STOP P
omenic DeFrancesco
Brian Dobbs rRvsort - [l
Bob Drake
Ted Evers Colour Characters For VIC / 64
Mike Forani
- 0 - B

Jeff Goebel Black - [ range - ||

White - [ Brown - [l
Gary Gunderson
David A. Hook Red -3 Lt.Red -
Rick llles Cyan - [Cyn] Greyl -8
Scott Johnson Purple - [Pur] Grey2 -
Garry Kiziak Green - i Lt. Green -
Michael Kwun Blue - Bl Lt. Blue -
Scott Maclean Yellow - [Yel] Grey3 - [Gr3]
Allen R. Mulvey
Brian Munshaw
Noel Nyman Function Keys For VIC / 64

Lenard Painchaud
Michael Quigley
Howard Rotenberg
Louis F. Sander

K. Murray Smith
Darren J. Spruyt
Aubrey Stanley
Nick Sullivan
Colin Thompson
Mike Todd

Production
Attic Typesetting Ltd.

Printing
Printed in Canada by
MacLean Hunter Printing

The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton,
Ontario, L9T 3P7. Canadian Second Class mail registration number 2. USPS T25-050, Second Class
postage paid at Buffalo, NY, for U.S. subscribers. US. Postmasters: send address changes to The
Transactor, 277 Linwood Avenue, Buffalo, NY, 14209, 716-884-0630. ISSN* 0827-2530.

The Transactor is in no way connected with Commaodore Business Machines Ltd. or Commodore
Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64) are registered trade-
marks of Commodore Inc.

subscriptions:
Canada $15Cdn. USA. $15US.  All other 321 US.
Air Mail (Overseas only) $40 US. ($4.15 postage /issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue, Milton,

Ontario, Canada, L9T 3P7, 416 876 4741. From Toronto call 826 1662. Note: Subscriptions are handled at

this address ONLY. Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ.
Back lssues: $4.50 each. Order all back issues from Milton H(Q).

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Volume 4, Issues 04, 05, 06
Still Available:Vol. 4: 01, 02, 03. Vol. 5: 01, 02, 03, 04, (5

r5- [@
F6 -
- [0

L

i B B

o b e

[
OEISE]

-
|

Quantity Orders:

e MICRON ==

CompulLit Micron Distributin
PO Box 352 408 Queen Street West
Port Coquitlam, BC Toronto, Ontario, M5V 2A5
V5C 4K6 (416) 533 9862
604 438 8BBS54 Dealer Inquiries ONLY:

1 800 268 9052

L.5_A. Distributor:

@z/&/irmm
Capital Distributing

Charlton Building

Derby, CT

06418

(203) 735 3381
(or your local wholesaler)

Subscription related inquiries
are handled ONLY at Milton H(Q

Master Media

261 Wyecrolt Road
Dakville, Ontario

L6J 5B4

(416) B42 1555

(or your local wholesaler)

Editorial contributions are always welcome. Writers are encouraged to prepare material according to
themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per

inted page. Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCraft,
E;pemripl, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.
Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.
Photos of authors or equipment, and illustrations will be included with articles depending on quality.
Diskettes, tapes and/or photos will be returned on request.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor
Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please
re-confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights
basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although
accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.
Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor

Volume 5, Issve 06




Nowhere is the desire to absorb information more prevalent
than in the field of microcomputers. Equal maybe, but not
more. Of course we all like to learn more about our favourite
subject. Just one problem. We live in a mass market society
where things are only available for as long as a marketable
segment of the population shows a need. Information is no
exception. So unless there is a need to continue developing a
subject, the availability of new information will not only reach a
limit, but the need for more will also level off.

The law of “supply and demand” affects all businesses. In the
micro industry, manufacturers are responding every year with
machines that exceed every specification of its predecessor
except price. The information industry barely has a chance to
cover all the angles of the current technology before a new line
comes along that requires more of the spotlight. Fortunately for
us there have not been enough transitions to force discontin-
ued coverage of any one model. However, Commodore is
releasing new machines and the story next year will not likely
change. Eventually we just won't have room to deal with
everything. Recognizing this outcome was one reason behind
the theme of this issue and also some slight modifications to
our philosophy.

We realize that the majority of computer users have defined an
objective for their computer and are either working towards
that objective or enjoying the results of having accomplished
that objective. And with kind treatment there is no reason why
the hardware shouldn’t endure indefinitely. In fact, that same
computer may never be asked to perform another new duty.
Then, when you least expect it, the day will come when change
commands priority. Depending how far away that day is, the
information that was once so readily available just might be the
most difficult to locate. Even the most weathered experts may
be unable to offer enough detail to help pinpoint a solution.

But with enough of the right tools, any problem under any
circumstances can be eliminated. You've heard the saying, “if
you want it done right, do it yourself”. Well that’s fine if you
know how to tackle it, which is usually determined by how
much information you can accumulate to provide answers.
Thus the “utility” was born - a program that does no favours
for the user except to make the process of accumulating
information less intimidating.

It was around the same time that the “programming aid”
became a natural development. Once enough information has
been gathered to formulate an idea, the next step is implemen-

tation. Programming aids won’t provide many answers, but
unlike utilities their intent is to do all the favours the user
expects to make the process of applying all that accumulated
information less intimidating.

The philosophy of The Transactor has always been to dissemi-
nate information. With this issue, the information we've cho-
sen to disseminate is for the purpose of extracting information
as defined by the individual who requires it. We can’t possibly
supply all the answers, even if we knew all the questions. So
the next best alternative is to offer methods to magnify the
questions so the answers might be seen more clearly, and to
offer a little assistance with the task of implementing the
solution. But that’s not the most significant benefit.

Learning is a daily process that we all experience, consciously
or otherwise. But there is another learning process that too
many of us ignore even as we're gathering new facts; the
process of learning how to learn. The ability to systematically
obtain knowledge is what separates those with the skill of total
recall from those with the talent for discovering. If you can
pioneer a dilemma to its defeat, you have accomplished more
than the original problem. Whether you realize it or not, you
are acquiring discipline. And with each new accomplishment
you acquire a little more. Eventually your battles with new
objectives will become merely an exercise in accomplishment.
The logical and systematic approach that is so essential in
computer science will proliferate into other unrelated functions
of your day to day existence. The intimidation of a new frontier
will fade faster as you learn to ask why a problem exists and
eliminate the problem reason by reason instead of all at once.

The art of problem solving is one that man has been trying to
perfect since time began. The concept of computers would
never have materialized had there been no struggle with
question. Now that we have the computer we must remember
that it can only solve problems given enough information, and
it’s the information we supply that determines how valuable
the solutions become. If new solutions do not require new
technology then your old computer may never become obso-
lete.

However, there’s nothing as constant as chapge, | remain,

Karl J.H. Hildon, Managing Editor

The Transactor

Volume 5, Issue 06




Bits and Pieces

C64 IRQ reset

You know the problem: you want to disconnect an IRQ-driven
program, but a RESTORE will also reset other things like your screen
and border colours. Here's an easy way to set the IRQ vector back to
its normal entry point of $EA31:

poke 781,12: sys 64701

ldx #12
jsr $fcbd

or in assembler:

80 Column Right-Justify

The ultimate one-liner: when there's a bunch of stuff on the screen of
your 8032, enter this:

fori = 1t080:? " [l " ;:forj = 1t024:2 " [} :nextj,

(The reverse '." is an insert). 8000 Series PET/CBM owners. . . try
starting the line with:

poke 213, 159

Quick note: when using the non-relocating load as in: load
"file " ,8,1 you can use any non-zero value instead of 1, so
you can use ,8,8 to make typing it in a little easier.

C64 Zero Page View

On the PETs, a good way to get a look at what's going on in zero page

was to run an interrupt-driven routine which would continously

display the contents of zero page on the screen. Well, on the 64,

there's an easier way:
poke 53272,7 (,23 to get back to normal)

This tells the VIC-II video chip to find screen memory at $0000, giving

you a dynamic view of what's going on there. If you have V2 ROMs,

you'll have to fill colour memory with something other than back-
ground colour to see it, or use the ROM change method below.

C64 V2 ROM Colour Memory Fix

If you have a C64, try this: clear the screen, move the cursor down a
line or two, then type:

poke 1024, 0

If you see an ‘@’ on the top left of the screen, then you have ROM
versions 1 or 3. Consider yourself lucky; you can freely POKE to
screen memory and see the results of your efforts. If you don't see the

‘@', then you have ROM version 2. With this ROM, the kernal routine
which clears a screen line ‘cleverly’ fills the corresponding colour
memory with the background colour. Since background equals fore-
ground the result is a truly clear screen. Furthermore, if you've ever
run a program for the 64 or typed in a little screen blitz from a
magazine that didn’t work, it could be because the author wrote it on a
V1 or V3 machine and assumed it would work on any 64,

The solution? If you're willing to forsake the RAM underlying the
kernal ROM for this cause, you can correct the foolish behaviour by
changing just two bytes. First copy the BASIC and Kernal ROM into
the underlying RAM. If you have a Machine Language Monitor with a
“Transfer’ command (like Supermon or Micromon), this can be done
with these two operations:

t a000 bfff a000
t e000 ffff e000

This transfers the contents of the 8K BASIC ROM and the 8K Kernal
ROM into RAM. But it gets it from ROM. . . why does it not try to put it
back in ROM? Because the 64 knows you can't possibly mean that
thanks to a chip called a FPLA (Field Programmable Logic Array). This
redirects data flow to a logical destination that has been preset by the
engineers. And yes, it’s fast!

Next switch out the ROM and switch in the RAM by putting a 53
decimal into the bank select register (location 1):

BASIC: poke1,53
Monitor: : 0001 35

Now, at $E4DA, there is the instruction:

LDA $D021
Change this to: LDA $0286
like this: - eddb 86 02

($0286 holds the current cursor colour)

The kernal will be living out of RAM from now on, but POKEIng to
the screen will always yield visible characters. Seems like a lot of
work for just poking to the screen, especially when you could have
merely changed the background colour. But there was another
reason for this excercise (of course).

Now that you have all of your 64 operating from RAM, anything
can be changed. The spelling of keywords and error messages
are fun to modify, but more importantly the ROM routines can be
altered. JMP instructions can be re-routed or entire routines can
be substituted. Most common is the “"BRK instruction insert™ for
examining the state of the machine at any particular point in a
routine. With your favourite dissassembler you simply change the
first instruction beyond the last instruction you want executed to a
BRK ($00). Now when you cause that particular stretch of code to
execute it will stop at the BRK and you can peer around awhile.

The Transactor

Volume 5, Issue 06




Logically you should be able to replace the BRK with the instruc-
tion you wiped out and continue executing. Some routines will
allow such interruptions but others aren't so tolerant. Most likely
you'll need to replace the BRK and start over (perhaps with a BRK
somewhere else?).

SYScreeching Off Into Oblivion

On any BASIC 4.0 machine, you can easily enter the monitor with
SYS4, right? Well, try it with a quote after the 4 like:

SYS 4"

What happened? We won't spoil it by giving it away - look up the
purpose of location 4 to figure it out.

Disabling RESTORE on c64

If you don't want someone crashing out of your program with the
RUNSTOP/RESTORE sequence, here's an easy way to disable it:

poke 792, 193 (,71 gets back to normal)

The disable POKE pretty much renders the NMI routine impotent, so
RS-232 operations won't work while it's in effect.

Quick Note: 255-x = 256 + not(x)

Fast Hi-Res Screen Clear From BASIC

Last issue's Bit's & Pieces gave a little machine language routine to
quickly clear bit-mapped memory. Since then Nick Sullivan from
TPUG magazine showed us this neat trick to accomplish the same
thing from BASIC. If you create a large array and then CLR it, BASIC
will zero out anything in its path, including hi-res screen memory if it
happens to be in the way. If you have a hi-res screen within the limits
of BASIC variable space, just put this line at the beginning of your
program:

olr: f=fre(0):dim a((-65536+(f<0) +)/5-10): cIr

That's it! Within a second, the screen will clear. You can't use this trick
if your screen memory is at $C000, but at the usual spot at $2000, and
with BASIC pointers set up normally, it works like a charm.

In Search of. . . The perfect colour combination

Looking for the perfect background/border/character colours for
programming on the C64 with a 1701/1702 monitor? Try this:

poke 53281,0 : poke 53280,11 (press Commodore-2)

For the VIC:
poke 36879,9 (press CTRL-8)

Adjusting the bright/contrast controls to look good with this combina-
tion results in an easy-to-look-at screen for hours of programming
without fried retinas.

Quick Note: If processing time is critical, you can speed up
the CPU by turning off the VIC-II video chip in the c64: poke
53265,peek(53265) and 239.

Put Mental Notes on Disk (or tape)!

Ever compose your thoughts idly on the screen of your computer? Or
draw a neat picture using graphics symbols while idly talking on the
phone? Want to save the screen to disk or tape to bring it in again
later? Enough questions, here's what to do. Last issue’s Bits & Pieces
gave a method to save a range of memory. To save the screen (at
$0400 on the C64):

sys57812 "filename " ,8:poke193,0:poke194 4:
poke174,231:poke175,7:5ys62954
(use ‘,1,1' for tape)

Of course, that'll mess up a bit of the screen: that's the catch. To bring
back your screen, just LOAD it any time with:

load " filename" ,8,1 orload" filename " ,1,1 for tape
With a BASIC 4.0 machine, just use the monitor to save the screen:

sys4
s"filename " ,08,8000,83e7
(,8000,87cf for 80 column machines)

Unfortunately you can't save memory above $8000 to tape. Pardon
me. . . you can save it to tape, you just can’t LOAD it back. Commo-
dore never expected anyone to require memory above $8000 to be
saved so they used the high bit of the address for something else. In
the VIC or 64 this anomoly has been dealt with and whatever that bit
does is now seperated into its own byte.

Assembler Programming Tip

Branch instructions like BNE, BEQ, BPL, etc. can be a pain when your
program grows and the branch can'’t reach the intended destination
any more - the assembler gives a "BRANCH OUT OF RANGE " error.
You can get around this problem by branching to a JMP somewhere,
but for a short easy way to do long branches, consider this:

intended branch : BNE SOMPLC
easy long branch: BEQ * +5: JMP SOMPLC

This leaves the intent of the branch clear, and doesn't force you to
define a meaningless label somewhere.
One Line Decimal to Binary Conversion
Store the value (0-255) to be converted in ‘X', then:
z$="":forj=0to7:k =x/2:x = int(k)
:2$ = mid$(str(k<>x),2) + z$:nextj:printz$
The Bleeper
This little noisemaker runs on any PET with CB2 sound:
10 poke59467,16:fora = 110255:poke59466,a

-forb = 1t0255stepa: poke59464,b:nextb,a
20 print chr$(7)

The Transactor

Volume 5, Issue 06




40 Column Wordpro Dump

Here's a small program that will print out a Wordpro-format text file to
the screen. It will work with Paperclip, but there will be a few bytes of
garbage printed at the beginning as Paperclip stores extra information
at the start of its files.

10 rem= print a wordpro file to screen
20 rem= 40 column version for 4032/c64
100 input " flename " :{$

110 open1,8,0,"0: " +{$

120 b=1984

130 rem b=33728 for 4032

150 cc = peek(646). c = 54272: rem=* only for 64
160 print” "

165 rem 25 cursor downs

170 get#1,a$,a$

175 rem- main loop -

180 fori=btob+39

190 get#1,a%: poke i,asc(a$ + chr$(0))
210 poke ¢ +i,cc: rem* only for 64
220 if st then 250

230 next i: print: goto180

240 :

250 close1:end

Regain Lenard Painchaud
5 rem+ restore pgm after reset or new =

10 ad =49152:fori = Oto21

20 readd:pokead +i,d:nexti

30 data 169,8,141,2,8,32,51,165,24

40 data 165,34,105,2,133,45,165,35

50 data 105,0,133,46,96

60 print " to execute this program, use: "

70 print” sys”;ad; " :clr’

Lenard writes: "It comes in handy when a program crashes and you
can't get your cursor back. Before you can use this program, however,
you need a reset switch. When you turn on your computer, load and
run the regain program. Now, when the computer crashes, press the
reset switch. That doesn't do the trick though. You then have to type
sys 49152. Now you will have your program back. You can change the
memory location where the ML program is stored by changing the
value of AD in line 10. "

Note: To reset your computer, you have to momentarily ground pins 3
on the user port - pin 1 is a ground. Connecting a push button across
pins 1 and 3 makes a good reset switch - It can save your program’s
life! The above program will also bring back a program after a NEW.

Nick Barrowman
St. John’s, NFLD.

Warm Start Border Flasher

Nick writes: " This small routine doesn’t serve any practical purpose
but it is an example of how you can use the main basic program loop
vector in the C64 (warm start link at $0302). A more practical purpose

10 fora=49152t049169:readb:pokea,b:c = ¢ + b:nexta
20 ifc<>1779thenprint " checksum error! " :stop

30 sys49152

40 print " basic warm start flasher activated "

50 data 169,11,141,2,3,169,192,141,3

60 data 3,96,238,32,208,76,131,164,0

Double Width Disk Directory Printout Brian Dobbs
The following little program will give you a disk directory in two
columns, useful for printing out and putting in the disk sleeve. If
sending the directory to the screen, it will appear as a normal
directory on a 40 column screen, and double width on an 80 column
screen,

100 rem=+ directory double width #+

110rem=#+ by brian dobbs *=

120 rem=* timmins, ontario *»

130 k=4: rem= k=3 for screen, 4 for printer *
135r=1:openk.,k

140 dr = 0: rem= directory drive zero *

150 gosub 220: rem+* directory subroutine

160 close3

170 input " another (y/n) " ;:an$

180 if an$<> "y "then end

190 print " insert another disk, press any key "
200 geta$:ifa®$<>" "then200

210 goto130

220 n® =chr$(0):h =256:0pen1,8,0,"$" + mid$(str(dr),2)
230 get#1,a%,a%

240 get#1,a%,a%,a%,a18$: if st then 290

250 d=asc(a$ + n$) + asc(al$ + n$)+h: print#k,d;
260 get#1,a%:ifa®<>" " thenprint#k,a$;:goto260
270 r=r+ 1:ifr=2thenr = 0:print#k :goto240
280 d$ = str$(d): print#k, tab(40);:goto240

290 close1

300 return

C64 Easy Disk Status John Currie, Mississauga Ont.
This tidy little routine sits in the cassette buffer at 828, and will display
the current disk error status when executed. It's very handy, since the
(C64 has no built-in disk status function.

100 rem basic loader for disk status

110a=2828

120 read b:c =c + b:if b=256then140

130 poke a,b:a=a+ 1:goto120

140 if c<>8574then print " error in data stateements " : end
150 print " 'sys 828’ returns the current disk status "
160 data 169, 0, 32, 189, 255, 169, 15, 162
170data 8,160, 15, 32, 186,255, 32,192
180 data 255, 162, 15, 32, 198,255,169, O
190 data 141, 19, 3, 32,228, 255,172, 19
200data 3,238, 19, 3,153,127, 3,201
210 data 13, 208, 240, 32, 204, 255, 169, 15

is auto-run routines. This routine will change the colour of the screen 220 data 32, 195, 255, 160, 0,185,127, 3

border whenever <return> is pressed (from BASIC) or when a break 230 data 170, 200, 32,210, 255, 224, 13, 208

or restore is performed. Hope you like it!* 240 data 244, 96, 0, 256

The Transactor Volume 5, Issue 06




Bounce 8032

Here's another one of those useless little special effects. For some
reason though, this one can hold your attention for hours (well,
minutes maybe). It only runs on 8032’s, since it uses the scroll down
feature unique to that machine.

5 sp=32768:forj=0to1step0:s = 153-128+k:k = 1-k
10 fori = 1tornd(1)#*15:printchr$(s);
-pokesp + rnd(1)*1000,46:nexti,|

Filename Extensions With SHIFTed SPACE

Filename extensions such as .SEQ, .ASM, .OBJ, etc. are useful to
indicate file types, but some programmers prefer to use a shifted space
instead of a period in the filename. Such a file will be listed in the
directory with the extension OUTSIDE the quotes around the fi-
lename. To load the file back in, you can specify the filename without
the extension, or specify the entire filename (including the shifted
space) if greater uniqueness is required. You can also use this method
to make " notes” about a file — the note will show up in the directory
but need not be entered to load the file in.

Easy Screen Print

A powerful and little-used feature of Commodore BASIC is the ability
to use a screen file for INPUT. If you open a screen file and then GET
or INPUT from that file, you will read characters directly from the
screen starting at the cursor position, and advance the cursor to the
next character or INPUT field.

There are all kinds of uses for screen input, but a good application is to
convert screen memory character codes to their CBM ASCII equiva-
lents. Such conversions are necessary when printing all text on the
screen to a printer. The following line of code will dump an 8032’s
screen to a Commodore printer with an 80 column margin width.

1 opend,3:0pend 4:print . .fori = 11080:get#3,a%
:print#4,a$;:next:close3:closed

For 40 column machines or a printer set for column widths greater
than 80, use this version — it prints a carriage return every 40
characters:

1 open3,3:0pend. 4:printchry(19);:fori = 1to24
2 forj = 1t040:get#3,a$:print#4,a$;:next j:print#4,° ":next i
close3:closed

Phone Speller

Some telephone numbers are most easily remembered by the letters
on the dial. For example, you can get information on 1985 Volks-
wagens by calling 1-800-85-VOLKS. Wouldn't it be nice to give your
friends a similarly catchy way to remember your number? The
following program (it works on any machine) gives all letter combina-
tions from any phone number (zero and one have no associated
letters, so 0 or 1 appears). There are 2,187 combinations for a 7 digit
number, so be prepared for a long list. And even if there are no
pronounceable words in the list, you can invent acronymns. What
better way to spend an afternoon than to find phrases to fit 2,187
acronyms?

100 rem=* phone speller *

110 rem= decB4/cz =

120 :

130 open1,3 :rem 1,4 for printer

140 1$ = "000111abcdefghijkimnoprstuvwxy

150 :

160 input " phone number " ;pn$

170 n=len(pn$)

180 dim p(n), n$(n)

190 :

200fori=1ton

210 n$(i) = mid$(1$,val(mid$(pn$,i, 1))*3 + 1 ,3):p(i) =1

220 next |

230 rem=* n$ holds letter groups for each digit in number *

240 :

250 fori=1to 3tn

260 print#1 i,

270 for c =1 to n:print#1,mid$(n$(c),p(c),1);:next c
- print#1,chr$(13);

280 carry =1

290 forj=1ton

300 p()) = (p()) + carry): carry=0

310 if p(j)>3 then carry =1:p(j) = 1

320 next |,i

Assembler Programming Tip #2

If you've ever looked through someone’s machine language program
and come across a seemingly useless BIT instruction (eg. BIT $FFAZ2),
or an inexplicable .BYTE $2C, there is a method to his madness.

The BIT instruction doesn't do any harm to memory or CPU registers,
it just sets the zero, minus, and overflow flags based on the contents of
the given memory location. In some instances, BIT is used almost like
a NOP, but with one major difference: the two operand bytes used to
specify the memory location are part of the instruction, and so are not
executed as instructions if the BIT is executed. If the first byte of the
instruction ($2C) is skipped however, you can execute a 2-byte
instruction. For example, consider the following assembler code:

ENTRY1 .BYTE $2C
ENTRY2 LDX #$FF

If a program were to execute the code starting at ENTRY1, the CPU
would see a $2C which is a BIT instruction, and interpret the next two
bytes (the LDX instruction) as the argument for the BIT — in this case,
the CPU would see:

BIT $FFAZ2

If the $2C was skipped over and instructions were executed from
ENTRYZ2, the CPU sees the bytes $A2, $FF and interprets the LDX
#$FF instruction normally.

Using the above technique allows you to enter a routine with the X
register intact, and later enter the routine one byte past the start and
have the register changed to something else before the routine does its
thing. Of course, any register may be used instead, or any 1 or 2 byte
op code can be executed after the $2C.

The technique is explained here in case you come across it in
someone else’s program, since it’s a fairly widely used and accepted
6502 programing practice. Generally though, programmers who use
tricks like this enjoy writing obscure code to save a byte or two of

The Transactor

Volume 5, Issue 06




memory, and don't care if anyone else can look at the program and
understand it. Many programs, including those printed in the Transac-
tor, are designed to be easily read by people, not computers, and
should keep away from such brain-twisting exercises. But giving such
advice to a hacker is about as effective as advising a kid not to step in
puddles on his way home from school.

1541/4040 Write Incompatibility Bug

When the 1541 single disk drive arrived, so did a new buzz word:
“write-compatible”. At first it seemed that diskettes were completely
portable between 4040 and 1541 drives. Then reports of some nasty
disk failures started circulating. Here's why.

Every sector on a disk starts with a “synchronizing character”, a
Header block, another sync character, and then the data stored in that
sector. “Physically” it looks something like:

(v..=sync HHH=Header DDD =Data)
4040: ..... HHHHH......DDDDDDDDDDDDDD......
1541: ..... HHHHH...DDDDDDDDDDDDDD......

Notice how the second sync on a 1541 disk is shorter than on the
4040. Now you take a 4040 disk and write on it with a 1541, It
becomes:

But that's OK - the 1541 and the 4040 can still cope. There is still
enough of the sync and the data block is still the same “length”.
However, go back to the 4040 and write to the same sector and:

Blammo! The data block starts with residue data from the 1541 write
to the second sync character. The data block is now “too long” and the
disk returns Read Error 23; Checksum Error in Data Block

Apparently new 1541’s (as of July 84) have been modified to allow
write compatibility between all 1541 and 4040 diskettes.

Auto Keywords For The VIC, C64, PET, and CBM

Today we have the contender for the ‘two liner' of the year contest.
This machine language monster consumes less than the equivalent of
two lines of BASIC. It sits in the cassette buffer and will reconfigure
every (shifted) letter on your keyword to produce a keyword. It's [IRQ
driven, but retains the old IRQ to jump through at the end, so if IRQ
driven code is already installed, this program won't bother it. The
code also operates in direct mode only, which most can appreciate if
INPUT statements are used in your program. And, if it comes down to
it, the "\ " key on the PET/CBM or the (shifted) pound symbol on the
C64/VIC will reset the original IRQ and kill the routine.

Now, considering that there are only 26 letters on the keyboard, how
are all the keywords accessed? With the VIC and C64 we have 76
keywords in total, and with the PET/CBM models with BASIC 4.0 we
have 91. To battle this problem, a memory location within the routine
can be altered to supply you with every keyword. This location
defines a “window” over the total set of keywords. You can’t get access
to all the keywords simultaneously, but you can move the 26 keyword

window over any part of the command set (ie. the part you use most).
Check out any list of keywords for your optimal window.

As shown, the program will give you the first 26 keywords. Since the
first keyword is “END", a shifted-A will print “END". Vary location
683 from 128 to 193 for the PET/CBM, or location 882 from 143 to 193
for the VIC and C64. Lower values will move the window over the
error messages.

Note For PET/CBM Users: Reset IRQ before LOADing from disk, then
sys(634) to start again. The C64 and VIC do not have this bug, but the
PETSs sure do. The machine will hang until the STOP key is pressed if
any IRQ driven wonder is present during a LOAD.

10 rem save " 0:keyword pet.bas " ,8

100 rem ==+ rte/84 — auto keyword for the pet/cbm
110 for j=634 to 774: read x: poke |,x: ch =ch + x: next
120 if ch<>17758 then print " checksum error " : end
130 print " sys(634): rem ** to enable " : end

140 data 165, 145, 201, 2,240, 20, 165, 144
150data141, 5, 3,165,145,141, 6, 3
160 data 120, 169, 149, 133, 144,169, 2,6133
170 data 145, 88, 96, 165, 55, 201, 255, 208
180 data 90, 165, 217,201, 92, 240, 87, 201
190 data 193, 48, 80,201,219, 16, 76, 56
200 data 233, 193, 170, 169, 27, 32, 210, 255
210 data 169, 157, 32, 210, 255, 169, 178, 133
220 data 87,169, 176,133, 88, 160, 0, 132
230 data 89,224, 0,240, 21,177, 87, 24
240 data 42,176, 8,200,208, 247,230, 88
250data 76,199, 2,6200,230, 89,228, 89
260 data 208, 235, 177, 87,133, 90, 36, 90
270 data 48, 11, 32,210, 255, 200, 208, 242
280 data 230, 88, 76,220, 2, 56,233, 128
290 data 32, 210,255,108, 5, 3,173, 5
300data 3,133,144,173, 6, 3,6133, 145
310data108, 5, 3, 0, O

10 rem save " 0:keyword c64.bas” ,8

100 rem == rte/84 - auto keyword for the commodore 64
110 for |=828 10 970: read x: poke |, x: ch=ch + x: next
120 if ch<>17162 then print " checksum error " : end

130 print " sys(828): rem *= to enable " : end

140data 173, 21, 3,201, 3,240, 24,173
1560 data 20, 3,141,201, 3,173, 21, 3
160 data 141,202, 3,120, 169, 92,141, 20
170data 3,169, 3,141, 21, 3, 88, 96

180 data 165, 58, 201, 255, 208, 85, 165, 215
190 data 201, 169, 240, 82,201, 193, 48, 75
200 data 201, 219, 16, 71, 56, 233,193,170
210 data 169, 20, 32,210, 255, 169, 158, 133
220 data 87, 169, 160, 133, 88,160, 0, 132
230 data 89,224, 0,240, 21,177, 87, 24
240 data 42,176, 8,200, 208, 247,230, 88
250 data 76,137, 3,200,230, 89,228, 89
260 data 208, 235, 177, 87,133, 90, 36, 90
270 data 48, 11, 32,210, 255, 200, 208, 242
280 data 230, 88, 76,158, 3, 56, 233, 128
290 data 32, 210, 255, 108, 201, 3,173, 201
300data 3,141, 20, 3,173,202, 3, 141
310data 21, 3,108,201, 3, 0, O

VIC users need only make one change. The number 160 in bold
becomes a 192 (Also add 32 to the checksum just for completeness)

The Transactor

Volume 5, Issue 06




Letters

Upgrades and Info: 1) | have seen references to DOS 2.7 for the
4040. How does this differ from other DOS's? In particular, is there any
point in me taking my old 2040 drive which has been upgraded with
ROMs and new 6530 to DOS 2, and burning a set of ROMs (or even
purchasing them, if they exist) to give me an upgraded-again disk
drive? For instance, one of the things that | dislike about my present
DOS 2 is that LOAD "filename " ,8 starts both drives going, and waits
until the wrong drive doesn't find the program before it sends out the
program it did find on the right drive. So the questions are: Is there
really a DOS 2.7 for the 40407 If so, can | upgrade? What's involved:
new ROMs? New 65307 Minor or major board surgery? How can [ get
any chips or the code to burn my own?

2) A lot of people locally seem to be getting the B-128 package from
Protecto. | am already getting calls about do | know this or that about
it. I have heard that Commodore, while no longer producing B-128's,
has not finished either. Do you have any idea of what may be
available about the B-series machines in other countries, say England
or Germany, or contacts from whom I could find out? | would dearly
like a PRM and schematics; my German and Swedish are fluent
enough so that information in those languages is perfectly fine for me,
and even French would be OK in the absence of anything else.
Charles McCarthy, 1359 W. Idaho Avenue, St. Paul MN 55108

Pretty terrific questions, with some not so terrific answers. First, the
DOS question.

As far as we know, DOS 2.7 is currently available for the 8250 and
8050 disk drives only. The problem with the DOS going to the currently
unused or wrong drive first is still a problem. It even seems worse with
the 8250. Instead of politely determining that an empty drive is not in
use, the DOS fires a couple of BUMPs onto the job que in (what seems)
a last-ditch effort to avoid the occupied drive. Once all the noise and
vibration dies down, it goes to the correct drive. Once this routine has
been suffered once, the DOS is bright enough to realise there is no disk
inserted, and won' try it again.

One major improvement with DOS 2.7 makes this bearable though -
Relative file length has been extended to the maximum capacity of a
diskette (8050 or 8250). The old limit was 180K. Since 4040 drives only
hold 170K, even if an upgrade kit is available, this improvement
makes a total upgrade somewhat less than worthwhile.

Only one other noticeable difference worth mentioning — An extended
error message is also generated, with one extra digit at the end to
inform you of what drive has been generating the message. This is
alright at times, but is really aggravating when it comes time to use a
program such as Petspeed. Petspeed errs out due to the length of the
error message. The extra length means an ervor to Petspeed, so the
program always gets upset and resets. No fun. Otherwise, DOS 2.7 1s a

pleasure, and might be worth your time if you have an 8050 and need
longer REL files.

Next, on to question number two. The B series package has sure
developed a lot of activity in North America, if the volume of mail and
the calls we're getting is any indication. $900 US for the B machine,
8050 drive, 4023 printer, green phosphor monitor, and a few diskettes

to boot, who could go wrong. You could literally buy the system for the
drive alone, and have all these extra goodies as a bonus. One
problem. Very little documentation available.

In Canada, Commodore was pretty good to the software developers
before the computer was officially released. Everyone of any impor-
tance got a B machine sent to them for software development. Some of
the better packages were converted, but were shelved due to the non-
release of the machine in Canada. Now, with Commodore releasing
their entire stock of the B on Protecto, plus some more extra stock (o
make it more attractive, the B is alive again, but only in the USA. We
know the machine to be pretty good, once you get used to the bank
switching and playing about with the stack, etc. But there is really little
available about it. We published Jim Butterfield’s B Series ROM maps
back in our reference issue in November 1983, and we are again
publishing the maps in our reference book (The Complete Commo-
dore Inner Space Anthology), but that seems to be the extent of high
level info. A few magazine articles have appeared in TORPET, TPUG
magazine, Compute!, and of course, The Transactor, but again, it
doesn 't really add up to a hill of paper.

If anyone reading has some special knowledge on the subject, from
any corner of the globe, please send it in to us. For all the program-
mers here in good old Canada, maybe it's time to retrieve a few
wasted dollars by releasing your creations. Let us know, and we'll
pass it on. To start the ball rolling, here’s a tip from Dave Berman, of
Weston, Ontario. Place a (rvs) ‘¢’ within quotes in a REM line in your
BASIC program, and your program will automatically DLOAD and
RUN the first program on disk when listed to the screen — one way to
discourage code peekers. That's the first B bit, your letters will supply
us with more.

Clearly Inflexible: | have written a good program in which | have a
heading that must remain on the top 3 lines of the screen at all times.

This heading is used to print the different functions of the program,
just like a word processor. These functions are written by poking the
letter's screen display codes in the screen memory (from 1024 to 1144)
for the 3 lines.

The problem is that in the program, at some times, | have to clear the
screen without erasing the heading. The only way that | have found is
poking the value of the space character (chr$(32)) in each of the screen
addresses remaining. ie. from 1045 to 2023. However, this is awfully
slow. Is there a way to accelerate that function. | have looked in a few
books to find a way to control the clear screen, but without any
solution.

There are a number of ways that this task can be completed. The first
is to write a simple IRQ controlled routine to constantly refresh the top
three lines from a data location somewhere else in memory. All that
would be required of you is to POKE the correct display lines into this
memory address, and the IRQ would transfer the display for you. If a
clear screen is executed, the IRQ would only allow the screen to
remain clear for a maximum of 1/60 of a second. A clean way to cure
the problem.

The Transactor

Volume 5, Issve 06




A second method is to write a simple clear screen routine in assem-
bler, that starts at the fourth line on the screen. When a clear screen is
required, SYS to the start address of the routine and let it do a partial
clean.,

For you, the routines below have been prepared. Each are written in
PAL format, but the op codes are standard MOS syntax, so any mini-
assembler would probably work for you.

100 ;++ irq driven display routine ==
105,

110+ = 828
115;

120 irgvec = $0314
125 screen = 1024
130;

135 sei

140 Idairgvec : sta oldirg ;retain old irq vector

145 |dairgqvec+ 1 : sta oldirg + 1

150 Ida #<start: sta irqvec ;point new irq vector at code
155 Ida #>start: stairqvec + 1

160 cli: rts

165,

170 start = =

175 ;

180 Idx #0

185,

190 loop = +
200 ;

205 |da data,x
210 sta screen, x
215 inx: cpx #120

.start addr can be anywhere convenient

.irg vector in ram
.start of screen

.get the display data
;store it on the screen
;only allow 3 lines (3 x 40 = 120)

220 bne loop

225 mp (oldirq)

230 ;

235 oldirq .wor 0 ‘two bytes storage for old irq vector
240 ;

245 data = » store the display lines from here on
250 ;

255 .end

300 ;++ routine to clear all but the top 3 lines of the screen *+*
305 ;

310+ = 828 .start addr can be anywhere convenient

315;

320 screen = 1144 :new screen start address for clear

325 ;

330 Idx #0: Ida #32 .(space)

335 ;

340 loop = * :loop to clear 3 pages of screen mem-
ory past the top 3 lines

345 ;

350 sta screen, x : sta screen + 256,x : sta screen+512,x
365 inx : bne loop
370;

375 final = »

380 ;

385 sta screen + 768, x
390 inx: cpx #112

395 bne final

400 rts

405 ;

410 .end

final clear of the bottom
‘balance of screen to clear

Protection Reflection: In response to your Transactor issue dealing
with the implementation of various types of protection schemes, one
particular form that [ have recently heard of was unmentioned. This
has to do with the accessibility of more than the standard 1541 35
track capabilities. | have been told by a few people that the 1541 along
with the C64 is capable of formatting and using more than 35 tracks,
but that Commodore didn't let anyone in on the big secret of how to go
about this.

| am very curious about this claimed ability and would very much like
to know how this can (or can’t) be done. Also, could you possibly tell
me where | could find out other little secrets about the 1541 (like the
ones you mention in your Nov. issue) or is the only way to learn these
by experimentation? Ryan Briegal, M.5.U., E. Lansing, MI.

The 1541, along with the 2031 and 4040 drives, are capable of moving
their stepper motors in half steps, thus increasing their capacity to 70
tracks, in relation to the normal 35. Howeuver, they cannot be expected
to accurately read and write in this manner. At times it would work, at
others it might not. So what at first might seem like a design oversight
is in fact quite intentional. To get higher capacity with reliability, you
need more accurate motors which cost more money.

To date, numerous protection schemes have been designed that make
full use of the half step capability of the drive. A portion of the diskette
is formatted in this rather obtuse manner, either a half step out from a
normal diskette, thus writing and reading in a special way, or the
balance of the diskette is half stepped right across, and data is stored
between the normal tracks. As long as the data stored in between is
not required for anything more than a check of protection, and the
program realizes that it may take a few tries to get the info, then the
technique is ok. It's your choice if you want to start drive stepping, but
get ready for some pretty heavy duty programming.

For more facts and info, there is a really good book on the subject. The
name is ‘Inside Commodore DOS’, written by Richard Immers and
Gerald G. Neufeld, published by: Datamost, 20660 Nordhoff Street,
Chatsworth, CA, 91311-6152 (818) 709-1202, ISBN 0-88190-366-
3. For me, this book is to the drive as Raeto Collin West's book is to the
computer: a pure and applied source knowledge.

Unimplemented Inquiry: In the Transactor of January 1985
(pg.22), | was surprised to learn that most 65xx CPUs have operations
that can be executed but are not officially part of the instruction set.
Where would I find more information (definition and machine code)?

Richard Pitre, Montreal, Quebec

For some really good info on the pseudo-ops that MOS won't talk
about, there are two pretty good sources. Raeto Collin Wests 'Pro-
gramming The PET/CBM" has an in depth article on the subject on
pages 488 and 489. In his usual thorough style, Mr. West lists the
codes, their functions, and a few paragraphs relating some experi-
ences. To further compliment your quest for knowledge, you could try
the October 1983 Issue (Issue 41) of Compute! Magazine, on pages 261
through 264. The article ‘Extra Instructions, written by Joel C. Shep-
herd, has been written with a pro-use attitude. However, there are
those that have less than total faith in the extra codes (Jim Butterfield
for one). Further, MOS knows they exist, but neglect to document
them. From a market standpoint it would have been to their advan-
tage to include the extra instructions in their command set, but they
didn t trust them enough to do so. Heed these words of warning before
ever considering writing code with the unofficial pseudo-ops in place.
If the people who designed the chips dont trust them, why should you?

The Transactor

Volume 5, Issve 06




Introducing “VERIFIZER”

The Transactor’s New Foolproof Program Entry Method

The greatest source of calls and letters we get at the Transactor are
from people who are having difficulty getting a long program from the
magazine to work right. Occasionally it's due to a goof-up on our part,
but other times it's simply because the chances of making a typing
error in a very long program are quite large, and finding that error
(probably more than one) after the entire program has been entered is
quite difficult. This is especially true for machine language programs
in BASIC loader form, where the hundreds of numbers in the DATA
statements can make the most competent reader go cross-eyed.

To save you from endless program de-glitching sessions, we've come
up with two solutions. The first is the best, but it'll cost you: All
programs printed in the magazine are also available on disk, includ-
ing those from past issues (see the center insert in this issue for more
details).

The second solution doesn’t save you any typing, but it can help you
find errors as soon as you make them. The solution comes in the form
of a short machine language program called “VERIFIZER" — so
named, of course, because it verifies! (OK, so we indulged in a cute
name — no nasty letters from English teachers, please.) VERIFIZER
should be run before typing in any long program from the pages of
The Transactor. From this issue onwards, all long programs will have
two uppercase letters printed before each line. The programs should
be entered normally (i.e. don't enter the letters in front of the line), but
every time you enter a line, VERIFIZER will print two characters at the
top left of the screen. If these letters match those in print, you entered
the line properly.

Besides catching omissions and other blatant errors in each program
line, VERIFIZER will also catch transpositions; probably the most
commonly made error with numbers in PEEK, POKE, or DATA
statements. For example, if you're typing quickly and enter 52381
instead of 53281, VERIFIZER will catch the error and report a code
different from the one printed with the program listing. To make your
life easier though, there are some variances that VERIFIZER will NOT
catch. One is that it ignores spaces — you can put as many spaces as
you want between keywords, or leave them out altogether without
changing the reported code. Spaces are accepted anywhere as long as
they don't split up keywords. Keep in mind, though, that there may be
occasions where the number of spaces is important (eg. in a string
definition), so take notice of messages such as [9 spaces] in a listing -
which means, naturally, enter 9 spaces, not the number 9 followed by
the word ‘spaces’. Another thing you can get away with is the
abbreviation of keywords. Since VERIFIZER looks at token values,
you will get the same result if you type ‘nE’ or ‘next’.

How to use VERIFIZER

Listing 1 contains two versions of the VERIFIZER program: one for the
PET, and one for the C64 or VIC. These listings will appear in all issues
from now on. You'll notice that the verifizer listings are themselves
printed in “verifized” format (with the report codes along the left side),
which seems pretty silly, since you won't have verifizer while you're
typing the program in. The codes are there just as a check, so that
once verifizer is up and running you can press RETURN over some
program lines and see if the reported codes match up with those
printed with the listing.

Enter the applicable program and RUN it. If you get the message,
“wx*%x cdata error #++++" re-check the program and keep trying until
all goes well. You should SAVE the program, since you'll want to use it
every time you enter one of our programs. Once you've RUN the
loader, enter NEW, then turn VERIFIZER on with:

SYS 828 to enable the C64/VIC version (turn it off with SYS 831)
or SYS 634 to enable the PET version  (turn it off with SYS 637)

Once VERIFIZER is on, every time you press RETURN the two-letter
report code will appear in_the first two screen locations in reverse
field. Note that these letters are in uppercase and will appear as
graphics characters unless you are in upper/lowercase mode (press
shift/Commodore on C64/VIC). If you press RETURN on a screen line
that doesn’t contain a BASIC program line (i.e. no line number at the
beginning), the code you'll get is unpredictable — VERIFIZER is only
used to report on BASIC program lines.

With VERIFIZER on, just enter the program from the magazine
normally, checking each report code after you press RETURN op a
line. If the code doesn’t match up, you can re-check and correct the
line, then try again. If you wish, you can LIST a range of lines, then
type RETURN over each in succession while checking the report
codes as they appear. If you're in the habit of re-numbering segments
of a program as you type it in, be prepared for unmatched codes, since
VERIFIZER uses the line number as part of its checksum calculation.
Once the program has been properly entered, be sure to turn VERIFI-
ZER off with the sys indicated above before you do anything else.

VERIFIZER resides in the cassette buffer, so if you're using a datasette
be aware that tape operations can be dangerous to its health. As far as
compatibility with other utilities goes, VERIFIZER shouldn’t cause any
problems since it works through the BASIC warm-start link and
jumps to the original destination of the link after it's finished. When
disabled, it restores the link to its original contents.

How VERIFIZER Verifies

VERIFIZER generates the report code on a checksum principal, but
assigns “weights” to each byte to catch transposition errors. The
weights 1,2,3,4 are assigned to the tokenised BASIC line, and the low
byte of the line number is added in. In other words, a checksum is
obtained by taking the line number low byte, adding 1 times the first
byte in the BASIC line (from the BASIC input buffer at $0200), 2 times
the second, 3 times the third, 4 times the fourth, then 1 times the fifth,
etc. The final checksum is a two byte unsigned integer. The high byte
is discarded, and the low and high nybbles of the low byte are used to
form the two report code characters, which are put directly into screen
memory in the PET version, and PRINTed to the screen with the VIC/
C64 version.

Since only the low byte is used, checksum variances of exact multiples
of 256 will not be detected, but the probability of that occurring as a
legitimate error was judged to be reasonably small. For example, if
you “accidentally” entered the line number 1256 instead of 1000,
there would be no discrepancy in the report codes. However, if you're
that uncoordinated, don’t even try to type in programs — get the disk.

The Transactor

Volume 5, Issue 06




VERIGEN: VERIFIZER program generator

Listing 1b: PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

On the other side of the VERIFIZER story, there is VERIGEN tocreatea | Cl | 10 rem=* data loader for " verifizer 4.0" »
verifized sequential file from a program. The version we use includes |CF| 15 rem pet version
special control characters in the output file for the typesetter, butthe | LI | 20cs=0
version shown here (listing 2) just creates a sequential file giving the |HC| 30 for i=634 to 754:read a:poke i,a
program listing with line numbers separated from the verifizer codes |DH| 40 cs=cs+a:next|
by a single space. GK| 50 :
OG| 60 if cs<>15580 then print " *=*+* data error ***+*": end
What good is VERIGEN to you? Well, if you have a printer and like [JO| 70 rem sys 634
storing program listings as a final backup, you may want to havethem |AF| 80 end
in verifized form should the day ever come when every one of your |IN | 100:
disks instantly turns to electro-dust. Or if you have a 64 with a 1541 |ON| 1000 data 76,138, 2,120,173,163, 2,133,144
drive and want to give a program to a PET owner who has an 8050, IB | 1010 data 173, 164, 2,133, 145, 88, 96, 120, 165
you can give him a verifized listing (assuming, of course, thathe hasa |CK| 1020 data 145,201, 2,240, 16,141,164, 2,165
copy of VERIFIZER). EB| 1030 data 144, 141,163, 2, 169, 165, 133, 144, 169
HE| 1040 data 2, 133, 145, 88, 96, 85, 228, 165, 217
Ol | 1050 data 201, 13, 208, 62, 165, 167, 208, 58, 173
How to use VERIGEN JB| 1060 data 254, 1, 133,251,162, 0, 134,253, 189
PA|1070data 0, 2,168,201, 32,240, 15,230, 253
VERIGEN runs on a C64 and works with two disk files, “infil” and |[HE| 1080 data 165, 253, 41, 3,133,254, 32,6236, 2
“outfil”. Before executing Verigen, the program to be verifized must |EL | 1090 data 198, 254, 16, 249, 232, 152, 208, 229, 165
be in memory, AND a listing of that program must be on disk asa |LA| 1100 data251, 41, 15, 24,105,193,141, 0,128
sequential file named “infil”. To create infil, just enter the following | Kl [ 1110 data 165, 251, 74, 74, 74, 74, 24,105,193
after the input program for Verigen is in memory: EB| 1120 data 141, 1,128,108, 163, 2,152, 24,6101
DM| 1130 data 251, 133, 251, 96
open8,8,8," @0:infil,s,w " : cmd8: list
print#8: close1
After “infil” has been set up in this way, just sys49152 to execute Listing 2: VERIGEN
Verigen. It will create “outfil” for you, which will be a sequential disk
file containing the program listing with verifizer codes before the line | Pl | 10 rem+ data loader for "verigen” *
numbers. Outfil can be sent to a printer or manipulated like any [LN| 15 rem runs on c64
sequential text file (i.e. loaded into a word processor). LI | 20cs=0
PE| 30 fori=49152 to 49410:read a:poke i,a
DH| 40 cs=cs+a:nexti
VERIFIZER will make pretty sure that the program you type in mimics |GK| 50 :
that in the listing, but it can’t guarantee that the listed program isbug- |KH| 60 if cs<>36235 then print " *»++* data error *»*** ": end
free. So if VERIFIZER says a program is OK and it still doesn’t work, | EI | 70 rem sys 49152
you can drop us a line without worrying that the problem may be with | AF | 80 end
your typing. IN| 100
EP| 1000 data 169, 1,162, 8,160, 12, 32, 186, 255
AE| 1010 data 169, 11, 162, 235, 160, 192, 32, 189, 255
Listing 1a: VERIFIZER for C64 and VIC20 KP| 1020 data 32, 192, 255, 32, 183, 255,240, 1, 96
JB| 1030 data 169, 2,162, 8,160, 13, 32, 186, 255
KE | 10 rem=* data loader for " verifizer " » NG| 1040 data 169, 13, 162, 246, 160, 192, 32, 189, 255
JF | 15 rem vic/64 version IB | 1050 data 32, 192, 255, 32, 183,255,240, 1, 96
LI |20cs=0 IF | 1060 data 165, 43, 133, 254, 165, 44, 133, 255, 160
BE | 30 for 1=828 to 958:read a:poke i,a OF | 1070data 0,162, 1, 32,198,255, 32,228, 255
DH| 40 cs=cs+a:next| GJ| 1080 data 32, 228, 255, 177, 254, 208, 12, 200, 208
GK| 50 : HB| 1090 data 2, 230, 255, 177, 254,208, 8, 76,214
FH| 60 if cs<>14755 then print " == +++ data error *++++ " : end OA| 1100 data 192, 200, 208, 2, 230, 255, 200, 208, 2
KP| 70 rem sys 828 IG | 1110 data 230, 255, 177, 254, 133, 251, 200, 208, 2
AF| 80 end MD| 1120 data 230, 255, 200, 208, 2, 230,255,169, 0
IN | 100: CJ| 1130 data 133, 252, 177, 254, 170, 201, 32,240, 15
EC| 1000 data 76, 74, 3,165,251,141, 2, 3,165 Al | 1140 data 230, 252, 165, 252, 41, 3,133,253, 32
EP| 1010 data 252, 141, 3, 3, 96,173, 3, 3,201 KF| 1150 data 228, 192, 198, 253, 16, 249, 200, 208, 2
OC| 1020 data 3,240, 17,133,252,173, 2, 3,133 AO| 1160 data 230, 255, 138, 208, 226, 162, 2, 32, 201
MN| 1030 data 251, 169, 99,141, 2, 3,169, 3,141 MJ| 1170 data 255, 165, 251, 41, 15, 24,105,193, 32
MG| 1040 data 3, 3, 96,173,254, 1,133, 89, 162 CL| 1180 data 210, 255, 165,251, 74, 74, 74, 74, 24
DM| 1050 data 0,160, 0,189, 0, 2,240, 22,201 FD| 1190 data 105, 193, 32, 210, 255, 169, 32, 32, 210
CA| 1060 data 32,240, 15,6133, 91,200,152, 41, 3 PL| 1200 data 255, 162, 1, 32,198, 255, 32, 228, 255
NG| 1070 data 133, 90, 32,183, 3,198, 90, 16, 249 Al | 1210 data 72, 32, 183, 255,201, 0,208, 16, 162
OK| 1080 data 232, 208, 229, 56, 32, 240, 255, 169, 19 Kl | 1220 data 2, 32, 201, 255, 104, 32,210, 255, 201
AN| 1090 data 32, 210, 255, 169, 18, 32,210, 255, 165 LO| 1230 data 13, 208, 227, 76, 75,192, 104, 32, 204
GH| 1100 data 89, 41, 15, 24,105, 97, 32,210, 255 FO| 1240 data 255, 169, 1, 32,195, 255,169, 2, 32
JC| 1110 data 165, 89, 74, 74, 74, 74, 24,105, 97 LA | 1250 data 195, 255, 96, 138, 24, 101, 251, 133, 251
EP| 1120 data 32, 210, 255, 169, 146, 32, 210, 255, 24 HE| 1260 data 96, 48, 58, 73, 78, 70, 73, 76, 44
MH| 1130 data 32, 240, 255, 108, 251, 0, 165, 91, 24 AF| 1270 data 83, 44, 82, 64, 48, 58, 79, 85, 84
BH| 1140 data 101, 89, 133, 89, 96 LM| 1280 data 70, 73, 76, 44, 83, 44, 87
The Transactor 12 VYolume 5, Issue 06




The MANAGER Column

Letters to the Manager

This issue's application is a HOME BUDGETING PROGRAM. But first,
let me respond to some letters that express common concerns.

VERSIONS: First off, make sure you have version 1.06 of THE
MANAGER. Otherwise, you will be fighting some bugs in the 1.04
version. | regret that | cannot help you acquire an updated version
other than suggesting you return to your dealer or bug Commodore.
My regrets to David Huston of Saanichton, B.C. | hope this solves
Harry Hirashima's (Ballerica MA) problem.

DISK DRIVES: THE MANAGER was only designed to run on one
1541 disk drive. Hence you cannot hook up 2 disk drives or use a
4040 disk drive. My condolences to Chris Mante of New York and
Keith Adams of Mississauga, Ontario.

MORE INFORMATION ON THE MANAGER: At this time there
are no plans to.issue new documentation, a book or a compilation of
previous articles. Unfortunately, | do not have the time to photocopy
individual articles for people. Stay tuned to the Transactor though,
things may change. My apologies to James Bridgewater of San Berna-
dino CA., David Shields of Gainesville Florida, J.F. O’'Neil of Miami,
Eva Gray of Galion OH, Lorne Cooke of Rose Blanche, Newfoundland.

Editor's Note: Commodore may be planning a re-release of the 64
Manager. A new manual would accompany the package but | have
no official word on the subject. As Don says. . . “Stay tuned".

REPORT GENERATE & ARITHMETIC: Having problems with
Report Generate or Arithmetic? In future articles | will repeat some of
the in-depth instructions | gave on how to use these options but
within the context of new applications.

PRINTING PROBLEMS: I'm afraid | can’t help you much with
printer problems. | am only familiar with the 1526 Commodore
printer which | am using. Also, there is no way of speeding up/
compiling the printing part of the program that | am aware of.

SEARCH FUNCTION: The Search Function does not support While
loops. However, there is a way around this problem. If you want to
check many different fields for the same item, simply use the OR
statement to string together a number of different possibilities. You are
not limited to 1 line only. In a previous article | described how a police
department could use the search function on a stolen goods file to pair
up goods recovered with goods stolen. Using the complex search
criteria (F5)- F1 ="OBJECT’ OR F2="OBJECT" OR F3="OBIJECT". . .it
is possible to look for the object in many different fields. This is for Jim
Rendant of Chicago.

CHANGING SCREENS: How do you get from one screen to the next
in Enter/Edit asks Mrs. N. A. Doninger of Huntington Beach CA. F7
for next screen (page). F8 for previous screen (page).

SCRATCHING A DATA FILE: In the Manipulate Files option there
is a function called ‘Scratch a Data File'. This is used to remove
unwanted files from a diskette. The manual is wrong here. The
prompt on your screen is ‘ERASE THE MATH, DATA OR INDEX
FILES' not ‘ERASE THE MATH, DATA OR BOTH FILES'. Sometimes
you may want to keep the data file itself with its screens, but erase the
math or index files so that you can create new ones. This option
allows you to do that. When entering the name of the file to scratch
enter the normal filename, DO NOT include prefix characters such as
DA., PT. etc. If you enter a filename that is not on the disk, the
program will appear to erase the file anyway. The only verification

Don Bell
Scotland, Ontario

that it has been erased is that it no longer appears on the disk
directory. | had no problem getting this function to work in versions
1.04 and 1.06. If you are having trouble with this function, you can
always ‘kill' THE MANAGER (by powering down) and perform file
deletions in BASIC. If you want to erase all the files associated with
your data base file use this command:

open 15,8,15:print#15, " s0:??filename= " :close 15.

The ‘??." will accept all 2 letter prefixes to the filename(rf. pt. sc. etc.)
and the * will accept any characters after the filename. THE MAN-
AGER makes all filenames 16 characters long by adding blank spaces
to the end of the filename. Thus, in this case, the "+’ means that any
number of blank characters following the filename will be acceptable.
I hope this satisfies Chester Freeman of New Rochelle, N.Y.

REPORTS FOR YOUR WORDPROCESSOR: Outputting Reports
to Disk For Use in a Wordprocessor can be very useful. | had success
outputting a mailing list to disk for use in the ‘Paperclip’ wordproces-
sor. The report was outputted to disk as a sequential file and then that
file was loaded into the wordprocessor as a sequential file. As [ do not
have other wordprocessors, | cannot help you much in this regard. It's
the type of thing you have to experiment with yourself. Good luck to
Teri & Denis Hickethier of the Commodore Computer Users Group in
Heidelberg, Germany, Michael Tesch of West Chicago.

FILE SIZE: Some users have expressed dismay at the fact that they
cannot attain the maximum advertised limit of THE MANAGER, i.e.
2000 records. This is only a MAXIMUM! . The problem is not THE
MANAGER, it is the limited capacity of the disk drive and diskette. If
your records are reasonably small - no problem creating a file of 2000
records. However, as your records get larger they eat up more bytes on
the diskette and you cannot have as many records. You may also need
room on the disk for your arithmetic and report files. Report files don't
have to be on the same disk, but it’s easier if they are. For example,
using one screen, the maximum record length I could use to create
2000 records was 78 characters. For a 100 character record length |
can only create 1563 records. For a 200 character record length using
2 screens | could only create 780 records. For a 300 character record
length | could only create 518 records. As a rule of thumb, to calculate
the approximate number of records, divide 156,000 by the length of
the record. Remember the ‘64 is basically a home computer, not a
business machine. If you're trying to do a business application
requiring a lot of records, you might need a more powerful and
expensive computer system. My thanks to Frank Hancock il of
Houston Texas and his church membership application for bringing
this problem to my attention.

Hugh Greenwood of Vancouver, B.C. is using a MANAGER file to keep
track of his slide collection. It has grown so large that he needs 2 files.
He now wants to create a 3rd file which will act as an index for all of
the slides in the other 2 files. He was hoping to use the Rearrange a
File function in the MANIPULATE FILES option to move information
from one file to another. The problem he is having is that he can only
move information to his new file from one of the old files, not both of
them. Also, he does not know of a way to use THE MANAGER to
concatenate 2 small files. Unfortunately, [ can't think of a way to solve
his problem either. If anyone out there has a solution to his problem,
please let me know. My only thought is a solution outside of THE
MANAGER program. First, make 2 reports outputting the selected
fields from the 2 slide files to disk as sequential files. Then write a
BASIC program to concatenate the 2 sequential files. Then either use a
wordprocessor or write a BASIC program to read the files, sort and
printout whatever is required. This might be more trouble then re-
entering half the data!

The Transactor

Volume 5, Issuve 06




A Home Budgeting Application

Ever wonder where all your money goes? Ever discover too late you're
in a cash flow bind that you should have seen coming? Ever want to
make a serious attempt at saving some money for a change? Ever
make some New Year's economic resolutions? Read on McDuff. I've
got just the application for all you penny pinchers, spendaholics,
budgeteers, and money maniacs! Yes, you too can be in control of
your economic fate. . . or at least, predict it!

The purpose of this application is to help you plan your budget a year
at a time and smooth out some of your cash problems. The real value
of this application to you will be determined not so much by the
design of the application itself, but by your using its structure to force
yourself to think about your budget and plan ahead.

Even if you don’t want to use this application, you can derive several
benefits from analyzing its construction.

Many applications cry out for a combination of the benefits of a
database and a spreadsheet. One of the best little functions in THE
MANAGER is the ability to do ‘what if calculations just like a
spreadsheet. This function is available in the Enter/Edit mode using
the ‘=" key. This application makes extensive use of this feature to
help you decide what you can afford to spend in various budget
categories. This feature combined with the ‘accumulate’ function
gives you an incredibly powerful budgeting tool. You can peer into
your distant economic future, plan for it and change it when neces-

sary.

I know some of you dread using Report Generate. You'll be glad to
know that this application does not use it. How did [ get around it?
Reports go directly to the screen using the display positions in
Arithmetic. This is not to say that you cannot go ahead and do your
own reports using Report Generate.

Arithmetic! Boy have | got arithmetic for you. This application should
give you some real insight into how to use the Arithmetic option to
create a very powerful application.

[ hope this application generates as much enthusiasm in you as it did
in me. After writing my own budget programs over the last few years, |
was thrilled by being able to let THE MANAGER do most of the work
for me this time. Instead of wasting my time debugging code, I could
instead concentrate on the real meat of the matter - the ideal design
for the application itself.

Screens for Home Budgeting

Use the Create/Revise option to create 6 screens altogether. The first 3
screens are for the current month’'s data about budget and actual
amounts. The last 3 screens are for year-to—-date amounts that will be
computed by the ‘accumulate’ function.

Don't feel any obligation to use my budget categories. Make up your
own that suit your particular needs. For example, you may decide that
foodout is unnecessary since it is really part of entertainment ex-
penses. You might consider a category for bank charges, overdrafts
and interest on credit card accounts. These charges are a waste of
money and should be minimized.

The only thing | do suggest is that you keep the same number of
categories under each section (i.e. 3 for income, 8 for fixed expenses,
and 15 for variable expenses) and you keep the categories and totals
on the same lines of the screens. If you don’t follow these 2 rules then
you'll have to modify my Arithmetic file - change the display position
definitions, the output of numeric data to display positions and the
counter for loops. Only more advanced users should take on this
challenge.

Totals and the DIFF'CE column in all screens will be calculated by the
Arithmetic file using display positions.

All budget and actual amount fields are 7 characters long and
numeric, the 2 fields under ‘NOTES' are 40 characters long and
always alphanumeric.

Here's how to obtain screen printouts of field lengths and field
numbers for your first 2 screens. Select the Enter/Edit option from the
main menu, then make sure the screen is clear (if not, press Shift
CLR/HOME). To display field lengths, press ‘up arrow’. To display
field numbers, press Shift ‘up arrow’. Press ‘p’ to get a printout either
screen. You will need these printouts of field lengths and field
numbers to refer to when doing searches or designing reports.

Screen 1 is used for entering budget and actual amounts for income
and fixed expense categories.

HOME BUDGET 1t t

BUDGET ACTUAL DIFF'CE

INCOME
PAYCHECK
INTEREST
OTHER
TOTALS

(line 6)

— = =

—_ =
- = =
— —f =

FIXED EXP.
SAVINGS
RENT/MORT.
UTILITIES
PAYMENTS
CLUB FEES
PROP TAXES
INSURANCE
LOANS
TOTALS

(line 12)

- = = = = =
e I I R
—- > > = > > > >
— = = = = =

(line 19)

NOTES
1
1

SCREEN 1 OF 6

Screen 2 is used for entering budgeted and actual variable expenses.

VARIABLE EXPENSES

BUDGET ACTUAL DIFF'CE
AUTO EXP.
CHAR/CHURCH
CLOTHING
DENTAL/MED'L
EDUCATION
ENTERTAIN.
FOODOUT

GAS
GROCERIES
HOUSE MAINT
PURCHASES
RECREATION
TRANSPORT'N
VACATION
OTHER

TOTAL

(line 5)

— = = = = —F = = —h = — = =
e I i e e s e e e
— > - = = —» —* — —F — — —>
— = = — = B = —F —F - —F — —F —F —

(line 20)

NOTES
t
T
SCREEN 2 OF 6

The Transactor

14

Volume 5, Issue 06




Screen 3 gives a summary statement that is calculated in the Arithme-
tic file.

Screen 5 is to display year-to-date budgeted and actual variable
expenses. Again, this will be the result of using the ‘accumulate’
function in Enter/Edit mode.

NET INCOME

»+ YEAR-TO-DATE VARIABLE EXPENSES *+

BUDGET ACTUAL DIFF'CE

INCOME (line 5)

EXPENSES
FIXED
VARIABLE

(line 8)

NET INCOME (line 11)

BUDGET ACTUAL DIFFCE

AUTO EXP.
CHAR/CHURCH
CLOTHING
DENTAL/MED’L
EDUCATION
ENTERTAIN.
FOODOUT

GAS
GROCERIES
HOUSE MAINT
PURCHASES
RECREATION
TRANSPORT'N
VACATION
OTHER

(line 5)

(line 19)

NOTES
.1.
t

SCREEN 3 OF 6

NOTES
t
1
SCREEN 5 OF 6

Screens 4 to 6 do not require any data to be entered. The note fields
are there in case you wish to enter your observations about your
spending habits to date. They act like report screens, simply display-
ing the year-to-date cumulative results of the arithmetic acting on all
the month records in your file.

Screen 4 is used to display year-to-date budget and actual amounts
for income and fixed expense categories. Notice that it is similar to
screen 1 with the exception of the date field and totals. Using the
‘accumulate’ function in Enter/Edit to execute the Arithmetic file
several times will produce the year-to-date numbers

Screen 6 gives a year-to-date summary income statement that is
calculated in the Arithmetic file.

In addition, a statement of budgeted and actual gross savings is
calculated by adding year-to-date net income and year-to-date
savings. Presumably, if your net income at some point is a negative
amount, then you will have to draw on your savings to cover the
deficit. The amount of Gross Savings will show the effect of this. The
purpose of this statement is to see how you are really doing in terms of
saving money. It is also useful for predicting a cash flow bind at some
time in the future. If Gross Savings is a negative amount then you're
going to have to borrow money from somewhere else or run up your
credit cards.

»* YEAR-TO-DATE INCOME/FIXED EXPENSES *+*

++ YEAR-TO-DATE NET INCOME #+

BUDGET ACTUAL DIFFCE

INCOME
PAYCHECK

INTEREST
OTHER

(line 6)

FIXED EXP.

SAVINGS (line 12)

RENT/MORT.
UTILITIES
PAYMENTS
CLUB FEES
PROP TAXES
INSURANCE

LOANS (line 19)

BUDGET ACTUAL DIFF'CE

INCOME (line 5)
EXPENSES
FIXED

VARIABLE

(line 8)
NET INCOME (line 11)

GROSS SAVINGS (NET INCOME + SAVINGS) (line 17)

NOTES
t

1.
SCREEN 4 OF 6

NOTES
t
T
SCREEN 6 OF 6

e

The Transactor

Volume 5, Issue 06




Press the back arrow key to store the screens. Remember to alter the
amount fields so they are numeric.

Defining the Screen Display Positions
For the Arithmetic File

Choose the Arithmetic Option from the main menu in THE MAN-
AGER.

First we will define the display positions on all 6 screens. Screen 1 is
the current month's budgeted and actual income and fixed expenses.
We will now define the display positions for the DIFF'CE column and

42.
43.
44.
45.
46.
47.

Screen 4 is the year-to-date budgeted and actual income and fixed
expenses. . We will now define the display positions for the BUDGET

LINE? 9
LINE? 9
LINE? 9
LINE? 11
LINE? 11
LINE? 11

COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 21
COLUMN? 31

ACTUAL and DIFF'CE columns.

LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9

NO. OF DISPLAY POS’N ON SCREEN 4 ? 33

the totals line. 48. LINE?6 COLUMN? 11 LENGTH?9
49. LINE?6 COLUMN? 21 LENGTH?9
Use the Return key to advance within a line. Use the back arrow key 50. LINE?6 COLUMN?31 LENGTH?9
to advance to the next line. 51. LINE?7 COLUMN?11 LENGTH?9
52. LINE?7 COLUMN?21 LENGTH?9
NO. OF DISPLAY POS'N ON SCREEN 17 17 53. LINE?7 COLUMN?31 LENGTH?9
1. LINE?6 COLUMN?31 LENGTH?9 54. LINE?8 COLUMN?11 LENGTH?9
2. LINE?6 COLUMN?31 LENGTH?9 55. LINE?8 COLUMN?21 LENGTH?9
3. LINE?8 COLUMN?31 LENGTH?9 56. LINE?8 COLUMN?31 LENGTH?9
4. LINE?9 COLUMN?11 LENGTH?9 57. LINE? 12 COLUMN? 11 LENGTH?9
5. LINE?9 COLUMN?21 LENGTH?9 58. LINE?12 COLUMN?21 LENGTH?9
6. LINE?9 COLUMN?31 LENGTH?9 59. LINE? 12 COLUMN? 31 LENGTH?9
7. LINE? 12 COLUMN? 31 LENGTH?9 60. LINE? 13 COLUMN? 11 LENGTH?9
8. LINE?13 COLUMN?31 LENGTH?9 61. LINE?13 COLUMN?21 LENGTH?9
9. LINE?14 COLUMN? 31 LENGTH?9S 62. LINE? 13 COLUMN?31 LENGTH?9
10. LINE?6 COLUMN?31 LENGTH?9 63. LINE?14 COLUMN?11 LENGTH?9
11. LINE?6 COLUMN?31 LENGTH?9 64. LINE? 14 COLUMN?21 LENGTH?9
12. LINE? 17 COLUMN? 17 LENGTH?9 65. LINE? 14 COLUMN?31 LENGTH?9
13. LINE? 18 COLUMN? 31 LENGTH?9 66. LINE? 15 COLUMN? 11 LENGTH?9
14. LINE? 19 COLUMN? 31 LENGTH?9 67. LINE?15 COLUMN?21 LENGTH?9
15. LINE?20 COLUMN?11 LENGTH?9 68. LINE? 15 COLUMN? 31 LENGTH?S
16. LINE?20 COLUMN?21 LENGTH?9 69. LINE? 16 COLUMN?11 LENGTH?9
17. LINE?20 COLUMN?31 LENGTH?9 70. LINE? 16 COLUMN?21 LENGTH?9S
71. LINE? 16 COLUMN?31 LENGTH?9
Screen 2 is the current month's budgeted and actual variable ex- 72. LINE? 17 COLUMN? 11 LENGTH?9
penses. We will now define the display positions for the DIFF'CE 73. LINE? 17 COLUMN? 21 LENGTH?9
column and the totals line. 74. LINE? 17 COLUMN? 31 LENGTH?9
75. LINE? 18 COLUMN?11 LENGTH?9
NO. OF DISPLAY POS'N ON SCREEN 27 18 76. LINE? 18 COLUMN? 21 LENGTH?9
18. LINE?5 COLUMN?31 LENGTH?9 77. LINE? 18 COLUMN? 31 LENGTH?9
19. LINE?6 COLUMN?31 LENGTH?9 78. LINE? 19 COLUMN? 11 LENGTH?9
20. LINE?7 COLUMN?31 LENGTH?9 79. LINE? 19 COLUMN?21 LENGTH?9
21. LINE?8 COLUMN?31 LENGTH?9 80. LINE? 19 COLUMN?31 LENGTH?9
22. LINE?9 COLUMN?21 LENGTH?9
23. LINE? 10 COLUMN?31 LENGTH?9 Screen 5 is the year-to—date budgeted and actual variable expenses. .
24. LINE?11 COLUMN?31 LENGTH?9 We will now define the display positions for the BUDGET ACTUAL
25. LINE? 12 COLUMN? 31 LENGTH?9 and DIFF'CE columns.
26. LINE? 13 COLUMN?31 LENGTH?9
27. LINE? 14 COLUMN? 31 LENGTH?9 NO. OF DISPLAY POS'N ON SCREEN 5 7 45
28. LINE? 15 COLUMN? 31 LENGTH?9 81. LINE?5 COLUMN?11 LENGTH?9
29. LINE? 16 COLUMN?31 LENGTH?9 82. LINE?5 COLUMN?21 LENGTH?9
30. LINE?17 COLUMN?31 LENGTH?9 83. LINE?5 COLUMN?31 LENGTH?9
31. LINE? 18 COLUMN?31 LENGTH?9 84. LINE?6 COLUMN?11 LENGTH?9
32. LINE?19 COLUMN?31 LENGTH?9 85. LINE?6 COLUMN?21 LENGTH?9
33. LINE?20 COLUMN?11 LENGTH?9 86. LINE?6 COLUMN?31 LENGTH?9
34. LINE?20 COLUMN?21 LENGTH?9 87. LINE?7 COLUMN? 11 LENGTH?9
35. LINE?20 COLUMN?31 LENGTH?9 88. LINE?7 COLUMN?21 LENGTH?9
89. LINE?7 COLUMN?31 LENGTH?9
Screen 3 is the current month’s budgeted and actual income state- 90. LINE?8 COLUMN?11 LENGTH?9
ment. We will now define the display positions for the DIFF'CE 91. LINE?8 COLUMN?21 LENGTH?9
column and the totals line. 92. LINE?8 COLUMN?31 LENGTH?9
93. LINE?9 COLUMN?11 LENGTH?9
NO. OF DISPLAY POS'N ON SCREEN 3 ? 12 94. LINE?9 COLUMN?21 LENGTH?9
36. LINE?5 COLUMN?11 LENGTH?9 95. LINE?9 COLUMN? 31 LENGTH?9
37. LINE?5 COLUMN?21 LENGTH?9 96. LINE? 10 COLUMN? 11 LENGTH?9
38. LINE?5 COLUMN?31 LENGTH?9S 97. LINE? 10 COLUMN?21 LENGTH?9
39. LINE?8 COLUMN?11 LENGTH?9 98. LINE? 10 COLUMN? 31 LENGTH?9
40. LINE?8 COLUMN?21 LENGTH?9 99. LINE?11 COLUMN?11 LENGTH?9
41. LINE?8 COLUMN?31 LENGTH?9 100. LINE? 11 COLUMN? 21 LENGTH?9
The Transactor 16 Volume 35, Issve 06




101.
102,
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124,
125.

LINE? 11
LINE? 12
LINE? 12
LINE? 12
LINE? 13
LINE? 13
LINE? 13
LINE? 14
LINE? 14
LINE? 14
LINE? 15
LINE? 15
LINE? 15
LINE? 16
LINE? 16
LINE? 16
LINE? 17
LINE? 17
LINE? 17
LINE? 18
LINE? 18
LINE? 18
LINE? 19
LINE? 19
LINE? 19
LINE? 19

COLUMN? 31
COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 11
COLUMN? 21
COLUMN? 31

LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9

Screen 6 is the year-to-date budgeted and actual income statement.
We will now define the display positions for the BUDGET ACTUAL
DIFF'CE columns and the TOTALS. The GROSS SAVINGS totals are

displayed on line 19.

NO. OF DISPLAY POS’N ON SCREEN 6 ? 15

126.
127.
128,
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.

LINE? 6

LINE? 6

LINE? 6

LINE? 10
LINE? 10
LINE? 10
LINE? 12
LINE? 12
LINE? 12
LINE? 14
LINE? 14
LINE? 14
LINE? 19
LINE? 19
LINE? 19

COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 21
COLUMN? 31
COLUMN? 11
COLUMN? 21

LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9
LENGTH? 9

Budget Calculations In the Arithmetic File

After entering all the display positions, you will be in the Edit Mode of

the Arithmetic Editor.

Comments are preceded by a semicolon. I've included comments to
help you understand how the arithmetic operates, you may leave
them out if you wish as they are not necessary for the arithmetic to
work. The arithmetic just follows the screens in order, doing the
required math to get a figure for each display position.

* INCOME (SCREEN 1)

8 to R7

7to R10

WHILE R7 < 24 DO
N(R7) - N(R7 + 1) TO 2D(R10)
R7T + 2TO R7

R10 + 1 TORI10
ENDWHILE
0TOR3

8 TO R7

WHILE R7 < 24 DO
N(R7) + R3TO R3
R7 + 2TORT
ENDWHILE

R3 TO 2D15

0 TO R4

9TO RT

WHILE R7 < 24 DO
N(R7) + R4 TO R4
R7 + 2TORT
ENDWHILE

R4 TO 2D16

R3-R4 TO 2D17

;R7 IS A FIELD # COUNTER
;R10 IS DISPLAY POS'N

:R3 = BUDGET FIXED EXP.

;R4 = ACTUAL FIXED EXP.

FIXED EXPENSE DIFF'CE

‘'VARIABLE EXPENSES (SCREEN 2)
26 TO R7

18 TO R10

WHILE R7 <56 DO
N(R7) - N(R7+ 1) TO 2D(R10)
R7 + 2TOR7

R10 + 1 TOR10
ENDWHILE

26 TO RT

0 TORS

WHILE R7 < 56 DO
N(R7) + RSTORS
R7 + 2TO R7
ENDWHILE

R5 TO 2D33

27 TO R7

0 TOR6

WHILE R7 <57 DO
N(R7) + R6 TO R6
R7 + 2TOR7
ENDWHILE

R6 TO 2D34

R5-R6 TO 2D35

'‘R5=BUDGET VAR. EXP.

;R6=ACTUAL VAR. EXP.

'VAR. EXP. DIFF'CE

‘NET INCOME FOR CURRENT MONTH RECORD (SCREEN 3)
R1 TO 2D36

R2 TO 2D37

R2-R1 TO 2D38

R3 TO 2D39

R4 TO 2D40

R3-R4 TO 2D41

R5 TO 2D42

R6 TO 2D43

R5-R6 TO 2D44

R1 - (R3+R5) TO R8
R8 TO 2D45

R2 - (R4+R6) TO R9
R9 TO 2D46

R8-R9 TO 2D47

N3-N2 to 2D1 ‘CALCULATE DIFF'CES %% YEAR-TO-DATE *+

N5-N4 to 2D2 - IN THE WHILE LOOP BELOW

N7-N6 to 2D3 ‘ALL YEAR-TO-DATE INCOME, FIXED EXPENSES

N2 +N4+ N6 to R1 ‘R1=ACT'L INC. TOTAL ‘& VARIABLE EXPENSES ARE ACCUMULATED IN

R1 to 2D4 ‘REGISTERS & DISPLAYED ON THE SCREEN

N3+N5S+N7toR2 ‘R2=BUDGET INC. TOTALS 48 TO R10 -SET DISPLAY POS'N START #

R2 to 2D5 2 TORT -‘SET START OF FIELD INDEX #

R2-R1 to 2D6 -DIFF'CE 12 TORI11 SET START REGISTER #

‘FIXED EXPENSES 0 TO R99 ‘R99 AS TEMP. STORAGE

The Transactor Volume 5, Issue 06




WHILE R10 < 126 DO

IF R7=24 THEN R7+2 TO R7 ;SKIP NOTES
ENDIF

N(R7) + R(R11) TO R(R11)

R(R11) TO 2D(R10)

N(R7+1) + RRRI1+1)TOR(R11+1)
R(R11+1)TO 2D(R10+1)

0 TO R99
R(R11+1)-=R(R(11)) TO R99
R99 TO 2D(R10 + 2)

R10 +3 TO RI10

R7 + 2TO R7

R11 + 2TORI11
ENDWHILE

INCOME TOTALS YEAR-TO-DATE

R12+R14+4+R16 TO R90

R90 TO 2D126

R13+RI15+R17 TO R91

R91 TO 2D127

R91-R90 TO 2D128

‘FIXED EXPENSE TOTALS YEAR-TO-DATE
R18+R20+ R22 + R24 + R26 + R28 + R30 + R32 TO R92
R92 TO 2D129
R194+R21+R13+R25+R27+R29+R31+R33 TO R93
R93 TO 2D130

R92-R93 TO 2D131

‘VARIABLE EXPENSE TOTALS YEAR-TO-DATE
-‘BUDGET TOTALS

34 TORI11

1 TO R100

0 TO R94

WHILE R100 < 16 DO
R(R11) + R94 TO R94
R100 + 1 TO R100
R11 +2TORI11
ENDWHILE

R94 TO 2D132
-ACTUAL VARIABLE EXPENSE TOTALS

35 TORII ‘SET START REGISTER#*
1 TORI00

0 TO R95

WHILE R100 < 16 DO

R(R11) + R95 TO R95

R100 +1 TO R100

R11 + 2TORI1

ENDWHILE

R95 TO 2D133

R94-R95 TO 2D134 ‘DIFF'CE
YEAR-TO-DATE NET INCOME

;R99 AS TEMP STORAGE

.SET START REGISTER*

R90 - (R92 +R94) TOR96  ;BUDGET

R96 TO 2D135

R91-(R93 + R95) TOR97 ;ACTUAL

R97 TO 2D136

R97-R96 TO 2D137 .DIFF'CE

R96 + R18TO 2D138 ;GROSS SAVINGS

R97 + R19TO 2D139
R96 + R18-R97-R19 TO 2D140

Setting Up Your Budget and Entering Records

The first thing to do is look at a whole year’s income and expenses at
once. Go into the Enter/Edit option and enter record 1 as your year
budget. Then use the "what if " feature (the = key) to plan your year
budget. Enter trial amounts then press the back arrow key to let the
arithmetic calculate your net income on screen 3. Remember to use
F7 to advance a screen and F8 to return to the previous screen.

Keep playing with the amounts until you get the savings and net
income amounts you wish to aim for. Be realistic! Overly optimistic
forecasts can lead to family feuds or chronic depression. It is always
better to find you saved more than you expected.

Once you're happy with the figures, screen print the first 3 screens.
This year budget is your guestimate of what your year-to-date
screens will show at the end of the year.

Note: We are only using the screen on record 1 to fiddle with our year
budget. Record 1 will eventually be the first month of our budget.

Now on a piece of paper divide expenses by 12 to get a monthly
amount. This only works of course for common monthly expenses.
Large amounts such as insurance, tax payments etc. will have to
entered in individual months.

Now create 12 records, 1 record for each month of your budget. Do
this simply by entering the date in field 1 of each record. Put the date
in this format, e.g. Jan 1, 1985 would be 850101.

Now use the first 3 screens in record 1 to play with the amounts for
your month budget until you get some reasonable figures. Use the
‘what if’ (" = ‘ key) to calculate the effect of changing the amounts.

Next make global entries in the budget column of record 1 by using
the Shift ‘C' change function. Enter any amounts that are constant
every month or you have calculated 1/12th of the yearly amount. My
experience has shown that you can only change 10 fields at a time.
Thus, you may have to do this operation more than once. You should
now have entries in the budget column of all 12 months.

The next thing to do is to enter special amounts in the budget column
that you know are due in certain months, e.g. tax or insurance
payments. After doing this every month’s budget column should be
complete, i.e. reflect your best estimate of income and expenses for
that month.

You can now use the ‘accumulate’ function to look at the year-to-date
amounts (screens 4 to 6) for the whole year. You may decide at this
time to revise some of those global entries. If you want the accumulate
to only go as far as a certain month, enter the complex search string
(F5) for the month you want it to stop at, e.g. up to May would be N1 <
850601

Note: You may see outrageous amounts appearing in the year-to-date
display positions on your screen. This is because the accumulator
keeps adding when you go from record to record. The only way to
clear it and get correct amounts is to re-execute the ‘accumulate’
function.

One more thing - how to avoid cash flow problems. The reason for
GROSS SAVINGS is to help you figure out ahead of time whether you
will have enough money on hand, i.e. your paycheck and your
savings account, to cover a month’s expenses. Doing an ‘accumulate’
up to any month will tell you this, i.e. if GROSS SAVINGS is a negative
amount you are in trouble. Then it's time to go back and budget more
for your savings account.

You are now in a position to make entries in the ACTUAL column at
the end of each month. At this point you're on your own. Improvise
methods that suit your perception of what financial information is
necessary in order to make this budget work for you. For example, it
just occurred to me that it might be helpful if initially all ACTUAL
amounts were entered ahead of time (i.e. the same as BUDGET
amounts). Then each month the amounts in the ACTUAL column
would be changed to reflect reality. An accumulate over the year
would immediately show the effect of this month’s entries on what
was left of the year budget.

May your budgeting efforts in the new year add rather than subtract
from your enjoyment of life!

DON’T PHONE - WRITE!

If you have questions regarding this application or you would like to
submit your own "terrific” application, please write me a legible,
coherent letter. If you submit an application, send it on disk or at least
send screen dumps of the ENTER/EDIT screen, a hand-drawn report
chart and any math and sample data. | will attempt to answer letters in
this column. Write to: Don Bell, P.O Box 23, Scotland, Ontario,
Canada, NOE 1R0

The Transactor

Volume 5, Issue 06




TransBASIC
Installment #2

Nick Sullivan
Scarborough, Ont.

In the first installment of TransBASIC, Nick introduced the concept of his objective: to
create a method for building custom commands and incorporate them into the BASIC
command set. Also in part 1, the TransBASIC Kernel was described. To take advantage of
new TransBASIC command listings, one must first obtain a copy of the TransBASIC
Kernel. The Kernel is only about 500 bytes long, but the source listing of the Kernel is quite
long and can't be printed each time. Volume 5, Issue 05 (Hardware & Peripherals) contains
the printed listing, however The Transactor Disk for every issue will include this file, plus

files from the current and all previous TransBASIC articles.

The Structure of a TransBASIC Module

The TransBASIC system is basically a long program in assembler
source code with one compulsory and many optional parts. The
compulsory part is called the kernel. The other parts — the optional
ones — are called modules.

The kernel and all the modules are written with the PAL assembler,
which uses the BASIC editor to create source code. At some point the
selected modules must be merged with the kernel, and assembled.
The merge routine is one that was actually written for merging BASIC.
But since PAL source files are structured just like BASIC text, this
merge works quite nicely (thank you again Glen Pearce).

In order for modules to be merged non-destructively with the kernel
and with each other, a unique line range has been assigned to every
subsection of the source code. The execution routine for each module,
for instance, occupies certain lines that are reserved for it alone. Other
lines have been reserved for the kernel, others for statement and
function keywords, others still for equates, for routine addresses, and
for link vector storage.

One of the modules given in this issue is called ‘Cursor Position’. It
contains two commands — the statement CURSOR, and the function
CLOC. I'll use ‘Cursor Position’ in the following discussion to illustrate
the anatomy of a TransBASIC module. This discussion will give you
an idea of how to structure any modules you write on your own,

The first few lines of ‘Cursor Position’ are BASIC REM statements.
Similar documentary lines, using as much as necessary of the line
range 0 through 24, will be found in every module. The numbering
and format are standardized: in your own modules you should follow
the pattern as closely as you can. Incidentally, this first line range is
the only one in the TransBASIC system that are not uniquely assigned.
This is okay because these lines are intended for reference at the time
the module containing them is merged into memory — it doesn't
matter if the module after that overwrites them.

If the ‘Cursor Position’ module contained any equates they would
come next. At the moment the only equates in use in TransBASIC are
those defining the reserved zero page work area at locations two
through six, and those defining operating system (Kernal) routines in
the ‘ADD’ module. That leaves plenty of room for further equates if
you want them: lines 50 through 90 should be safe.

In the next range of lines you would put any statement keywords
you'll be needing in your module (function keywords come a little
later on). The TransBASIC statement keyword list occupies lines 100
through 597; the CURSOR statement is entered at line 101. Note that
the last character in each keyword has its high byte set. In modules
you write yourself use lines 400 through 597 for your keywords.

The following 500 lines are for function keywords; the ‘Cursor Posi-
tion’ function CLOC, for example, occurs on line 600. The organiza-
tion is identical to that for statements. The safest part of this area is
again the end, from 900 through 1095.

The address of the execution routine for each keyword is given on the
line whose number is exactly 1000 greater than the one on which the
keyword itself is entered. The numbers here are actually the routine
addresses minus one, owing to the particular method by which the
routines are accessed.

The only other part of a module is the block of execution routines
itself. You will be entirely safe for the foreseeable future if you number
your routines in the upper part of the range the BASIC line editor
accepts — above 50000, say. | number the execution routines by twos
in order to allow a little bit of room for revision without the necessity
of using harder-to-follow multiple statement lines.

If you glance at the listing of the TransBASIC kernel (printed in last
issue) you'll see at once that the lines are not all contiguous, but are
scattered in various blocks throughout the range 25 to 2572. Since you
won't need to make any changes to kernel lines | won't list the details
of the line assignments here. In fact, you can generally ignore the
kernel altogether, even though it does most of the work of linking in
new commands.

TransBASIC offers probably the easiest way to extend BASIC with
your own custom commands. A brief glance at some existing modules
will show you just how little effort is necessary for sculpting a new
one.

A typical TransBASIC command uses lots of ROM routines, particu-
larly for expression evaluation. In the next issue we'll look at some of
those routines and how to use them.

The Transactor

Volume 5, Issue 06




New Commands

This part of the TransBASIC column is devoted to describing the new
commands that will be added each issue. The descriptions follow a
standard format:

The first line gives the command keyword, the type (statement or
function), and a three digit serial number.

The second line gives the line range allotted to the execution routine
for the command.

The third line gives the module in which the command is included.

The fourth line (and the following lines, if necessary) demonstrate the
command syntax.

The remaining lines describe the command.

CURSOR (Type: Statement Cat #*: 004)

Line Range: 2574-2604

Module: CURSOR POSITION

Example: CURSOR 11

Example: CURSOR ROW,COL

Moves the cursor to specified row (0-24) and column (0-39). Column
zero is assumed if no second parameter is present.

CLOC (Type: Function Cat #: 005)

Line Range: 2606-2618

Module: CURSOR POSITION

Example: IF PEEK(CLOC)<>32 GOTO 100

A quasi-variable that returns the actual memory location of the
CUrsor.

FLIP (Type: Statement Cat #: 011)

Line Range: 2720-2728

Module: BIT TWIDDLERS

Example: FLIP ADDR,MASK

Bits that are set in the 8-bit value MASK will be complemented at the
specified location; other bits will be unaffected.

CHECK( (Type: Function Cat #: 018)

Line Range: 2834-2882

Module: CHECK & AWAIT

Example: A=CHECK(" AEIOU ")

If there is a character in the keyboard buffer, it is tested against each
character of the string argument (here " AEIOU ") in turn until either a
match is found or every character has been checked. If there is a
match, the position of the matching character in the string (from 1 to
255) is returned. If there is no match, or if the keyboard buffer was
empty, zero is returned.

AWAIT( (Type: Function Cat #: 019)

Line Range: 2838-2886

Module: CHECK & AWAIT

Example: A=AWAIT(" NESWQ"): ON A GOTO 10,20,30,40: END
Identical in operation to CHECK( except that it won't take no for an
answer, but will wait for keyboard input and a successful match: this
function never returns zero.

KEYWORDS (Type: Statement Cat #: 059)
Line Range: 4940-4980

Module: KEYWORDS

Example: KEYWORDS

All active TransBASIC keywords are printed.

MP | O rem doke & deek (aug 24/84)
FH | 1 :
DOKE (Type: Statement Cat #: 007) JI | 2 rem 1 statement, 1 function
Line Range: 2636-2672 HH'| 3 :
Module: DOKE & DEEK JO | 4 rem keyword characters: 9
' JH | 5
Example: [}OIT(E ?88,5?953: RE!H RESET IRQ VECTOR NJ | 6 rem keyword routine line  ser #
Pokes a 16-bit value into a pair of memory locations, the lower of IN | 7 rem s/doke  dok 2636 007
which is specified in the command. The IRQ interrupt is switched out | BE | 8 rem f/deek( deek 2674 008
during the poke so this command may be used, as in the example, to  |NH | 9
change the vector safely ME | 10 rem u/usfp (2620/006)
' PH| 11 :
KD|12 remM======== —=====s====ss==== =s=======
DEEK( (Type: Function Cat *: 008) Bl | 13 :
Line Range: 2674-2696 FJ | 102 .asc "dokE"
Module: DOKE & DEEK GK | 601 .asc "deek” : .byt $aB;deek + shifted (
Example: PRINT " TOP OF BASIC AT: " DEEK(55 BG | 1102 .word dok-1
ample: _ _ ' (99) _ FE | 1601 .word deek-1
Returns the 16-bit value of a pair of memory locations, the lower of IB | 2620 usfp Idx #0 routine to convert
which is specified in the command. Standard low-high format is |GM| 2622 stx  $0d .unsigned integer
assumed. IN | 2624 sta $62 \in .a (high byte)
OH | 2626 sty $63 .and .y (low byte)
BB | 2628 ldx #$90 to floating point
SET (Type: Statement Cat #: 009) £ | 2630 860 'in fpa #19 P
Line Range: 2698-2706 NH | 2632 jmp $bc49
Module: BIT TWIDDLERS ﬁg gggg d o - o add
. ok jsr $adBa getpoke address
Exam;l:;l.e ' SElT Aaﬂgﬁgﬂ d into the add Rits that i KE | 2638 jsr  $b7{7 .convert to integer
An 8- lt_va ue {. ) is ORed into he address. Bits ataresetin | g | 5640 st Saefd 'check for comma
MASK will be switched on at the specified location; other bits willbe | oc | 2642 da  $14 ‘store address
unaffected. Gl | 2644 sta t3 .as temp vector
DO | 2646 Ida $15
: #. KL | 2648 sta t4
CLEAR (Type: Statement Cat #: 010) FL | 2650 jsr $ad8a get poke value
Module: BIT TWIDDLERS IF | 2652 jsr  $b7f7  ;converttointeger
Example: CLEAR ADDR,MASK CM | 2654 Ida $14 low byte to poke
Bits that are set in the 8-bit value MASK will be cleared at the [JG | 2656 Idy #0 indirect index
specified location; other bits will be unaffected. LN 1 2658 sel turn off irq
The Transactor 20 Volume 5, Issue 06




NL | 2660 sta (t3).y save low byte FA | 2838 await clc .clr flag ‘await’
El | 2662 Ida $15 .high byte to poke EA | 2840 php .save flag

LA | 2664 iny bump index FG | 2842 jsr  $aefd .evaluate string,
PM | 2666 sta (t3)y .save high byte NN | 2844 jsr $bb6a3 ;clr descr stack
CN | 2668 cli iIrq on again DE | 2846 sta 3 'save str length
KF | 2670 rts IB | 2848 plp :save flag

GO | 2672 ; LH | 2850 ror t4 ;minus = ‘check’
DN | 2674 deek jsr $aefd .get val, test ')’ BM | 2852 awl1 jsr getter ‘test key buffer
AP | 2676 jsr  $ad8d  ;testfor numeric ED | 2854 bit t4 ‘test flag

CA | 2678 jsr  $b7f7 :conv to integer GD | 2856 bmi aw2 .skip if ‘check’
DI | 2680 Idy #1 ‘indirect index AF | 2858 tay try again if

BM | 2682 Ida ($14),y ;gethigh byte GP | 2860 beq awil ‘buffer empty
IP | 2684 pha GA | 2862 aw2 Idy #8ff initialize index
HE | 2686 dey .decrement index Pl | 2864 aw3 iny ;bump index
JL | 2688 Ida ($14),y .getlow byte MD | 2866 cpy 13 skip if end

BF | 2690 tay AF | 2868 beq aw4d .of string

MA | 2692 pla BF | 2870 cmp ($22),y ;test for match
FH | 2694 jmp usfp ;convert to fp CE | 2872 bne aw3

OP | 2696 ; PF | 2874 beq awbd

JD | 2876 aw4 bit t4 ‘test flag

HH | O rem bit twiddlers (sept 4/84) CH | 2878 bpl aw1 ‘loop if ‘await’
FH | 1 : EE | 2880 Idy  #3ff ;return 0

GH | 2 rem 3 statements, 0 functions Al | 2882 aw5 iny 'pos'n in string
HH| 3 : IP | 2884 jmp $b3a2 ytofpinfact
FE | 4 rem keyword characters: 12 ML | 2886 ;

JH|5: OG | 2888 getter jsr $aB2c  ;teststop key
NJ | 6 rem keyword routine line ser# EH | 2890 jmp $e124  ;basic's getin
ID | 7 rem s/set bse 2698 009 CM | 2892 ;

OF | 8 remsiclear  bcir 2708 010

EN | 9 rem sfflip fli 2720 011 LB | 0 rem keywords (aug 25/84)

OH | 10 : FH |1 :

CN | 11 rem u/bprep (2730/012) Al | 2 rem 1 statement, O functions

Al |12 : HH| 3 :

LD |13 reM ======s=ss==s===s=========s=sas=s===== IO | 4 rem keyword characters: 8

Cl | 14 : JH |5 :

OP | 103 .asc "seTcleaRfliP" NJ | 6 rem keyword routine line  ser#

JK | 1103 .word bse-1,bclr-1 fli-1 IL | 7 rem keywords kwrds 4940 059

BA | 2698 bse jsr bprep  ;setup MH| 8 :

MK | 2700 ora ($14)y .set masked bits OH| 10 :

EC | 2702 sta ($14),y store BP | 116 .asc " keywordS

MH | 2704 rts DF | 1116 .word kwrds-1

A | 2706 ; JP | 4940 kwrds jsr $aad7  ;print return
GE | 2708 bclr jsr bprep  ;setup HP | 4942 Idy #0 .keyword index
DP | 2710 eor #5ff invert mask EK | 4944 kwr1 Idx #0 ;column counter
NJ | 2712 and ($14)y clear masked bits PP | 4946 kwr2 Ida skw,y .get keyword char
AD | 2714 sta ($14)y store KE | 4948 beq kwrd -skip at list end
Il | 2716 rts PJ | 4950 php ;save status reg
EB | 2718 ; DB | 4952 and #§7f ;:make lower case
KB | 2720 fli jsr bprep ;setup FL | 4954 jsr  $ab47 ;print character
NG | 2722 eor ($14)y flip masked bits OJ | 4956 iny :bump kword index
KD | 2724 sta ($14)y ;store LA | 4958 inX :bump col counter
CJ | 2726 rts OH | 4960 plp ‘loop if not

OB | 2728 ; Al | 4962 bpl kwr2 .end of word
GH | 2730 bprep jsr $b7eb  ;addrto $14/15, LH | 4964 kwr3 cpx #$0a .print spaces to
LP | 2732 txa value to .a GE | 4966 beq kwr1 ‘pad to 10 or 20
Ml | 2734 Idy #0 setindexto 0 PA | 4968 cpx #$14 ‘columns

MJ | 2736 rs EL | 4970 beq kwri

IC | 2738 ; PL | 4972 jsr  $ab3f

KE | 4974 inx

FO | 0 rem check & await (aug 25/84) NK | 4976 bne kwr3

FH | 1 : NG | 4978 kwrd jmp $aad? ;printreturn
DH | 2 rem O statements, 2 functions KO | 4980 ;

HH| 3 :

FE | 4 rem keyword characters: 12

JH |5 :

NJ | 6 rem keyword routine line  ser#

EP | 7 rem ficheck( check 2834 018

NI | 8 rem ffawait{ await 2838 019

NH|9 :

NP | 10 rem u/getter (2888/020)

PH| 11 :

KDl12 M eeceeess===s=s=sssess===asas=s== ssss=ssnss

Bl | 13 :

JI | 602 .asc "checkawait”

IP | 1602 .word check-1,await-1

OL | 2834 check sec .set flag ‘check’

IK | 2836 .byte $24 .ignore clc
The Transactor 21 Volume 5, Issuve 06




A New Wedge

For The Commodore 64

Brian Munshaw
Mississauga, Ont.

Add commands by trapping Syntax Errors

In an issue dedicated to programming aids and utilities, I thought it
would be fitting to not only offer up some utilities, but to supply a
superior method of adding them right to BASIC. In effect, add com-
mands. This is the technique hinted about by Richard and Chris in
previous articles, so in an effort to appease their collective curiosities,
here it is.

Most of you are probably familiar with the ‘chrget’ wedge. It is
characterized by using a special character, such as ‘@', /" or >
which precedes all commands. Both ‘DOS 5.1" and ‘The Manager’ use
this technique.

The ‘chrget’ wedge, however, has its drawbacks. It is what you might
call a brute force method. Basically, the normal character retrieval
done by BASIC is re-routed through a special routine which checks
for a special ‘wedging’ character(s). Depending on how much check-
ing is done, the process can slow down BASIC considerably. Some
estimates indicate the slow down is around fifteen percent. Syntactic
anomalies also develop. The one that comes to mind first is the
problem that arises in the ‘if - then' construct. In the following
example the wedge command always executes.

if 1 =0 then @command

This might seem absurd as the expression is always false, but unless
this special condition is checked for, it will always execute. As a user
of such a utility, to program around this, you would have to first insert
a colon in front of the wedge command. Similarly, unless quote mode
is checked for, the following will also invoke the wedge command.

print " @command”

The point is, unless a lot of extra checking is done to ensure against
these and other problems, the average wedge takes a considerable
slice of time for each and every character requested from it by BASIC.
Generally, the better the wedge performs syntactically, the slower

BASIC executes.

This isn’t to fault the programming expertise of the original developer
of the technique. He or she had few alternatives to this method on the
PET. (which | assume is where the process was developed) However,
the 64 is a different matter. (So is the VIC, but this article addresses
itself to the 64 only! | suppose with very little effort, this technique will
also work on the VIC)

The interpreter and kernal of the 64 makes extensive use of indirect
jumps through vectors in RAM, more so than does the PET. The
important vector in this case is the one at $0300 called TERROR in the
programmers reference guide.

The method I'm proposing will on the surface appear to be the same,
but will exhibit none of the problems of the ‘chrget’ wedge. This
method also requires a special preceding character for all commands,
but from there on it's entirely different.

Let's consider what would happen if you just included the hypotheti-
cal command ‘@superdooper’ to a line of BASIC. The obvious result is
a syntax error when BASIC tries to execute it. But it is a very special

syntax error, in that this specific syntax error occurs at the start of a
statement. How can this be used to advantage? Let’s examine in more
detail what is actually happening. First, BASIC was happy right up to
the statement before the @superdooper command. Part of the execu-
tion of that statement included positioning the text pointer (at $7a and
$7b) on the first character or token of the next statement. In this case,
this is the special character ‘@’. Since this character’s ASCII value is
less than 128, BASIC knows it's not a token (all tokens have the high
bit set, hence must be greater than or equal to 128), and gets ready to
execute an implied ‘LET’ statement, also known as an assignment
statement. Ah, but there’s the rub! It can’t be an implied ‘LET"! Why?
Well the ‘@' is not a valid character for a variable name. What
happens as a side effect of all this is two stack places are used, the x
register is loaded with $0b signifying a syntax error, and an indirect
‘imp" is done through the ‘IERROR’ vector at $0300. This routine
causes the appropriate error message to be printed, and execution
halts.

What is of extreme importance is the consistency of these events. If
you change the vector at $0300 to point to a routine that will check for
your new command, and if found, will fix up the stack, scan to the
next statement which allows BASIC to continue by jumping to the
routine to execute the next statement, then you, my friend, have a
new type of wedge, the ‘error’ wedge.

Most BASICs found today (excluding Commodore variants) have an
‘on error goto/gosub’ or ‘trap’ command. This is approximately the
same thing. It is closer to an ‘on syntax error sys’ though, but this is
exactly what | wanted to accomplish. A way to pass into machine code
to execute the utility. It isn’t a brute force method, like the ‘chrget’
wedge, hence doesn’t slow down BASIC. It only affects processing
when the command is encountered. This technique is certainly more
elegant than having a separate ‘sys’ for each command, utility or aid
and finally, it is somewhat easier than altering the tokenising and
token dispatching to add commands to basic. Another nice feature
comes from the fact that the kernal doesn't re-initialize the vector at
$0300 with every warm start, therefore you don’t have to re-engage it
every time you press a run/stop - restore. This is the case when you
scan for specific keyboard entries, like the function keys which some
schemes do by altering the IRQ vector.

More to showcase this technique than anything else, I've included
those commands which are a subset of a graphics utility I've written,
which pertain to external devices, like the disk drive. These include
utilities to list the directory or a program to the screen, a command to
list a sequential text file to the screen, a command to alter the default
output device, a command to send commands to the disk drive, two
commands to read the disk status and finally a command to disable
the utility.

The syntax for these commands are as follows. Please remember that
the special character, ‘@’ in this instance, must precede each com-
mand. Also as a side effect of the way the commands are parsed, each
command will have a short form. The shortest acceptable will be
given with the full name in each case. For those of you who don't like
the preceding ‘@’ character, and would prefer another, then poke
49152 + 10, asc( " character "). The only rule you must keep in mind
when choosing a character is it must cause an automatic syntax error

The Transactor

Volume 5, Issuve 06




and have a CBM ascii value less then 128. Possible characters do not
include the mathematical operators +, -, *, /. Even though they may
have an ASCII value less than 128, the editor turns them into tokens,
hence will have an ASCII value greater than 127 in BASIC text.

COMMANDS :

@ (Abbreviation: none)
This command will display the disk status of the default drive.

@device, device # (Abbreviation: @de, device #)

This command will allow the user to set a default output device. When
the utility is first loaded and engaged, the default device number will
be set to eight. This will allow users of disk drives set to device eight to
‘LOAD’, ‘SAVE', and ‘VERIFY’ without specifying a device number. If a
user wishes to change this, then this command can be invoked to do
so. Note, the rest of the commands will use the default device number
when accessing a device, hence if you have two drives on line,
remember you must alter to the appropriate device number to access
the device which isn’t set to default.

@dos, string (Abbreviation: @do, string)

This command will send the characters in the string (literal or
variable) to the default device using secondary address fifteen. ie. send
commands to the disk drive.

@dstatus, var$ (Abbreviation: @ds,var$)

This command will store the disk status in var$. Note var$ must be a
string variable and works in either direct or program mode.

@kill (Abbreviation: @k)
This command disengages the utility.

@list, string (Abbreviation: @lI, string)

This command will, depending on the contents of the string literal /
string variable, list either the appropriate directory or program to the
screen. The device being accessed is assumed to be the default
device. The syntax of the string is standard Commodore. eg:

@list, "$°
will list the directory (both if using a dual drive),

@list, "$0:+=prg"’
will list the titles of all program files on drive zero and

@list, " program name

will list the appropriate program to the screen. To cause the listing to
pause, press and hold the space bar. To allow the listing to continue,
release the space bar.

@print, string (Abbreviation: @?, string)

This command will print a sequential text file to the screen. The
filename is held in the string, literal or variable. Use the space bar to
pause.

The following is the assembler source listing and a basic program that
will load and engage the utility. Once the loader has been run, you
may wish to save it out with a monitor. If you do so, the code extends
from $C000 to $C2C3. As you will see from the assembler listing,
extensive use is made of kernal and interpreter routines. For those of
you out there just starting to get your feet wet in the machine code
world of the C64, this little program may help you in the set up and
use of such resident routines. | hope you find the method of adding
commands and the utilities useful in your own endeavours.

Listing 1: BASIC loader for the error wedge program.

RJ
LI
DH
DH
GK
KG

DD
AF
IN
JE
IA
CA
MA
GB
AC
KC
ED
IF
Gl
HJ
EK
NP
LG
CB
BH
NM
PN
CH
EE
AP
GC
DK
KE
FN
MB
HE
LE
CP
CA
IF
10
Cl
MK
oD
GM
LA
CL
[A
P
R
DK
AJ
R
NK
NP
FO
EB
NP
FC
KN
MG
oD
EH
DF

10 rem= data loader for "error wedge " *

20cs=0

30 for i=49152 to 49858:read a:poke i,a
40cs=cs+a:nexti

50:

60 if cs<>86280 then print
"s*x% @rror in data statements**#+* " : end
70 sys 49152

80 end
100 :

1000 data 76, 52,192, 139, 227, 165
1010 data 244, 237, 245,

1020data 0, 0O, 0,
1030data 0, 0O, 0,
1040data 0, 0O, 0,
1050data 0, 0, 0,
1060data 0, 0, O,
1070data 0O, 0O, O,
1080data 0O, 0O, 0,
1090 data 3, 141, 3,
1100 data 3, 141, 4,
1110 data 141, 0, 3,
1120 data 1, 3,173,
1130data 7,192,173,
1140 data 8, 192, 169,
1150 data 3, 169, 192,

1160 data 173, 48, 3,
1170 data 173, 49, 3,

1180 data 169, 127, 141, 48,
1190 data 192, 141,

1200 data

49,
9,192, 134,

1210 data 192, 174, 9,

1220 data 108,

5, 192,

8, 64,

OO0 O0OOoOOoOoO

192,173, 1
192, 169, 144
169, 192, 141
50, 3,141
51, 3,141
119,141, 50
141, 51, 3
141, 5,192
141, 6,192
3, 169
'3, 96,174
186, 108, 7
192, 134, 186
32,115, O

1230 data 32, 158, 173, 76, 163, 182

1240 data 224,

11, 240,

1250 data 192, 32, 121,
1260 data 192, 240, 3,

1270 data 104, 104,

1280 data
1290 data
1300 data
1310 data
1320 data
1330 data
1340 data

32,
6, 169, 32,
0,240, 6,
2,208, 6,
76, 87,194,
39, 32,115,
45,193, 104,
7, 32,241,

1350 data 192, 96, 201,
1360 data 76, 99, 193, 201, 83, 240

1370 data

3,108, 3,

3,108, 3
0,205, 10
108, 3,192
170,192, 76
115, 0, 201
201, 58, 240
32, 45,193
201, 68,208
0, 72, 32
201, 69,208
183,142, 9
79,208, 3

192, 32, 45

1380 data 193, 76, 116, 194,201, 75
1390 data 208, 40, 32, 45,193,173

1400 data
1410 data
1420 data
1430 data
1440 data
1450 data

3,192, 141,
4,192, 141,
7,192,141,
8,192, 141,
5,192, 141,
6, 192, 141,

1460 data 201, 155, 208,
1470 data 193, 76, 132, 193, 201, 153

1480 data 208,

1490 data

6, 32,
50, 194, 162,

1500 data 192, 32,121,

1510 data 240,
1520 data 201,

14, 201,
58, 240,

0, 3,173
1, 3,173
50, 3,173
51, 3,173
48, 3,173
49, 3, 96
6, 32, 45

45,193, 76
11,108, 3
0,201, O
44, 240, 10
6, 32,115

1530 data 0, 76, 48,193, 96, 32
1540 data 204, 255, 169, 127, 76,195

The Transactor

23

Volume 5, Issue 06




MI | 1550 data 255, 32, 135, 192, 32, 189 Error Wedge Source Listing
Kl 1560 data 255, '16"41 253, 169, 12?, 174 "OC | 100 sys 700 -assembled on pal 64
MF | 1570 data 9, 192, 32, 186, 255, 32 o0 | 120 P
RJ | 1580 data 192, 255, 162, 127, 76, 198 Ea | 190 | " 86000 iprogram orin
FP | 1590 data 255, 173, 9,192, 32,177 MA (180 i anis
DI | 1600 data 255, 169, 111, 32, 147, 255 ACITT0 L e Jot token val
Ol | 1610 data 32, 135, 192, 134, 253, 132 MF (190 prnt - $09 iprinttoken val
DK | 1620 data 254, 170, 160, 0, 177, 253 JL (210 syntax = $0b L
AK | 1630 data 32, 168, 255, 200, 202, 208 AP (250 comma  z i aschof tomm
Gl | 1640 data 247, 76,174,255,169, O PE|250 el =0 ‘:-E?m“:nlﬁxmu
EC | 1650 data 133, 253, 32, 75,193, 32 GD | 270 keytable = $a09e :keyword table
CN | 1660 data 207, 255, 32, 207, 255, 169 KM | 290 _ interpreter routines used
LI | 1670 data 0, 141, 11,192,169, 13 BK | 310 ohrget = $0073 .get next char
HN | 1680 data 32, 210, 255, 32, 207, 255 BL | 330 ey = Sedra oty
KP | 1690 data 32,207,255, 32,207, 255 AK 350 fexp = Sadge io R stxlement
MN | 1700 data 133, 253, 32, 207, 255, 133 B0 (360 lookup = $bo8b e O
Ol | 1710 data 254, 32, 183, 255, 240, 3 FK|380 stres = $b47s ron spc 4 airing.
BC | 1720 data 76, 67,193, 165, 254, 164 AB 400 exp = 3711 int exp n x-reg
ED | 1730 data 253, 32,145,179, 32,221 K8 la20 |
HB | 1740 data 189, 160, 1,185, 0, 1 oC | 440 |
HF | 1750 data 240, 6, 32,210, 255, 200 N (480 chin = Sice setinpul
IB | 1760 data 208, 245, 169, 32, 32,210 N[0 setis - sioe sologica 2
NF | 1770 data 255, 32,225, 255, 240, 52 BJ | 500 sotnam = Sfibd ‘o6t fls name
MA | 1780 data 201, 239, 240, 247, 32, 207 HC | 310 readst = $fiby s
HM | 1790 data 255, 240, 180, 48, 20, 32 DG [340 stop = Stiel dearlo
EC | 1800 data 210, 255, 201, 34, 208, 233 AR - ‘send sa for tak
LG | 1810 data 238, 11,192,173, 11,192 LD |80 scptr - Sttas ‘o0t serial by
LC | 1820 data 41, 1,141, 11,192, 16 NV o e ot T e ton
JO | 1830 data 220, 174, 11,192,240, 6 EK | €10 unisn = Stfas send unlsten
MI | 1840 data 32,210,255, 76,207, 193 MO (830
KH | 1850 data 201, 255, 240, 246, 32, 11 :“:;. E i::.mm.:iaw
LF | 1860 data 194, 76,207,193, 76, 67 FE 670 load = 30330 ioads
JP | 1870 data 193, 160, 0, 56,233, 128 C | 890 : |
NJ | 1880 data 240, 15, 170, 169, 255, 200 MD | 790 | o Paae used
KE | 1890 data 185, 158, 160, 48, 2,208 5K | 730 facer =881 i ot ac. A1
HK | 1900 data 248, 202, 208, 245, 200, 185 oN | 750 curdev = $oa Somont dovice
ON | 1910 data 158, 160, 48, 6, 32,210 N 770 ©oTP = emp storage
AK | 1920 data 255, 200, 208, 245, 56, 233 W | 7% ; mp start saround storage
Cl | 1930 data 128, 76,210,255, 169, 2 AR |gro ; Senereimemon storage
GE | 1940 data 133, 253, 32, 75,193, 32 FE | 820 orrvector word0 old e vegtor
NN | 1950 data 207, 255, 170, 32, 183, 255 HK | 840 ~savevector word 0 ‘old save -
MA | 1960 data240, 3, 76, 67,193,138 380 mychr s g mwedgecha
HP | 1970 data 32,210, 255, 32,225, 255 GH (880 fompr® =+ 40 ispace orsirng
IA | 1980 data208, 3, 76, 67,193, 201 KO |900 sart  =.
DB | 1990 data 239, 208, 228, 240, 242, 173 W 920 e lemor  jskerveciors
MG | 2000 data 9, 192, 32, 180, 255, 169 ¥ | 540 da tormor &1 routinen
BL | 2010 data 111, 32, 150, 255,169, 0 &e | 8eo da #<onomor | values
DF | 2020 data 133, 144, 32, 165, 255, 32 OF | 970 a lemor e drectio
PB | 2030 data 210, 255, 32, 183, 255, 240 MC | 990 sta jerror + 1
FA | 2040 data 245, 76,171,255,173, 9 LP | 1010 sta  savevector
MF | 2050 data 192, 32, 180, 255, 169, 111 BN | 1030 sta  savevector + 1
EO | 2060 data 32, 150, 255, 169, 0, 133 BD | 1050 sta isave
HG | 2070 data 144, 168, 32, 165, 255, 153 HA | 1070 sla isave + |
PF | 2080 data 12,192,200, 32, 183, 255 KE | 1090 sta loadvector
LK | 2090 data 208, 4,192, 40, 208, 240 AC | 1110 sta loadvector + 1
JL | 2100 data 32, 171,255, 136, 152, 72 PH | 1130 sa iload
PF | 2110data 72, 32,115, 0, 32, 139 F | 1180 sa foad a1
CB | 2120 data 176, 133, 73,132, 74, 32 W | 1170 ; e
OH | 2130 data 163, 182, 104, 32,117, 180 NF | 1180 setsave =
EH | 2140 data 160, 2,185, 97, 0,145 DO | 1200 ldx ~ curdevnum
NK | 2150 data 73, 136, 16, 248, 200, 104 e | 1230 ; fmp (savevecton
NA | 2160 data 170, 185, 12,192, 145, 98 i [12s0 -
MJ | 2170 data 200, 202, 208, 247, 96 EE i% K curdevium

b T

CM | 1310 ; string input and discard

KE | 1320 chrget

FM | 1330 ED fitexp

MK | 1340 discrd

The Transactor 24 Volume 5, Issue 06




ML | 1350 ; CL | 2620 ; NP | 3890 tax

BA | 1360 onerror = . ND | 2630 out = . JP | 3800 ida #EfH

MN | 1370 , thisis it folks GM | 2640 ; ML | 3910 ;

EC | 1380 cpx  #syntax GE | 2650 ris MI | 3920 sckeytab = .

0 | 1390 beg rightype KN | 2660 ; AN | 3930 ;

AA | 1400 jmp (errvector) BL | 2670 closeinput = . ML | 3940 iny .get to the right
IP | 1410 ; 00 | 2680 ; HK | 3950 ida keytableyy tokeninthe

PA | 1420 rightype = . El | 2680 jsr clrchn ;close an input AK | 3960 bmi «+ 4 table

MA | 1430 ; OF | 2700 da #1127 Jfite. QJ | 3970 bne sckeytab

OL | 1440 jsr Eh'gﬁ; BP | 2710 imp close DE | 3980 dex

EC | 1450 cmp mychar GB | 2720 ; CL | 3990 bne sckeytab

DB | 1460 bagq myerror LO | 2730 openinput = « Al | 4000 iny

GE | 1470 jmp (errvector) KC | 2740 ; AC | 4010 ;

QD | 1480 ; JD | 2750 jsr  getstring .open input file DD | 4020 prkey =4

FA | 1490 myerror = . JI | 2760 |sr  setnam ED | 4030 ;

CF | 1500 ; CG | 2770 Idy temp -gat secondary FC | 4040 lda keytabley found it now
HG | 1510 pla ;POp unnecessary HG | 2780 lda #127 file # 127 used! FD | 4050 bmi endprkey print it out

LH | 1520 pla Stuff JB | 2790 ldx curdevnum JE | 4060 jsr  chrout Jlast character
IC | 1530 jsr  parse KL | 2800 jsr  setlfs LH | 4070 iny .of token in table
JM | 1540 jmp scannext .give back to basic 0OG | 2810 ﬁ; open EA | 4080 bne prkey has bit7 set

El | 1550 ; PL | 2820 #127 AH | 4090 ;

DJ | 1560 ; short and sweet ain't it PO | 2830 imp chkin AJ | 4100 endprkey = .

I | 1570 ; Ol | 2840 ; El | 4110 ;

KH | 1580 parse - JO | 2850 doscomm = . NO | 4120 s8C ;unshift last char
JC | 1580 ; command parser CK | 2860 ; PB | 4130 sbc #$80 'print and return
EJ | 1600 jsr  chrget :a straight character EC | 2870 lda curdevnum get device number FK | 4140 jmp chrout ;after chrout

g | 1610 cmp #e0 :by character search MC | 2880 ﬂ; listen tell it to listen MK | 4150 ;

HF | 1620 beg show :through basic text OK | 2890 #3561 361 = ($0f or $60) DC | 4160 doprint -y

ON | 16830 cmp #colon :to identify command. JD | 2900 jsr lsnsa listen secondary AM | 4170 |

NJ | 1640 bag show not elegant, but Kl | 2910 jsr  getstring :get command string LG | 4180 lda #2 ;use sacondary
HD | 1650 bne naxti functional. AM | 20820 stx temp : sty temp + 1 JP | 4190 sta temp ;of two

CP | 1660 ; CM | 2930 tax : idy #0 Ol | 4200 jsr  openinput  ,open the file
PP | 1670 show = . CP | 2940 ; 10 | 4210 ;

GA | 1680 | GJ | 2950 diskip = . send command HI | 4220 listloop = 4

DE | 1690 jsr scan GA | 2960 ; MP | 4230 ;

FH | 1700 jmp showds IN | 2970 Ida (temp),y : jsr clout LM | 4240 jsr  chrin .get character
EC [ 1710 ; IB | 2980 iny : dex : bne diskip AP | 4250 tax ,SEVE in X reg.
DM | 1720 nextl = 4 IN | 2980 jmp unisn 1A | 4260 jsr readst .check ds

ID | 1730 ; OC | 3000 ; HM | 4270 beg - +5 ;not done

EB | 1740 cmp #°d° :command start with a ID | 3010 ; JP | 4280 jmp closeinput ;done

JF | 1750 bne next2 "d" no=>try another HL | 3020 dolist = . MD | 4290 txa ;everthing ok
GF | 1760 ME | 3030 ; HB | 4300 jsr  chrout ;then print it

EB | 1770 jsr  chrget :command starts with IK | 3040 ida #0 .give secondary of ME | 4310 ,

DE | 1780 pha ,d” KO | 3050 sta temp .Z8ro DE | 4320 listdelay = «

HK | 1780 jsr  scan CH | 3060 jsr ninput AB | 4330 ; shouldwe pause " 7"

AJ | 1800 pla Al | 3070 jsr  chrin ;waste start address IP | 4340 jsr stop .check for stop
FM | 1810 cmp #'@° .check second char. B | 3080 jsr  chrin LP | 4350 ne «+5 NOpE = > MOore
FD | 1820 bne other Il | 3080 ,; PH | 4360 jmp closeinput  ;stop !

MJ | 1830 I0 | 3100 dirloop - CN | 4370 cmp #%el s it spacebar
Mi | 1840 jsr exp ;set new default MJ | 3110 ; LA | 4380 bne listloop .no = > go back
AC | 1850 stx curdevnum ,device number. MA | 3120 Ida #0 Jinitialize gquote MD | 4380 beq listdelay yes = > more delay
AD | 1860 rts PH | 3130 sta ﬁuMHﬂlg: ,mode GK | 4400 ;

EM | 1870 ; MD | 3140 Ida #13 -sand a return to the AE | 4410 showds = .

CA | 1880 other1 =, KD | 3150 jsr  chrout ;sCrean KD | 4420 ; show disk status to screen

IN | 1890 ; EB | 3160 gr chrin ‘waste pointers IF | 4430 lda curdevnum ;get drive number
LJ | 1900 cmp #'0° {try another second OE | 3170 jsr  chrin C HN | 4440 jsr  talk ;talk to me drive
EB | 1910 bne other2 .character Dl | 3180 jsr  chrin .get #< block count GM | 4450 E!a #3561 561 = ($0f or $60)
GP | 1920 ; BC | 3190 sta temp / linenum DF | 4460 jsr tksa :send secondary
0 | 1930 jmp doscomm  ;send dos command FJ | 3200 jsr  chrin .get #> block count OK | 4470 #0 : sta status

KA | 1940 ; BE | 3210 sta ftemp + 1 GP | 4480 ;

LE | 1950 other2 =, NP | 3220 Ll;q readst :end of file " 7 MI | 4480 dsloop = .

OB | 1960 ; FO | 3230 «+ 5 :no = > get more KA | 4500 ;

JP | 1970 cmp #°s° Jast chance 4 command | HA | 3240 mp closeinput  yes = > exit FI | 4510 jsr  acptr ;get serial

DE | 1980 beq dsfunc starting witha "d’ JK | 3250 da temp + 1 .convert integer prg. FI | 4520 |sr  chrout .print it

BJ | 1990 jmp (errvector) invalid command JA | 3260 Idy temp ;size to floating HD | 4530 g readst ,chack st

GE | 2000 ; MK | 3270 rintfit ;point 1B | 4540 q dsloop ok = > do more
BK | 2010 dsfunc = DJ | 3280 r fitasc .convert float-ascii FG | 4550 jmp untalk .shut up drive
KF | 2020 ; HC | 3290 dy #1 GE | 4560 ;

HJ | 2030 jsr scan KF | 3300 ; HN | 4570 inputds -, read disk status
BM | 2040 jmp inputds [input disk status AL | 3310 proutnum = . OK | 4580 ; & assign to var
IH | 2050 ; 0G | 3320 , MN | 4580 Ida curdevnum ;get device number
KB | 2060 next2 = . HI | 3330 ida stacky ;print out ascii HH | 4600 jsr  talk talk to me drive
Ml | 2070 ; 1B | 3340 beq addspace  ;string from stack GG | 4810 da #%$61 $8f = ($0f or $60)
NJ | 2080 cmp # k’ NO | 3350 jsr  chrout DP | 4620 jsr  tksa ;send secondary
EJ | 2080 bne next3 AA | 3360 iny OH | 4630 Ida #0 : sta status ;force zero

KK | 2100 ; EA | 3370 bne proutnum PO | 4840 tay

HB | 2110 jsr  scan il wtility KK | 3380 ; AK | 4650 ;

HJ | 2120 a ervector .8, restore LA | 3390 addspace = . BB | 4660 rdsloop =«

QD | 2130 sta lerror -original vectors OL | 3400 EL | 4670 ;

GA | 2140 lda errvector + 1 JF | 3410 Ida #° ° ;pad out to improve PC | 4680 jsr  acptr .get serial

EL | 2150 sta ierror + 1 KL | 3420 jsr chrout ;appearance MG | 4680 sta tempstry : iny .save tempstr
LD | 2160 ida savevector MN | 3430 ; BO | 4700 st readst ;check st

BJ | 2170 sta isave BA | 3440 dirline = . IL | 4710 ne outrds N0 = > exit

BB | 2180 Ida savevector + 1 AP | 3450 ; Bl | 4720 cpy #40 limit length

HG | 2180 sta isave + 1 BF | 3460 jsr  stop :check for stop key KK | 4730 bne rdsloop ;10 40 chars.

CG | 2200 Ida loadvector FE | 3470 Leq dirend yes = > quit KP | 4740 ;

HL | 2210 sta iload FF | 3480 cmp #%ef .check for spacebar CM | 4750 outrds =

D | 2220 ida loadvector + 1 Pl | 3490 beq dirline .yes = > pause list OA | 47860 ;

NI | 2230 sta iload + 1 GL | 3500 g chrin .gat rast of line LF | 4770 jsr  untalk :shut up drive
MK | 2240 rts GC | 3510 q dirloop CC | 4780 ;

AE | 2250 ; MJ | 3520 bmi iskey 'Dit7 set = > token " 7 BL | 4790 ; store it out

FO | 2260 next3 = . ML | 3530 jsr  chrout ‘not token, print it GD | 4800 ;

EF | 2270 ; PM | 3540 cmp #34 was it a quote print EK | 4810 dey:tya:pha:pha save len twice
00 | 2280 cmp #list BH | 3550 bne dirline Jno = > continue FL | 4820 sr  chrget ;advance textptr
OF | 2290 bne nextd JB | 3560 inc quoteflag :res = > quote mode FL | 4830 st lookup Jookup var

CH | 2300 ; CP | 3570 ida quoteflag .. toggle EH | 4840 sta varaddr ;store address
MN | 2310 jsr  scan list program or IH | 3580 and #1 ‘boolean quoteflag FG | 4850 sty varaddr + 1

CC | 2320 jmp dolist -directory routine EQ | 3590 sta quoteflag LH | 4880 jsr  discrd .get rid of it

AJ | 2330 ; HC | 3600 bpl dirline :branch always KC | 4870 a ;remember length
ID | 2340 nextd = » AJ | 3610 ; K | 4880 sr  strres -rasarve space for str
EK | 2350 ; I | 3620 iskey =4 JG | 4890 dy #2

Cl | 2360 ; print text file EK | 3630 ; KJ | 4900 ;

OC | 2370 cmp #print routine IF | 3640 ldx quoteflag ;quotemode "7 FL | 4910 store = .

OK | 2380 bne thatsall MA | 3650 beq dokay yes = print token OK | 4820 ;

MM | 2390 ; CM | 3660 ; GG | 4830 Ida flaccl,y .3 bytes are

JA | 2400 jsr  scan IB | 3670 dontdok = . ID | 4940 sta (varaddr)y ;length & address
CN | 2410 jmp doprint GN | 3880 ; BB | 4950 d

KO | 2420 CK | 3690 jsr  chrout :no = > shifted char JK | 4960 b;? store

DK | 2430 thatsall = . AL | 3700 jmp dirline raturn to loop LH | 4970 iny setytol

OP | 2440 , EP | 3710 ; NN | 4980 pla : tax ;remember length again
OK | 2450 ldx #syntax :that's all for now GO | 3720 dokey = . EP | 4990 ;

JN | 2480 jmp (errvector) real syntax error \A | 3730 ; FB | 5000 transfer = 4 from temp to var
MB | 2470 ; MP | 3740 cmp #255 i it pi 1A | 5010 ;

JN | 2480 scan =4 EJ | 3750 beq dontdok 'not in token list DA | 5020 lda tempstry

AD | 2490 JO | 3760 jsr  listkay HF | 5030 sta (flacct + 1)y

AC | 2500 jsr chrgot .get last character GP | 3770 jmp dirline ;return to loop Bl | 5040 iny : dex

EE | 2510 ; KD | 3780 ; FC | 5050 bne transfer

BG | 2520 scanmore = . BG | 3790 dirend = 4 AL | 5060 rts

IF | 2530 ; PE | 3800 ; close file EE | 5070 ;

ML | 2540 cmp #eol sirip out extra HE | 3810 jmp closainput EL | 5080 .end

FF | 2550 beq out ‘text. axit on eol CG | 3820 ; CO | 5090 end

LL | 2560 cmp #comma .comma or colon CO | 3830 listkey = . —

GJ | 2570 beq out GH | 3840 ;

1B | 2580 cmp #colon OB | 3850 Idy #0 token in acc

KK | 2590 beq out FJ | 3860 sac

KE | 2600 jsr  chrget AQ | 3870 shc #$80 :normalize token range

ND | 2610 jmp scanmore CK | 3880 baq prkey Ao 0-127
The Transactor 25 Volume 5, Issue 06




The Commodore 64
Keyboard Part 2:

KEYWIZARD - An Amazing Keyboard Driver

Key Wizard is an alternative to the Kernel Keyboard Driver which |
described in Part 1 (last issue). But it is more than just a driver. Many
other features have been added. It will literally bring joy to your
fingertips!

Part 2 is for everybody. It describes the functions and gives the BASIC
Loader. It is a long program, so typing it in may be a chore. However,
with the new listing format in The Transactor you should be safe from
errors.

In Part 3 | will be presenting the source. | intend to build more
functions into this program to suit my own particular needs. I'm sure
many of you will wish to do the same. If you have any good ideas and/
or source for some really useful routines, please submit them to the
TRANSACTOR.

The Key Wizard system gives you true N-KEY ROLLOVER capability.
This means that keys are displayed as they are pressed even if
previous keys have not as yet been released. The ‘N’ factor can be set
by the user to any value. But remember that the Commodore key-
board matrix often generates false values when three or more keys are
pressed together. For this reason it may be desirable to leave this
count at 2, its default setting. Even a 2-KEY ROLLOVER vastly
improves the productivity of keyboard input and allows you to repeat
the two keys pressed; for example, when you wish to scroll the cursor
diagonally across the screen using Cursor Down and Cursor Right

Key Wizard is totally transparent to software that uses the standard
driver for keyboard input. The interface is identical to that of the
standard driver. | have used it with development packages like
‘POWER’, MOREPOWER' and ‘PAL’ to further enhance the speed and

ease of program development.

In a standard memory configuration using BASIC, Key Wizard needs
only 24 bytes of memory which may be located at any suitable
address. Normally, Key Wizard uses the address range from 53224 to
53247 ($CFE8 to $CFFF). The rest of the program is tucked away in
the normally unused block of RAM behind the BASIC ROM. There-
fore, adding functions to this program will not take away from the
useful memory space.

Key Wizard is an invaluable keyboard driver for program develop-
ment as it greatly enhances the editing capabilities of the standard
screen editor. Multiple features have been built into the program and
the potential exists to incorporate many more. For complete flexibil-
ity, the user is allowed to map his own routine to any key.

For those who would like to rearrange the keyboard, Key Wizard
allows each and every key to be re—configured (except for the Control,
Shift and Commodore Keys). Change one or two keys, or the entire
keyboard for that matter. (Can you say, “Dvorak”? KJH.)

Assigning keys to strings is another capability built into the Key
Wizard system. Map your most used BASIC keywords, commands,
etc, to keys of your choice and have them displayed when the keys are
pressed.

Aubrey Stanley
Mississauga, Ont.

Changing the colour of border, background or text can be done by
hitting a key with Key Wizard. Cycle through the combinations until
you find one that suits you best,

Key Wizard allows you to save your keyboard profile on diskette after
you have mapped the keyboard to your own particular requirements.
More than one profile may be saved, to be loaded in at any future time
when needed.

The BASIC Loader

the Key Wizard system is provided in the form of a BASIC Loader
program called “KEYWIZ-64". This program does the following:

1. Puts the Key Wizard machine-language into memory.

This is the only step that is performed when the program is simply
RUN. As listed, the machine-language program is POKEd into mem-
ory from the DATA statements in two separate blocks:

(a) LINES 200 and 201 contain the IRQ Vector Entry Routine, 24 bytes.
Normally this is loaded into location 53224. But since it is totally
relocatable, you may wish to move it to some other location. To do so,
simply assign the new address to the variable ‘I’ in LINE 52. Also in
LINE 52 is the value of the N-KEY ROLLOVER count, NK. This is
assigned a value of 2. You may change it to any value, but remember
that the Commodore Keyboard hardware can give false values when
more than two keys are pressed simultaneously. For this reason, |
would leave the value at 2.

A word of warning for ‘POWER’ users. | found that relocating the
program in the Cassette Buffer interferes with POWER'S String Search
facility.

(b) LINE 300 on contains the Key Wizard machine-language pro-
gram, 2.5K bytes. This is loaded behind the BASIC ROM, starting at
41216 ($A100).

2. Saves Key Wizard on diskette.

The routine at LINE 70 will save the Key Wizard machine-language
program to disk as a program file (this is done after execution of Key
Wizard's save function as explained later). Saving the program as a file
reduces the loading time the next time KEYWIZ-64 is run, since the
machine-language program need not be POKEd into memory from
DATA statements.

3. Saves your Keyboard Profile on diskette.

After you have rearranged the keyboard, defined strings, etc, you may
save the keyboard profile permanently on diskette using the routine at
LINE 80.

Loading The Program And Keyboard Profile

First, use KEYWIZ-64 to save the Key Wizard machine-language
program on diskette. If you have not not yet done this, refer to the
section on Saving The Program. This will considerably reduce your
loading time in the future.

The Transactor

Volume 5, Issue 06




LINE 50 tells KEYWIZ-64 how to go about loading the Key Wizard
system. There are two variables associated with this process. "TB$" is
assigned the KEYBOARD PROFILE name, and ‘PG$’ the PROGRAM
Name. Initially TB$ =“KERNEL" and PG$="KPRG". These default
values tell KEYWI1Z-64 that (a) the standard keyboard arrangement as
provided by the KERNEL is to be used (as opposed to a profile from
disk) and (b) to load Key Wizard from the DATA statements in lines 300
onwards rather than from a disk file. This is the set-up used the first
time KEYWIZ-64 is run; after that, the Key Wizard machine-language
program is loaded from a disk file.

If you assign any OTHER name to TB$ in LINE 50, then KEYWIZ-64
will load the Keyboard Profile from disk using TB$ as the filename.

If you assign any OTHER name to PG$ in LINE 50, then "KEYWIZ-
64" will load the Key Wizard machine language program from disk
using PG$ as the filename.

Once you have saved the program on diskette, you should modify the
value of PG$ in LINE 50 to the saved name. Then you may delete
Lines 300 onwards as they will no longer be required. You'll need the
routines at the beginning of KEYWIZ-64 to make new keyboard
profiles - eliminating all those unnecesary DATA statements will
considerably reduce the loading time. You should make a Backup
Version of KEYWIZ-64 before you start to modify it.

If you do not have a utility to delete BASIC lines automatically, | would
suggest that you save KEYWIZ-64 after you have entered all lines up
to Line 300. After entering the remaining DATA statements, save
“KEYWIZ-64 W/DATA" as a BACKUP version on another diskette.
Finally, follow the instructions (below) to save the machine language
for Key Wizard as a program file on the diskette that contains your
original, shortened version. From then on use your short version.

Saving The Program And Keyboard Profile

After the loader is RUN once, the Key Wizard machine-language
program can be saved as a PRG file on disk.

The name of the PROGRAM file under which the Key Wizard
machine-language program is saved is assigned to the variable PG$
in LINE 72. | have used the name “"KWIZ". You may change this to any
other name if you like. Then type:

CONTROL and SPACEBAR

Each time you type this command, Key Wizard will copy either the
Program or the Keyboard Profile into the memory area beginning at
49152 ($C000). So be sure that you do not have anything running in
this area when you enter this command. Key Wizard will display an
appropriate message to tell you which operation was performed. So if
you see the message, “SAVE TB”, you should then enter the command
again and “SAVE PG” will be displayed the next time. Key Wizard
alternates between the two each time the command is entered. Type:

RUN 70

and the Key Wizard machine-language program will be saved on
diskette.

The name of the KEYBOARD PROFILE under which the tables are
saved is assigned to the variable TB$ in LINE 82. | have used the name
“KWIZ.TB". You may change this to any other name if you like. Then
enter the above command until you see the message, “SAVE TB".

Type:
RUN 80

and the current keyboard profile will be saved on diskette.

Now save the shortened version of KEYWIZ-64 (LINES up to 250)
with the new assignments for PG$ and TB$. Each time this program is
RUN, the Key Wizard program will be loaded from disk directly into
memory.

You may wish to save a variety of Keyboard Profiles to suit different
applications. Remember to use different names in this case and to
assign the desired name to TB$ in LINE 50 before running KEYWIZ-
64.

To recap the use of the BASIC KEYWIZ-64 program: the first time you
run the program, it should be used in exactly the same form as it
appears in the listing. When RUN, it will place the Key Wizard
machine-language program and default keyboard profile in memory.
After that, a new version of “KEYWIZ-64" can be created, one without
the DATA statements (lines 300 to end), and with the assignments in
line 50 changed to:

th = "kwiz.tb": pg$ = "kwiz"
(assuming the default filenames)

This new version will be used in the future to load and enable The Key
Wizard system, but first the Key Wizard machine-language program
and keyboard profile must be saved to disk.
The Key Wizard machine-language program is saved to disk with:
CTRL/SPACE, then RUN 70
and the current keyboard profile is saved with:
CTRL/SPACE, then RUN 80.
(The CTRL/SPACE combination acts as a toggle and alternately
commits the program or the profile to memory where it can be read by
the save routines)

Changing The Screen Colours

The Screen Colours may be changed to any of the 16 standard colours
by using the following commands:

CONTROL and HOME for Border
CONTROL and DELETE for Screen
CONTROL and RETURN for Text

Use a particular command repeatedly until the desired colour is
displayed. THESE COMMANDS ONLY WORK IN DIRECT MODE.

Repeat Mode

In repeat mode, all keys are repeated in both Direct and RUN mode.
To toggle repeat mode, use:

CONTROL and SHIFT
Normally repeating keys (Cursor, Spacebar, etc.) are not affected.
Alternative INSERT/DELETE Mode

The alternative Insert puts the BASIC editor into a permanent “insert
mode”, where space is automatically opened up in text as characters
are entered. In other words, all characters to the right of the cursor
move forward as you type, until the BASIC line is full (80 characters
long).

The alternative Delete function uses the DELETE key to delete the
character under the cursor. All characters to the right of the deleted

The Transactor

Volume 5, Issve 06




position, up to the end of the BASIC Line, are automatically moved left
by one position. To delete to the end of the BASIC Line, just hold down
the DELETE key until all the characters are erased.

This mode is toggled on and off by successive entries of the keys:
CONTROL and COMMODORE

THIS COMMAND MAY BE ENTERED AT ANY TIME, BUT THE
ALTERNATIVE INSERT/DELETE MODE WILL ONLY BE IN EFFECT
DURING DIRECT MODE.

Strings

You may assign a string to a key or “undo” a previously defined string
by entering the command:

CONTROL and CURSOR DOWN
Key Wizard will display the message:
STRING ?

In case you have entered the command in error, type RETURN to
abort. Otherwise enter the key you want to make into a string or to
undo from a previous assignment. All values are permissible -
normal, shifted, Commodore or control. There are some restrictions,
for example you cannot assign a key that has already been assigned to
some other function like a Re-configured Key or a User Routine. The
key you enter will replace the ‘7’ prompt and an ‘=" sign will be added,
ed.,
STRING ! =

Then enter a string or else type RETURN if you wish to undo a
previously defined string. The string may be up to 32 characters. Use
the RETURN key to terminate the string. If you wish to include a
RETURN within the string, then type a ‘SHIFTED RETURN'. This will
cause a new-line on the screen, but will not terminate the string.

UP TO 32 STRINGS MAY BE ASSIGNED. A STRING WILL BE DIS-
PLAYED WHEN ITS KEY IS PRESSED, BUT ONLY IN DIRECT MODE.
IN RUN MODE, THE VALUE OF THE ORIGINAL KEY, NOT THE
STRING, WILL BE PASSED TO THE PROGRAM.

Re-Configured Keys

You may re-configure a key or “undo” a previously re-configured key
by entering the command:

CONTROL and CURSOR RIGHT
Key Wizard will display the message:
CONFIG ?

Once again, type RETURN to abort. Otherwise enter the key you want
to re-configure. Just like Strings, all values are permissible and
similar restrictions apply. Hit RETURN to undo the key (ie if it was
previously re—configured) or else enter the new character which will
take its place. When you assign a value, use the ORIGINAL Key, not
any other which may have been re-configured to this value. For
example, if you assign “A” to key “Q" and then wish to assign “Q" to
key “J”, use the “Q" key for the assignment, even though the “Q" key
has already been given a value of “A” In this way you may rearrange
as many keys as you wish.

RE-CONFIGURED KEYS MAINTAIN THEIR ASSIGNED VALUES IN
BOTH DIRECT AND RUN MODES.

User Routine Keys

You may assign a User Routine to a key or undo a previously assigned
routine by entering the command:

CONTROL and RUN STOP
Key Wizard will display the message:
USER ?

Use RETURN to abort, otherwise enter the key you wish to have
assigned or to undo. Hit RETURN to undo an assignment or else enter
the start address of the User Routine in Hexadecimal. A 4 character
address is mandatory. The assigned routine will be automatically
started whenever the key is pressed.

You should bear in mind that the User Routine runs within the IRQ
Interrupt. This facility allows you to develop your own editing, or
other suitable, routines and then plug them into Key Wizard. Return
to Key Wizard by using an “RTS” instruction with register “X"
containing any standard ASCII keyboard code you may wish to have
displayed or actioned. If you do not wish to pass back an ASCII value
then set “X"” to the value, $FF.

Background Routine

You may wish to run a background task of your own on every
keyboard (timer) interrupt. To do this, change the SECOND and
THIRD BYTES of the DATA Statement in LINE 200. I have used 35,
234, which is the address of an RTS instruction in the Kernel. By
changing these to the address of your own routine, the JSR instruction
(first byte, 32) will cause your own routine to be called. Remember the
address is entered in the normal convention, low byte then high byte.

Conclusion

This ends Part 2 on the Commodore 64 Keyboard. I really enjoyed
developing the Key Wizard system and hope you enjoy the result. Go
on to Part 3 (next issue) if you have any interest in the design of a
Keyboard Driver or if you wish to add to the routines already built into
Key Wizard. You may find the exercise instructive and useful.

KEYWIZ-64: the BASIC loader/file saver for Key Wizard

IE
HL
DA
BO
CF
KF
Gl

10 TEmM s+ ++* s e s st ts s st rrr s rerer et s

14 rem =+ an amazing keyboard driver =

16 rem =*=*= for your commodore 64 s#»»

18 rem **+ aubrey stanley dec 1984

ZOTEIT #* %+ skt rrnrnrrrrr e kntn

22 rem *=

50tb$ = "kernel " :pg$ = "kprg " :rem =tells loader how
to load kwiz#

52 i=53216:nk =2:rem =irq address & n-key rollover
counts

54 if tb$ = "kernel" and pg$= "kprg" then 100:rem *use
kernel tables & data lines+

56 if ft>1 then 100:rem *program and table files loaded
from disk=

58 if ft=1 then 62:rem *program file loaded from disk=

60 ft =1:if pg$<>"kprg" then pg=1:load "0:" +pg$,8,1:
rem =load program files

62 ft = 2:if tb$<> "kernel " then tb=128:load "0:"
+tb$,8,1:rem =load table files

64 goto 100

55 FEIT sk ke ek kb bk ke bbbk ke bk ki k&

70 rem =save program, type — run 70+

72 pg® = "kwiz " :rem *program file name=

74 ad=41216:bd =49152:n =2400:rem *prog address,
saved from address, byte counts

76open282 "@:" +pgd+ " pw"

78 goto 88

ok

°F
AG
HA

ME
IN

GD

FN
PH
K
CB
FP

PB
10

The Transactor

28

Volume 5, Issue 06




JF | 79rem ssssssssnsxs PB| 332data 72, 77,141, 2,141,141, 2,141,142, 2
ID | 80 rem *save tables, type — run 80+ NP| 333 data 41, 4,240, 34,173,141, 2, 41, 2, 240
ME | 82 tb% = "kwiz.tb " :rem =table file name= PO| 334 data 11,169,128, 77,138, 2,141,138, 2, 76
LO | 84 ad=47072:bd =49152:n=2080:rem *table address, JL | 335data 185, 161, 173, 141, 2, 41, 1,240, 31, 77

saved from address, byte counts EK | 336 data 37, 161, 141, 37,161, 76, 185,161,173, 141
CC| 860pen282,"@: " +tb$s+ ",pw’ ID | 337 data 2, 41, 3,201, 3,208, 13,173,145, 2
NK | 88 print#2,chr$(ad-int(ad/256)*256), IF | 338 data 48, 8,173, 24,208, 73, 2,141, 24,208
BO | 90 print#2,chr$(ad/256); LO| 339 data 76, 185, 161, 173, 34,161,240, 29, 196, 197
AE | 92 fori=0to n-1 KH| 340 data 208, 6, 169, 64, 133, 203, 133, 197, 152, 160
JO | 94 print#2,chr$(peek(bd +1)); BH| 341 data 26136, 48, 10,217, 28, 161, 208, 248, 169
PD| 96 next i PE | 342 data 64, 153, 28, 161, 76, 185, 161, 32, 76, 163
AK | 98 close 2:end JF | 343 data 169, 64,172, 27,6161,6173, 36, 161, 153, 28
BK | QO rem #esessssnsssnnhsanknksnrshrrrsss EE | 344 data 161, 152, 73, 1,141, 27,161,169, 16, 141
EF | 100 ch=0:for n=0to 23:rem *irq vector code+* PE | 345 data 140, 2,169, 4,6141,139, 2, 32, 48,163
NF | 102 read a:poke i + n,a:ch=ch +a:next EM| 346 data 76, 185, 161, 173, 30, 161,240, 91,173, 141
ML | 103 if ch<>1996 then print" error in data " :end EN| 347 data 2, 41, 3,201, 3,240, 82, 44,138, 2
DN| 104 if pg =1 then 112:rem *bypass program pokes if GF | 348 data 48, 2,112, 75,173,140, 2,240, 5,206

program loaded from disk* PF | 349 data 140, 2,208, 65,206, 139, 2,208, 60, 169
FC| 106 ch=0:for j=41216 to 43615:rem *kwiz program LI | 350 data 4, 141,139, 2,169, 2,6141, 35,161,206

codex GH| 351 data 35, 161, 48, 45,6174, 35,161,189, 28, 161
LE | 108 read a:poke j,a:ch=ch +a:next IG | 352 data 201, 64, 240, 241, 141, 36, 161, 32, 76, 163
LL | 109 if ch<>301952 then print" error in data " :end JM| 353 data 44,138, 2, 48, 18, 41,127,201, 20,240
LP | 112 poke 41216 tb:rem =tells program whether tables are AK| 354 data 12,201, 32,240, 8,201, 29,6240, 4,201

loaded from disk* OH| 355data 17,208,212, 32, 48,163, 76,253, 162, 96
AF | 116 poke 41218,nk:rem =tells program the n-key factor» ED| 356 data 173, 36, 161, 133, 203, 133, 197, 108, 143, 2
HF | 118 poke 56334,peek(56334)and254:rem +disable HF | 357 data 224, 224, 176, 13, 138, 166, 198, 236, 137, 2

keyboard (timer) interrupt= HM| 358 data 176, 5,157,119, 2,230,198, 96,173, 36
GH| 120 poke 788, (i-int(i/256)*256):rem *set up irq vector |J | 359 data 161, 10, 10, 168,173,141, 2, 10,201, 8

address low byte= GG| 360 data 144, 2,169, 6,170,189, 3,161,133,245
CG| 122 poke 789,(i/256):rem *set up irq vector high byte* LK | 361 data 189, 4, 161, 133, 246, 177, 245, 170,172, 36
KM| 124 poke 56334,peek(56334)or1.rem *enable keyboard JM| 362 data 161, 96, 32,234, 255, 165, 204, 208, 41,198

(timer) interrupt LK | 363 data 205, 208, 37,169, 20, 133, 205, 164,211, 70
NE | 126 end:rem =of loading* OL | 364 data 207, 174, 135, 2,177,209,176, 17,230, 207
KG| 128 rem s*xssxssrssnsnskss sk hanmhnsntsss FD | 365 data 133, 206, 32, 36,234, 177,243, 141,135, 2
NP | 200 data32,35,234,165,1,41,254, AE | 366 data 174, 134, 2,165,206, 73,128, 32, 28,234

133,1,32,39,161,165,1,9,1,133 NJ | 367 data 165, 1, 41, 16,240, 10,160, 0,132,192
LD | 201 data1,76,126,234,0,90,32 EF | 368data165, 1, 9, 32,208, 8,165,6192,208 6
EO | 2500 FEITY ko e o e o oot o o o o ook oo ook ok ok ok o ok ok e AB | 369 data 165, 1, 41, 31,133, 1, 96,173, 0, 161
AB| 300data 0, 0O, 2, 0,184, 0,185 0,186, O JI | 370 data 208, 44, 162, 63, 189, 129, 235, 157, 0, 160
NG| 301 data 187, 254, 253, 251, 247, 239, 223, 191, 127,255 |FA | 371 data202, 16,247,162, 63,189, 194,235,157, 64
NE | 302 data 255, 255, 255, 255, 255, 255,255, 0, 0, 0 |OK| 372 data 160,202, 16,247,6162, 63,189, 3,236,157
BD|303data 0, 0, 0 O O O O 0 0 44 |AJ|373data128, 160,202, 16,247,162, 63,189, 120,236
AF| 304 data 1. 161, 48 62, 32, 185,163,169, 128, 141 |CK| 374 data 157, 192, 160, 202, 16,247,173, 0,161, 16
OK| 305data 1,161,169, 46, 160, 165, 141,143, 2,140 lJ | 375data 3, 76,116, 164, 162, 228, 142, 199, 160, 232
IC | 306 data 144, 2,169, 0,133,198, 141,141, 2, 141 JJ | 376 data 142, 194, 160, 232, 142, 255, 160, 232, 142, 252
DN| 307 data 142, 2,141, 27,161,141, 30,161,141, 37 |BK| 377 data 160, 232, 142, 192, 160, 232, 142, 193, 160, 232
CG/| 308 data 161, 141. 38 161, 169, 64,133,203, 133, 197 |LG| 378 data 142, 243, 160, 169, 0, 133, 245, 169, 184, 133
HE | 309 data 141, 28, 161, 141, 29, 161, 169, 255,162, 7 |OA| 379 data246, 32,117,164,189, 0,160, 145, 245, 136
KH!| 310 data 157. 19, 161,202, 16,250, 32,110,163,173 |LP | 380 data 136, 136, 136, 202, 16,244,169, 0, 133, 245
ME!| 311 data 38 161,208, 17,173, 30,161,208, 20,169 |GO| 381 data 169, 185, 133,246, 32,117, 164,189, 64, 160
EN| 312data 0 141, 0,220,173, 1,220,201,255 208 |GH| 382 data 145, 245, 136, 136, 136, 136, 202, 16, 244, 169
GE| 313 data 8 162,254, 32, 55,163, 76,150,161,169 |JK | 383data 0, 133,245, 169, 186, 133,246, 32,117,164
BA| 314data 8,141, 31,161, 32,156, 161, 32, 207, 162 Hl | 384 data 189, 128, 160, 145, 245, 136, 136, 136, 136, 202
00| 315 data 169, 127, 141, 0,220, 96,206, 31,161, 16 |EA| 385data 16,244,169, 0, 133, 245, 169, 187, 133, 246
HK| 316data 1, 96,174, 31,161,189, 11,161,141, 0 |NO| 386 data 32. 117, 164, 189, 192, 160, 145, 245, 136, 136
PN | 317 data 220, 173, 1,220,205, 1,220,208, 248, 93 Il | 387 data 136, 136, 202, 16, 244,162, 31,138, 157,224
DH| 318 data 19, 161, 141, 32,161,172, 32, 161,240,222 |DL | 388 data 183,202, 16,249, 96, 160, 255,169, O, 145
EG| 319 data 174, 31,161,136, 152, 45, 32,161,168, 77 |LO| 389 data 245, 136, 16,251,162, 63,160,252, 96,252
OP| 320 data 32, 161, 141, 33,161,140, 32,161, 93, 19 |EN| 390 data 167, 79,165, 78, 165, 235, 167, 105, 165, 119
OP| 321 data 161, 45, 33,161,141, 34,161,240, 15,206 |DM| 391 data 166, 16,167, 43,168, 120, 168, 158, 168, 139
0G| 322 data 30, 161,173, 33,161, 93, 19,161, 29, 19 |[MO| 392 data 168, 78,165, 78,165, 78,165, 78,165, 78
AE | 323 data 161, 76, 7,162,173, 30,161,205 2,161 |KO| 393 data 165, 78,165, 78,165, 78,165, 78,165, 78
HL | 324 data 176, 199, 173, 141, 2, 41, 3,201, 3,240 |LO| 394 data165, 78,165, 78,165, 78,165, 78,169, 78
HF | 325 data 190, 238, 30, 161, 173, 33,161, 93, 19,161 |MO| 395 data 165, 78,165, 78,165, 78,165, 78,165, 78
DP| 326 data 61, 19,161,157, 19,161,173, 31,161, 10 |OD| 396 data 165, 78,165, 0O, 0,188,189, 190,191, 83
HP| 327 data 10. 10,168, 173, 33, 161, 162, 255, 142, 36 |GL| 397 data 84, 82, 73, 78, 71, 32, 63,157, 67, 79
ME | 328 data 161, 238, 36, 161, 74, 144,250,152, 77, 36 |FM|398data 78, 71, 73, 71, 32, 63,157, 85, 83, 69
KA | 329 data 161, 141, 36, 161, 10, 10,168,173, 3,161 JJ | 399 data 82, 32, 63,157, 32, 65, 76, 76, 32, 85
LC | 330 data 133, 245, 173, 4, 161, 133,246, 177,245,170 |KE | 400 data 83, 69, 68, 32, 85, 78, 68, 79, 78, 69
BH| 331 data 172, 36,161,224, 5,176, 76,224, 3,240 |FB|401data 32, 79, 46, 75, 46, 78, 85, 76, 76, 32
The Transactor 29 Volume 5, Issue 06




MC| 402 data 75, 69, 89, 32, 65, 66, 79, 82, 84, 83 ID | 543 data 9, 41, 15,6238, 41,165,172, 41, 165, 192
OA| 403 data 65, 86, 69, 32, 80, 71, 83, 65, 86, 69 LD | 544 data 4,240, 8,192, 2,240, 4, 10, 10, 10
HM| 404 data 32, 84, 66, 157, 95, 254, 226, 157, 255, 1 BB| 545 data 10,192, 3,176, 9, 13, 22,6165, 141, 22
JM1 405 data 255, 228, 0,184, 8, 0,185, 30, 224, 191 BE | 546 data 165, 76, 223, 167, 13, 21, 165, 141, 21,165
KJ | 406 data 46, 165, 78,165, 0O, O, 0O, 0, 0, O JE | 547 data 192, 4,240, 3, 76, 58,163, 32, 58, 163
PK | 407 data 32, 52, 165, 76, 58, 163, 138, 224, 224, 176 PA | 548 data 76, 92, 166, 76, 248, 165, 32, 114, 169, 32
FI | 408 data 2,169,224, 41, 31, 10, 168, 185, 131, 164 OE | 549 data 188, 169, 174, 24, 165, 36, 157, 16, 3, 108
JN | 409 data 141, 195, 164, 185, 132, 164, 141, 196, 164, 108 Il | 550 data 25, 165, 96, 36, 157, 16, 18,169, 1, 45
LC | 410 data 195, 164, 96, 32,114,169, 32, 188, 169, 174 KE | 551 data 37, 161, 240, 11,6224, 20,6208, 8,162, 29
FK| 411 data 24, 165, 36, 157, 16, 242, 169, 78, 141, 38 ME| 552 data 32, 58, 163, 162, 20, 96, 224, 32, 144, 19
HB | 412 data 165, 169, 165, 141, 39, 165, 76, 239, 168, 169 CN| 553 data 224, 128, 144, 4,224,160, 144, 11,6142, 20
OH| 413 data 131, 141, 143, 2,169, 165, 141, 144, 2, 169 IE | 554 data 165, 162, 148, 32, 58, 163,174, 20, 165, 96
PB | 414 data 201, 133, 245, 169, 164, 133, 246, 169, 9, 32 Hl | 555 data 36, 157, 16, 72, 169, 183, 160, 224, 162, 192
CJ | 415 data 226, 168, 76, 78, 170, 224, 254, 240, 110, 176 KM| 556 data 44, 42,6165, 48, 6,169,161,160, 0, 162
MF| 416 data 8, 224, 227,176, 107, 224, 13, 240, 113, 32 NF | 557 data 171, 133, 252, 132, 251, 169, 192, 133, 254, 160
ND| 417 data 114, 169, 32, 133, 169, 32, 188, 169, 173, 26 HN| 558 data 0, 132, 253, 177, 251, 145, 253, 200, 208, 249
GL | 418 data 165, 201, 226, 240, 87, 32,152,169, 169, O AE | 559 data 230, 252, 230, 254, 228, 252, 208, 241, 44 42
HB | 419 data 141, 22, 165, 224, 225, 240, 47,160, 32,136 PC | 560 data 165, 48, 10,169, 0,141, 1,192, 32, 50
LJ | 420 data 16, 16, 169, 226, 133, 245, 169, 164, 133, 246 FG| 561 data 170,208, 3, 32, 64,6170,169,128, 77, 42
CP| 421 data169, 9, 32,226, 168, 76, 98, 166, 185, 224 CG| 562 data 165, 141, 42,165, 162, 141, 96, 36, 157, 16
EL | 422 data 183, 201, 255, 240, 230, 141, 21, 165, 142, 20 IC | 563 data 14,172, 43, 165,136, 16, 2,6160, 15,140
ML | 423 data 165, 169, 255, 153, 224, 183, 169, 225, 141, 19 DG | 564 data 43, 165, 140, 33,208, 96, 36, 157, 16, 14
PN | 424 data 165, 32, 226, 169, 174, 20, 165, 224, 255, 208 Il | 565 data172, 45,165,136, 16, 2,160, 15,140, 45
DK| 425data 3, 32, 8,170, 32, 58,163, 169, 18, 141 PC | 566 data 165, 140, 32,208, 96, 36,157, 16, 42,6172
NK | 426 data 143, 2,169, 166, 141,144, 2 162, 61, 76 GH| 567 data 44, 165, 136, 16, 2,160, 15,140, 44,165
CO| 427 data 58, 163, 162, 63, 32, 58, 163, 162, 157, 76 EN| 568 data 140, 134, 2, 152, 160, 216, 132, 246, 160, 0
HD| 428 data 58, 163, 169, 255, 133 MA | 569 data 132, 245, 145, 245, 200, 208, 4, 230, 246, 208
LH | 500 data 245, 169, 164, 133, 246, 169, 6, 32, 226, 168 JE | 570 data 247, 192, 232, 208, 243, 166, 246, 224, 219, 208
EF | 501 data 76, 98, 166, 224, 254, 240, 41,6 224,227,176 BF | 571 data 237, 162, 255, 96, 168, 10, 10, 10, 10, 10
HO| 502 data 222, 224, 225, 208, 9, 32,114,169, 32, 188 HL | 572 data 133, 245, 152, 74, 74, 74,168, 185, 197, 164
FA | 503 data 169, 174, 24, 165, 224, 13,240, 26,173, 21 JD | 573 data 133, 246, 96, 141, 41,165,160, 0, 32, 10
AD | 504 data 165, 32,207,168, 172, 22, 165, 138, 145, 245 Bl | 574 data 169, 208, 251, 162, 255, 96, 173, 26, 165, 141
KC | 505 data 200, 238, 22, 165, 192, 32,240, 3, 76, 58 EA| 575 data 41, 165, 173, 25, 165, 32,207,168,160, O
HP | 506 data 163, 32, 58, 163,173, 22, 165,208, 18,6173 DH| 576 data 76, 27,169, 32, 10, 169, 208, 248, 162, 255
HE | 507 data 21, 165, 168, 153, 224, 183, 173, 20, 165, 141 IA | 577 data 108, 38, 165, 177, 245, 201, 141, 208, 2, 169
MF | 508 data 19, 165, 32, 22,170,208, 3, 32, 36,170 HB| 578 data 13,170, 32, 58,163, 200, 206, 41,165, 96
OC | 509 data 32, 226, 169, 173, 40, 165, 141,138, 2, 169 BC | 579 data 165, 198, 205, 137, 2, 144,222, 165, 245, 141
KM| 510 data 46, 141, 143, 2,169, 165, 141,144, 2,6 162 EN| 580 data 34, 165, 165, 246, 141, 35, 165, 140, 33, 165
OA| 511 data 141, 76, 58, 163, 169, 145, 141,143, 2,169 PN | 581 data173, 143, 2, 6141, 36, 165,173, 144, 2,6 141
GO| 512 data 166, 141, 144, 2,169, 210, 133, 245, 169, 164 MJ| 582 data 37, 165, 169, 77,141,143, 2,169, 169, 141
BB | 513 data 133, 246, 169, 9, 32,6 226, 168, 76, 78,170 LB | 583 data 144, 2, 162, 255, 142, 38, 161, 76, 58, 163
PP | 514 data 224, 254, 240, 68,176, 77,6224 225,6 144, 3 OH | 584 data 165, 198, 208, 244, 173, 34, 165, 133, 245, 173
PM| 515 data 76, 248, 165,224, 13,208, 3, 76, 2,166 IO | 585data 35, 165, 133, 246, 172, 33, 165,173, 36, 165
JB | 516 data 32, 114,169, 32,6133, 169, 32, 188, 169, 32 DA| 586 data 141, 143, 2,173, 37,165, 141,144, 2, 169
OJ| 517 data 152, 169, 173, 22, 165, 201, 226, 240, 8, 142 NH| 587 data 0, 141, 38,161, 76, 0,169,173, 36, 161
NI | 518 data 20, 165, 169, 226, 141, 22,165, 174, 20, 165 DP| 588 data 10, 10,141, 30, 165, 165, 245, 141, 31, 165
MG| 519 data 224, 255,208, 3, 32, 8,170, 32, 58, 163 BM| 589 data 165, 246, 141, 32,165, 96, 173, 30, 165, 141
KO | 520 data 169, 220, 141, 143, 2,169, 166, 141, 144, 2 HF | 590 data 27, 165, 173, 31,165, 141, 28, 165,173, 32
GG| 521 data 162, 61, 76, 58, 163, 224, 254, 240, 249, 224 OG| 591 data 165, 141, 29,165, 96,173, 23, 165, 141, 19
KM| 522 data 227, 144, 3, 76,248,165, 32, 114,169, 32 IM | 592 data 165, 173, 24, 165, 141, 20, 165, 173, 25, 165
EH | 523 data 188, 169, 224, 225, 240, 7,173, 26, 165, 201 GG| 593 data 141, 21,165,173, 26, 165, 141, 22,165, 96
BO| 524 data 226, 208, 3,174, 24,6165,6224, 13,208, 8 BL | 594 data 173, 28, 165, 133, 245, 173, 29, 165, 133, 246
GD| 525 data 169, 0,141, 22,6165, 76, 81,166, 142, 19 NK| 595 data 96, 173, 31,165, 133, 245, 173, 32, 165, 133
NB | 526 data 165, 32, 58, 163, 76, 92, 166, 169, 42, 141 HM| 596 data 246, 173, 30, 165, 168, 177, 245, 141, 23, 165
HP | 527 data 143, 2,169, 167, 141,144, 2,169, 219, 133 NF | 597 data 200, 177, 245, 141, 24,165, 200, 177, 245, 141
KJ | 528 data 245, 169, 164, 133, 246, 169, 7, 32, 226, 168 PP | 598 data 25, 165, 200, 177, 245, 141, 26, 165, 96, 173
KP| 529 data 76, 78,170, 224, 254,240, 82,6176, 18,224 EK | 599 data 28, 165, 133, 245, 173, 29, 165, 133, 246, 173
CA | 530 data 224, 144, 7,6224,6 227,240, 10, 76, 248, 165 DJ | 600 data 27, 165, 168, 173, 19, 165, 145, 245, 200, 173
PH| 531 data224, 13,208, 3, 76, 2,6166, 32,114,169 |GH| 601 data 20, 165, 145, 245, 200, 173, 21, 165, 145, 245
JJ | 532 data 32, 133, 169, 32, 188, 169, 32, 152, 169, 224 PJ | 602 data 200, 173, 22, 165, 145, 245, 96, 169, 247, 133
CO| 533 data 227, 240, 8,142, 20, 165, 169, 227,141, 19 IO | 603 data 245, 169, 164, 133, 246, 169, 8, 32, 226, 168
HP | 534 data 165, 169, 0, 141, 21, 165, 141, 22,6165, 174 |A | 604 data 96, 169, 235, 133, 245, 169, 164, 133, 246, 169
KK | 535 data 20, 165, 224, 255,208, 3, 32, 8,170, 32 Kl | 605data 7, 32,6 226, 168, 96, 169, 242, 133, 245, 169
EG| 536 data 58, 163, 169, 0, 141, 41,165, 169, 131, 141 NI | 606 data 164, 133, 246, 169, 5, 32, 226, 168, 96, 169
PB| 537 data 143, 2,169, 167,141,144, 2,162, 61, 76 FB | 607 data 5, 133, 245, 169, 165, 133, 246, 169, 7, 32
EB | 538 data 58, 163, 224, 254, 240, 249, 224, 228, 144, 3 R | 608 data 226, 168, 96, 169, 12, 133, 245, 169, 165, 133
HJ | 539 data 76, 248, 165, 224, 225,144, 9, 32,114,169 AJ | 609 data 246, 169, 7, 32,6226, 168, 96,173,138, 2
NC| 540 data 32, 188, 169, 174, 24,6165, 224, 13,208, 3 CB| 610 data 141, 40, 165, 169, 64,141,138, 2, 96, 1
EP | 541 data 76, 81, 166, 138,201, 48,144, 65,201, 64 |GL| 611data255, 1,255, 1,255
PE | 542 data 240, 61,144, 7,201, 71,176, 55, 24,105
The Transactor 30 Volume 5, Issue 06




Linked Lists
Part 2

In Part 1 we examined how linked lists could be used to “sort” the
records in a file into a particular order. It was shown that the
technique of linking avoided the shuffling of elements within the
storage array, allowed all the items to be kept in the same array and
permitted different groups of these items to be sorted on different
fields.

The Rentawreck rental agency now has all of its vehicles linked into
three lists: one for those rented (linked by due date), another for those
available (linked by mileage), and a final list for the vehicles currently
being serviced (also linked by mileage).

We now must write a program which will let the company update its
lists as vehicles are returned, rented, serviced, sold or purchased, and
also display or print any one of the lists in correct order. This program
will be one to be used interactively over and over again, whereas the
previous startup program was only used once to produce the initial
linkages. For ease of use this program will be menu-driven. Figure 1
shows the menu choices.

Loading the Lists

The linked lists generated in Part 1 were stored in a sequential file
along with the size of the arrays being used and the entry points to
each of the linked lists. Program 1 reads these data. Table 1 defines
the variables used.

After reading in the array size (S) which had been used for saving the
file (line 30), the user is then asked if he/she wishes to increase the
array sizes (lines 70-140). This might be required when several new
vehicles are purchased. As an assist, the number of elements cur-
rently used is shown (40-50). Following this decision, the stored data
is read in (240-270). If the arrays were increased in size the extra
elements in the licence plate, due date and mileage arrays are now sel
to blanks (320-340) as in the Part 1 program and the pointer list
altered to accommodate the new free elements (360-410).

Lines 230 and 260 are needed due to the dynamic nature of BASIC
strings. This provides for very flexible programming as it is not
necessary to tell the computer how many bytes to allocate for each
string variable; rather the allocation is based on the number of bytes
actually used. An unfortunate side effect of this is that when a string
such as ABC" is saved in a sequential file and then recalled, the
leading blanks are lost. Since the decision was made in Part 1 to use
strings to store mileages, the values read from the file must be
“massaged”’ to put in leading blanks where necessary. Otherwise the
mileage string *'1569" will be greater than the mileage string “14583"!
Lines 230 and 260 make sure “1569" is used as * 1569

Displaying or Printing a List
To display or print one of the lists in order we simply enter the array

using the pointer to the start of the list and then, using the linkage
array, follow the list through until a zero is found as a pointer to the

K. Murray Smith
London, Ont.

next element. Menu selection 0 or 1 will prompt with a second menu
requesting which of the three lists is required.

Updating a List

Whenever a vehicle's status is altered, there are two lists affected. For
example, when a vehicle is sold, pointers in the available portion of
the link array must be altered to exclude this vehicle and pointers for
the free space must be altered to include the elements formerly used
by this vehicle. When a rented vehicle is returned, pointers must be
changed in both the rented and available sections of the link array.

Menu selections 2-7 control list updates to log a returned vehicle, to
rent one, to send one for servicing, to remove a vehicle to be sold and
to make available a vehicle that has just been purchased.

The Mechanics of Updating

Adding or removing an element to or from a list are the basic list
updating operations. The classical way of deleting an element is to
locate it in the array and move every element past it one location
closer to the front. Figure 2a shows an alphabetic array from which D
is to be deleted and Figure 2b shows the array after the deletion.
Insertion of the letter H into the array of Figure 2b requires locating
where the H belongs, moving every element past this spot one
location farther back in the array and then inserting the H.

This method for insertion and deletion is not efficient if the operation
occurs anywhere but close to the end of the array, if a multidimen-
sional array is involved or if the elements of more than one array must
be moved.

Linked lists show their superiority in the areas of adding and remov-
ing items as well. To delete an element, simply alter the pointers to
and from this element and then return this element to the free list
(making it the first one available for future use which will tend to keep
early elements of arrays occupied). To insert a new quantity, it is first
stored in the next free element, the pointer to the first free one Is
adjusted, its proper location is found and then the pointers to and from
it are set. This seems like a great deal of work but the implementation
is simple and it avoids shifting many array elements.

Changing an element from one linked list to another does not require
a physical move of the data: one set of pointers is altered to exclude a
specific element in one or more arrays and another set of pointers is
altered to include this element.

To insert or delete an element at the beginning of a list requires that
the variable storing the entry point to that linked list be updated
appropriately. For elements at the end of a list, it must also be
remembered to set the appropriate pointer to zero to indicate the end
of a list.

The Transactor

Volume 5, Issue 06




The Updating Program

Program 2 contains the additions to Program 1 to perform the menu
functions. In addition to outputting and updating lists, the menu
provides an additional choice: a check for overdue vehicles in which
all vehicles with a due date prior to the current date are displayed on
the screen (with a printed-list option). In this way all the information
on a possibly stolen vehicle is available quickly.

Table 2 contains a brief description of the new variables introduced in
Program 2.

FL is used as a flag to indicate whether or not any lists have been
altered during the running of the program. The flag is lowered (set to
0)in line 145 and will be raised (set to 1) if there are any changes.

Starting at line 500 the menu is presented (500-620), the selection is
obtained (630) and checked for validity (640-660). Although all the
choices are single digit, INPUT is used rather than GET because of the
brief moment in which the user might detect an erroneous input and
then be able to change it. As the program stands, this is important as it
has not been “idiot-proofed” as would be necessary in a commercial
package. Some of the options will not let you exit them until they have
been successfully completed. Of course you could use the comple-
mentary routine to undo the error if this ever happens to you. Keep in
mind as well that the purpose of the program is to illustrate the use of
linked lists, not bullet-proofing!

Control is then transferred to the appropriate subroutine (670-700).
Every return from a subroutine will send the user back to the main

menu (690,710).

The block beginning with line 1000 handles options 0 and 1 for
showing a particular list. A menu is presented (1010-1070) and the
selection (1080) is checked for validity (1090-1110). If the option is not
“3" to return to the main menu (1120), then the entry point to the
appropriate list is established (1130-1150). If the entry point to a list
happens to be a zero (1160), then there are no vehicles in the list. After
opening a channel to the printer if necessary (1180), the information
about the first vehicle in the list is displayed or printed as required
(1190-1200) and a check is made to see if this is the last vehicle in the
list (1210). If not, the variable EN is changed to point to the next item
in the list (1220), this is printed or displayed and so on. An end of
listing message is printed (1240), the printer channel is shut down if
necessary (1250) and the program pauses (1260-1290) before return-
ing to the display-print sub-menu.

The line-2000 block handles the return of a rented vehicle. After
checking to see if in fact there are any vehicles rented (2020) and
returning to the main menu if there are not (2030-2070), the returned
vehicle’s licence plate number and the new odometer reading are
requested (2080-2150). The odometer reading is then massaged
(2160-2170) as discussed previously and the vehicle is located in the
rental list and removed (2190-2200). Since the subroutine at 11000 is
called from several options in the main menu, the entry point for the
rental list must be specified (2190). A value of 1 for F2 indicates that
some problem occurred in the search subroutine and an immediate
return to the main menu is performed (22 10). Note that the value of FL
iIs not changed until line 2290, that is until the vehicle has been
successfully put into the available list (2250-2270). Having found the
returned vehicle in the rented list, its mileage and due date entries are
adjusted (2220-2230) and the pointer to the beginning of the rental list
is updated (2240) if the first vehicle on the rented list was the one
removed. Putting the returned vehicle in the available list also uses a

call to a general subroutine at line 13000 and the correct list entry

point is needed and this is also updated if necessary after the return
(2250-2280).

The line-3000 block looks after the renting of a vehicle. It is very
similar to the above block and so does not need to be described in
detail. Line 3130 checks to see if there are more or fewer than 5
characters in the requested due date or if the month number is more
than 12 or if the day is more than 31. Again not foolproof, but will trap
quite a few common errors. Note also the different subroutine re-
quired to put the vehicle in the rented list (3250).

The blocks at lines 4000 and 5000 move the vehicles between the
available list and the list of vehicles being serviced and are similar to
the previous two blocks.

The line-6000 block controls the selling of a vehicle. In this operation
the vehicle is only removed from a list and not added to another so
there is no second GOSUB. Also the total number of vehicles owned

by the company (or the number of array elements actually in use) is
reduced by one (6180).

The next block makes a new vehicle available by finding the first
available element (7200), storing this vehicle’s data in this element of
the plate number and mileage arrays (7220-7230) and then resetting
the pointer to the start of the free space (7210). This vehicle is then
linked into the available list (7240-7260) and the total number of
vehicles is increased by one (7270).

The line-8000 block checks for overdue vehicles. The main part is the

section which traces the path through the list of rented vehicles
(8160-8220).

The final block of coding coming from the main menu begins at line
9000. If the flag FL is still down, then no changes have been made to
any lists and so the program stops at this point (9010). If the flag is
raised (value 1), then the old file called LINKED LISTS is scratched
(9020-9040) and an updated one of the same name is created (9050-
9120). Line 9050 defines a carriage return variable for use in the
PRINT#* operation.

Blocks beginning with lines 11000 and 12000 locate a vehicle by plate
number and remove it from that list. Since they differ only in the last
couple of lines, it is possible to combine them if a check is made to see
which finishing part is required and if the calling routines use a
pointer which can be passed to the subroutine to indicate which part
is needed. However, the increased program complexity needed to
save less than a dozen lines is not warranted.

At the beginning of the line=11000 block a flag is set low (11010) and it
will be raised (set to 1) if the vehicle is not found in the list. The entry
point to the appropriate list is copied to K (11020). A check is made to
see if the plate number being looked for is at the beginning of the list
(11030). If not, this subscript is stored for future use (11040) and the
element to be examined is set to the next one in the list (11050). If this
element is not zero (11060), then it is checked for a match. If the
element number is zero, we are at the end of the list with no match
made. A message is printed, the flag F2 is raised and we return to the
calling routine (11070-11120). If a match was found in line 11030,
then a check is made to see if the match occurred for the first element
in the list (11130). If so, this vehicle is removed from the list by setting
the entry point to this list to the next element of the list (11140). If not,
the element in the link array which pointed to this element is set to
skip this element and point to the next one (11160). In either of the

The Transactor

Volume 5, Issue 06




above cases, the location of the match is kept for future use (11170).

As mentioned before, the line-12000 block is almost the same as the
one described above. However, when a vehicle is sold we do not have
to remember where it is in the array. In fact, we want to make that
location available for use if a vehicle is purchased and so we set the
pointer of the removed vehicle to point to the first element of the free
list (12160) and then make the location of the removed vehicle the
new start of the free list (12180).

The blocks at lines 13000 and 14000 locate by mileage and due date
respectively the correct location for an item in a list and then insert the
item in that spot. As discussed previously, these routines also could be
combined into one. As in the above two blocks, the list is searched to
find the correct location for the vehicle whose data are in the elements
numbered N of the arrays (13010-13050 or 14010-14050). This N is
the quantity that had been saved above for future use. If the vehicle
belongs at the end of the list, the pointer of the last element in the list
is set to point to element N (13060 or 14060) and the pointer for
element N is set to zero to indicate the end of the list (13070 or 14070).
If it belongs at the beginning of the list, then the list entry value is set
to N (13100 or 14100) and the pointer for element N is set to what used
to be the first element of the list (13130 or 14130). If the vehicle
belongs somewhere between the endpoints of the list, the pointer of
the previous vehicle is changed to point to this one (13120 or 14120)
and this one’s pointer is set to the next vehicle's element number
(13130 or 14130).

Summary

Now that the updating program for Rentawreck is debugged and
working, the sample DATA statements used in the Part 1 program can
be replaced by the actual vehicle data and the array sizes increased to
a sufficiently large value. More arrays for additional fields of informa-
tion can also be added now.

If you have had an opportunity to run the final programs from Part 1

have the ability to add items to or remove them from a linked list and
you realize that single characters entered from the keyboard could be
the items in a linked list, then you might be able to write that special
routine you seem to need all the time but can’t find in a wordprocessor
within the reach of your budget. . .

Figure 1
LINKED LIST MENU
Display a list........ccooeviiiiiiniiiinnnns 0
Print @ liSt......ovvvveeieeeiiereieceinieeeees |
Return a vehicle.......cooeevevvveivennnnnnnn, 2
Rent a vehicle...........ovvevvvvveeiieiicnnnn, 3
Remove a vehicle for service........... 4
Make serviced vehicle available......5
Sell a vehicle......coooveiiiiviiiiiiieieeennnee. 6
Add a new vehicle.......coooeeiiviiecennnn. 7
Check for overdue vehicles............. 8
Quit PrOgram........cccoovvverreerenriiniinin, 9

Figure 2
2a. A B D G I K M beforedeletion of D
% A B G1 K M __ after deletionof D
2%¢ A B GH 1 K M afterinsertion of H

Table 1
Description of Variables

BS$ a string of 6 blanks to provide leading blanks where
necessary in the mileage strings

D$ single letter answer to any yes/no question

LD the array of pointers for the linked lists

NS new array size if needed

PL$,DUS$,MIS$ arrays for licence plate nums, due dates, mileages

and Part 2, you may be disappointed at how long it takes to establish 5 the size of the arrays stored in the file
the initial linked lists and surprised at how rapidly you return to the 52 the size to which arrays will be dimensioned
main menu after making a change in a list. Remember though that the ~ SR,SA,SS the element numbers for the start of the lists of vehicles
initial setup is done only once. (A machine language subroutine for currently rented, available or being serviced
the actual linking section might appeal to someone out there as well.) ~ SF the first free element in the arrays
UL the number of elements actually used in arrays in the
There are several features of linked lists which have not been file
addressed in the car rental example. Consider the request for all of the
data about a vehicle whose licence number you are given. It is Table 2
awkward to have to go through all three lists looking for this vehicle. If Description of Variables
all the vehicles were linked alphabetically by licence plate, the search
would be faster. The programming cost to implement this? One more ~ Cl1 ~ main menu choice
array. C2 display-print menu choice
CR$ holds a keyboard entry (expecting a carriage return)
Also note that all of the searches begin at the start of the linked list. In ~ DA$ today’s date
the case of a search of all vehicles for a particular plate number, why ~ EN  current element number while going through a linked list
not just look at the first entry in the plate array? If this is before the FL aflagto indicate whether changes have been made to any list
plate we want then go on further following the linkage, but if itis past F2 a flag to indicate that an abnormal condition caused an exit from
the one we want then why not back up through the list? To do this a GOSUB
would require what is known as backward linking of the plate K  thecurrent element being examined in a list (similar to EN)
numbers, a fairly easy task once forward linking is understood. LS  subscript of the last element examined in a list
N location of an element to be added to a list
Possibly by now you have thought of some other applications for ND$ an input due date
linked lists — that coin or stamp collection you have always meantto  NM$ an input odometer reading
organize, your recipes, that mailing list which seems to take forever to NP$ an input licence plate number
update and re-sort. You may even have seen that some of the sections S$ a blank space used for output
of the Part 2 program can be easily written in machine code. Onceyou SE  entry pointto a linked list
The Transactor 33 Volume 5, Issue 06




KG
AJ
MB
El
ME
MD
EG
HB
AL
CA
JP
GA
KL
IL
LI
RJ
NH
NF
OC
G
BK
JK
EA
HA
HA
KJ
NO
LO
JN
ED
JJ
DC
NC
CC
ND
GP
GG
BG
NM
KJ
FA
CL
DC
EO
PB

NG
JP
OJ
AL
BH
Ol
HL
BE
GJ
CO
GE
LD
CD
BK

Program 1

10 rem- program 1

20 open1,8,2, " O:linked lists,r "

30 input#1,s,ul,sr,sa,ss,sf

40 print chr$(147) " the array sizes are " ;s
50 print ul; " elements are currently used.
60 fori=110 1000:next |

70 print " do you wish to increase the array sizes”
80 print " at this time? "

90 print" (type yorn): *;

100 get d$

110ifd$=""then 100

120 print d$

130ifd$="n" then 210

140 if d$<>"y " then 90

150 input " new array size " ;ns

160 if ns>s then 190

170 print " new size must be greater than " ;s
180 goto 150

190sz=ns

200 goto 220

210sz=s

220 dim pl$(sz),dud(sz),mib(sz),Id(sz)
230 b$ = "[6 spaces] "

240fori=1tos

250 :input#1,pl$(i), dud(i),miS(i),Id(i)

260 mi(i) = leftd(b$,6-len(mid(i))) + miS(i)
270 next |

280 close

290 if ns =0 then 440

300 rem- initialize new array sections
310fori=s+1tons

320 :pl$(i)= "[7 spaces]”

330 :du$(i)= "[5 spaces]| "

340 :mi$(i)= " [6 spaces]|”

350 next |

360 rem- link rest of free space
370i=s

380 1d()=i+1

390 :i=i+1

400 if i<ns then 380

410 1d(ns)=0

420 remm- make array size change permanent
430 if sz>sthen s=sz

440 print” << listloading completed >>"
19999 end

Program 2

10 rem- program 2

145fl=0

500 rem- main menu

510 print * rentawreck car rental agency "
520 printtab(3); "
530 printtab(3); "
540 printtab(3); "
550 printtab(3); "
560 printtab(3); "
570 printtab(3); "
580 printtab(3); "
590 printtab(3); "
600 printtab(3); "
610 printtab(3); "

sellavehicle. ................
addanewvehicle . ...........
heck for overdue vehicles . . . ..
quitprogram .. ..............

CP
NA
PD
OA
AE
FL
FK
DF
HH

HG
MH
-
EG
PM
GE
AD
PH
CK
DN
MD
IL
CF
ME
PB
HO
LD
KJ
CN
JO
LF
KB
MM
AA
AN
EE
PD
GK
NG
CF
PP
PO
CM
JD
IN
DK
JH
CF
CD
KC
JC
GA
OD
GC
EJ
JP
EG
Ol
HD
BE
CM
JC
DJ
MA

620 printtab(12); * [fyour choice 0-9)":" " ;

630 input c1

640 ifc1>=0and c1<=9then 670

650 print " <<invalid choice: must be 0—Q>>- )

660 goto 620

670 if c1>1 then 700

680 gosub 1000

690 goto 500

/00 on c1-1 gosub 2000,3000,4000,5000,
6000,7000,8000,9000

710 goto 500

1000 rem- display (c1=0) or print (c1 = 1)a list
1010 ifc1 =0 then print” ";tab(14); " display menu "
1020 if c1 =1 then print” ";tab(14); " print menu "
1030 printtab(8); "§srented vehicles . . . . ... .. 0"

1040 printtab(8); "
1050 printtab(8);
1060 printtab(8); "
1070 printtab(12); "
1080 input c2
1090 if c2>=0and c2<=3 then 1120

1100 print" <<invalid choice: must be 0-3>>|Sl818}"
1110 goto 1070

1120 if c2 =3 then return

1130 ifc2=0thenen=sr

1140 ifc2=1thenen=sa

1150 ifc2=2thenen=ss

1160 if en=0then 1240

1170s$=""

1180 if c1 =1 then open1,4

1190 if c1 =0 then print pl$(en);s$;dud(en);s$;mi$(en)
1200 if c1 =1 then print#1, pl$(en);s$;dud(en);s$;mi$(en)
1210 ifen=0then 1240

1220 en=Id(en)

1230 goto 1190

1240 printtab(11); " [ElE< end of listing >> "

1250 if c1 =1 then close1

1260 print " [fpress <return> to return to menu "

1270 get cr$

1280 if crd<>chr$(13) then 1270

1290 goto 1000

2000 rem- return a vehicle

2010 printtab(5); '-return a vehicle...”

2020 if sr>0 then 2080

2030 print” mc:- vehicles currently rented... "

2040 print” ress <return> to return to main menu”
2050 get cr$

2060 if cr$<>chr$(13) then 2050

2070 return

2080 input " plate number " ;np$

2090 if len(np$) =7 then 2120

2100 print " =«plate must be 7 characters...** "
2110 goto 2080

2120 input " odometer reading " ;nm$

2130 if len(nm$)< =6 then 2160

2140 print " [+ +reading too large... 999999 max *« "
2150 goto 2120

2160 b= " [6 spaces]”

2170 nm$ = left$(b$,6-len(nm$)) + nm$

2180 rem- locate vehicle in rental list and remove
2190 se=sr

2200 gosub 11000

2210 if f2=1 then return

2220 mi$(n) =nm$

The Transactor

Volume 5, Issue 06




KD| 2230 du$(n)= "[5 spaces]’

BA | 2240 sr=se

BC | 2250 rem- put vehicle in available list

GO| 2260 se=sa

HH | 2270 gosub 13000

GP| 2280 sa=se

LF | 2290 fl=1

IB | 2300 return

MA| 3000 rem- rent a vehicle

GJ | 3010 printtab(5); "-rent a vehicle...”

BO| 3020 if sa>0 then 3080

DM | 3030 print " f#ino vehicles currently available..."
LI | 3040 print”
BG| 3050 getcrd
MD| 3060 if cr$<>chr$(13) then 3050

KB | 3070 return

CB | 3080 input " plate number * ;np$

FB | 3090 if len(np$) =7 then 3120
OO0/ 3100 print" +*plate must be 7 characters...** "
JC | 3110 goto 3080

DE | 3120 input " due date (as mm-dd) " ;nd$
00| 3130 if len(nd$)< = 5 and left$(nd$,2)<= "12°
and right$(nd$,2)<="31" then 3160

KC | 3140 print " 8§+ *invalid due datex»"

PE | 3150 goto 3120

FB | 3160 rem- locate vehicle in rental list and remove
EH| 3170 se=sa

NP | 3180 gosub 11000

HG| 3190 if f2=1 then return

AQ | 3200 du$(n)=nd$
MP| 3210 mi$(n)= "[6 spaces]"

CK| 3220 sa=se

KL | 3230 rem- put vehicle in rented list
MN| 3240 se=sr

PE | 3250 gosub 14000

NP | 3260 sr=se

PC| 3270 fl=1
MO| 3280 return

AD | 4000 rem- remove a vehicle for service

PC | 4010 printtab(5); * [l
NM | 4020 if sa>0 then 4080
LK | 4030 print"lr;c:- vehicles currently available...”
DH | 4040 print”

JE | 4050 get cr$
GC| 4060 if crd<>chr$(13) then 4050

CA | 4070 return

KP | 4080 input " plate number " ;np3$

BA | 4090 if len(np$) =7 then 4120
GN| 4100 print " ==plate must be 7 characters...**

EB| 4110 goto 4080
AO | 4120 rem- locate vehicle in available list and remove
ED| 4130 se=sa

NL | 4140 gosub 11000

HC| 4150 if f2 =1 then return

OE| 4160 sa=se

BA | 4170 rem- put vehicle in service list

KiI | 4180 se=ss

HG| 4190 nm$ =mi$(n)

BA | 4200 gosub 13000

GL| 4210 ss=se

FO| 4220 fl=1

CK | 4230 return

OA | 5000 rem- make a serviced vehicle available

AE | 5010 printtab(5); '-retum a serviced vehicle...”

ress <return> to return to main menu”

end a vehicle for servicing...”

ress <return> to return to main menu”

BA
CH
LF
BD
AB
KO
CO
NO
oL
PP
M
AE
FK
PA
MG
JO
OE
PE
JO
G
NM
Kl
FF
PD
HK
FM
IN
NE
DC
A
MN
EN
FO
AL
o
AC
OA
LJ
BA
IC
MC
HJ
EF
JO
BM
HK
JC
00
FD
LA
CP
EM
ML
BN
N
AO
IL
oC
LI
GA
AC
JM
JB
EG

5020 if ss>0 then 5080

5030 print " §8lino vehicles being serviced...”
5040 print” ress <return> to return to main menu”
5050 get cr$

5060 if crd<>chr$(13) then 5050

5070 return

5080 input " plate number " ;np$

5090 if len(np$) = 7 then 5120

5100 print" *+plate must be 7 characters...** "
5110 goto 5080

5120 rem- locate vehicle in available list and remove
5130 se=ss

5140 gosub 11000

5150 if f2=1 then return

5160 ss=se

5170 rem- put vehicle in service list

5180 se=sa

5190 nm$ = mi$(n)

5200 gosub 13000

5210 sa=se

5220 fl=1

5230 return

6000 rem- to sell a vehicle

6010 printtab(5); Il a vehicle...”

6020 if sa>0 then 6090

6030 print” -available list empty..."

6040 print " vehicle must be here to be sold”
6050 print” .press <return> to return to main menu”
6060 get crd

6070 if cr$<>chr$(13) then 6060

6080 return

6090 input " plate number " ;np$

6100 if len(np$) = 7 then 6130

6110 print " **plate must be 7 characters...*+"
6120 goto 6090

6130 rem- search for vehicle and remove
6140 se=sa

6150 gosub 12000

6160 if f2=1 then return

6170 sa=se

6180 ul=ul-1

6190 fl=1

6200 return

7000 rem- add a new vehicle

7010 printtab(5); * [EllERedd a new vehicle..."
7020 if sf>0 then 7090

7030 print".array full - no free space”

7040 print" addition cannot be made

7050 print ".press <return> to return to main menu "
7060 get crd

7070 if cr$<>chrd(13) then 7060

7080 return

7090 input "plate number " ;np$

7100 if len(np$) = 7 then 7130

7110 print " *=plate must be 7 characters...*+"
7120 goto 7090

7130 input "odometer reading " ;nm$

7140 if len(nm$)< =6 then 7170

7150 print " i+ +reading too large...999999 max ** "
7160 goto 7130

7170 b$ = "[6 spaces]”

7180 nm$ = left$(b$,6-len(nm$)) + nm$

7190 rem- add vehicle to available list

7200 n = sf

The Transactor

35

Volume 5, Issue 06




KJ | 7210 sf=Id(sf) JM| 11090 get cr$
JK | 7220 pl$(n) =np$ IP | 11100 if cr$<>chr$(13) then 11090
OJ | 7230 mi$(n) =nm$ Bl | 11110f2=1
KF | 7240 se=sa Ml | 11120 return
LO | 7250 gosub 13000 NC | 11130 if k<>se then 11160
KG| 7260 sa=se AP | 11140 se =Id(se)
LG | 7270 ul=ul + 1 GC| 11150 goto 11170
JN | 7280 fl=1 CH| 11160 1d(Is)=Id(k)
GJ | 7290 return Al | 11170 n=k
HG | 8000 rem- check for overdue vehicles IM | 11180 return
GN | 8010 if sr<>0 then 8040 JO | 12000 rem- locate and remove a sold vehicle
Ol | 8020 print” .there are no vehicles currently rented " EA| 12010f2=0
KH | 8030 return BD| 12020 k=se
LI | 8040 print '.wuuld you like a printed list also? " FN | 12030 if np$ = pl$(k) then 12130
IM | 8050 print” (type y or n): *; MK| 12040 Is=k
KB | 8060 get d$ HA | 12050 k=Id(k)
KO| 8070 ifd$="" then 8060 EJ | 12060 if k<>0 then 12030
OB | 8080 printd$ JJ | 12070 print "tlate not found in list”
CB| 8090 ifd$="n" then8110 LN | 12080 print" ress <return> to return to main menu"
CG| 8100if d$<>"y" then 8050 BL | 12090 get cr$
JE | 8110 print " enter today's date as mm-dd <return>" DO| 12100 if cr$<>chr$(13) then 12090
Ol | 8120 input "date " ;da$ JG| 12110f2=1
OC | 8130 if len(da%$)< = 5 and left$(da$,2)<="12" EH| 12120 return
and right$(da$,2)<= "31" then 8160 HB| 12130 if k<>se then 12160
CL | 8140 print“ininvalid due date** " IN | 12140 se=Id(se)
GO| 8150 goto 8120 CB| 12150 goto 12170
DB| 8160 en=sr KF | 12160 Id(Is) = Id(k)
BE| 8170ifd$= "y " then openi 4 DN | 12170 Id(k) = sf
IN | 8180 if du$(en)>=da$ then 8210 PB| 12180 sf=k
CA | 8190 printpl$(en); " ";du$(en);” ";mi$(en);" is overdue” KL | 12190 return
PN | 8200 ifd$= "y" then print#1,pl$(en); " " :du$(en); JA | 13000 rem- locate by mileage the proper location in list
“:mi$(en); " is overdue” for a new element
PJ | 8210 :en=Id(en) PA | 13010 k=se
MH| 8220 if en<>0 then 8180 BC | 13020 if nm$< =mi$(k) then 13090
IE | 8230 printtab(11); ".(«:: end of listing >>" CN| 13030 :Is=k
FK | 8240 ifd$= "y" then closel OK | 13040 :k =Id(k)
FO | 8250 print " §&flpress <return> to return to main menu" AH | 13050 if k<>0 then 13020
LL | 8260 get cr$ LI | 13060 Id(Is)=n
KK | 8270 if cr$<>chr$(13) then 8260 Il | 130701d(n)=0
EH | 8280 return ED | 13080 return
BP | 9000 rem- quit program, saving lists if necessary JM | 13090 if k<>se then 13120
PE | 9010 if fl=0 then 19999 HL| 13100se=n
EL | 9020 open1,8,15 OM| 13110 goto 13130
OD| 9030 print#1, "s0:linked lists " HM| 13120 Id(Is)=n
DC | 9040 closet AD| 13130 Id(n)=k
DL | 9050 c$ =chr$(13) AH | 13140 return
LK | 9060 opent,8,2, " 0:linked lists,seq,w " FN | 14000 rem- locate by due date the proper location in
OE | 9070 print#1,s;c$;ul;c$;sr;c$;sa:cP;ss;c$;sf list for a new element
Pl | 9080 fori=1tos HP| 14010 k=se
AE | 9090 :print#1,pl$(i);c$;dud(i);c$; miS(i);c$;Id(i) BN | 14020 if nd$< = du$(k) then 14090
LG | 9100 next | KL | 14030 :Is=k
JG | 9110 closef GJ | 14040 :k=Id(k)
NE | 9120 printtab(10); " lists have been saved” JF | 14050 if k<>0 then 14020
JI | 9130 goto 19999 DH| 14060 Id(Is)=n
OJ | 9140 remm s s s s sk deodeos s koo ok ok ook # dokok o AH| 140701d(n)=0
CA | 11000 rem- locate and remove a vehicle MB| 14080 return
MB| 11010f2=0 DL | 14090 if k<>se then 14120
JE | 11020 k=se PJ | 14100se=n
KO | 11030 if np$ = pl$(k) then 11130 KL | 14110 goto 14130
EM| 11040Is=k PK | 14120 1d(Is)=n
PB| 11050 k =Id(k) IB | 14130 1d(n) =k
LK | 11060 if k<>0 then 11030 | IF | 14140 return
BL | 11070 print " gliplate not found in list”
DP | 11080 print" ress <return> to return to main menu”
The Transactor Volume 5, Issue 06




A High Resolution

Graphics Utility For The 64

There is no question regarding the superb graphic capabilities of the
Commodore 64 - just look at the wealth of fine educational software
and the unbelievable games that are now available. Yet most people
are simply not able to make use of these capabilities when writing
their own programs. Why is this?

Actually, the answer is quite simple. Most people write their programs
in BASIC, and unfortunately there are no commands that allow you
access to these graphic capabilities other than PEEK and POKE. Of
course there are some very good extensions to the language such as
SIMON'S BASIC, the SUPER EXPANDER cartridge, and many more.
These extensions provide additional commands that allow you to
draw straight lines and circles, and to access the other graphics
capabilities in a very simple way. The only drawback to using one of
these extensions will arise if you plan to share any of your programs
with others. For unless they have the same graphics package as you,
they will not be able to make use of your programs.

In this article, I will present a series of commands that will allow you to
access some of the hires graphics capabilities of the 64 in a simple
way. These commands will not be as comprehensive as the above-
mentioned extensions, but they will be certainly more than adequate.
Best of all, you can share it along with any of your own programs that
make use of it.

The commands will allow you to plot points, draw lines and boxes,
and with a little help from BASIC draw circles, ellipses, etc. These
drawings can take place on the normal hires screen or the more
colourful multi-colour screen. You will even be able to print onto the
hires screen, so that all your elaborate creations can be labelled using
the built in character sets or even using custom character sets that you
created.

Some Preliminary Information

The make-up of the normal text screen should be well known, but for
completeness let's go through some of the details.

The text screen is made up of 25 rows, each containing 40 characters.
Each of these 1000 (i.e. 25+40) ‘character cells’ can display a character
in any of 16 different colours. Within a single character cell however,
only two colours can be displayed - the foreground or character
colour and the background colour. The background colour must be
the same for all 1000 locations, but the foreground colour can change
from one character cell to another.

To help locate particular cells, it is convenient to number the rows
from 0 to 24 and the columns from 0 to 39 as in the figure below.

Gary Kiziak
Burlington, Ont.

Rew O
35.-.»":.1 | T
25 Rows
Row 24~ "
R - g
'l.lfl h_l,
o', %9

The text screen is fine for displaying character graphics, especially
considering the 64’s ability to place the character definitions in RAM
where you can change the shape of the characters to virtually
anything that you want. However for fine detailed graphics that
involve the drawing of lines, circles, and other mathematical curves,
there is a better solution - the HIRES screen.

The hires screen is made up of 200 rows, each containing 320 dots or
‘pixels’. Each of these 64000 (i.e. 200+320) pixels can be turned ‘on’ or
‘off’ individually, allowing you to create very fine detailed pictures of
enormous complexity.

To help locate specific pixels, it is convenient to number the rows from
0 to 199 and the columns from 0 to 319 as in the figure below.

- = e

Row 19 | T
Q00 PINELS

RowO_ | — - !

- = ra

o ©

tn..- ol

, © 9

I've chosen this particular numbering scheme because then we can
think of the screen, in mathematical terms, as a Cartesian system,
with the origin in the lower left hand corner. Any point on the screen
can then be located by its (x,y) or Cartesian coordinates.

CHAZACTEL Cow !

LHARmLTELELL L
& ol -

x

-y

(319, 199)
"'T

=

> (x,y)

.

(0,0} The Normal HI-RES Screen

(319, 0)

The Transactor

Volume 5, Issue 06




For colour purposes, the hires screen is also arranged in a way similar
to the normal text screen; that is, it can be thought of as containing 25
rows and 40 columns of ‘character cells’. Each of these character cells
is 8 pixels wide and 8 pixels deep, just like a regular character. Also,
like the normal text screen, a character cell on the hires screen can
contain only two colours. The ‘off’ pixels can be one colour, and the
‘on’ pixels another - these colours can of course be any of the 16
colours available on the text screen. Unlike the text screen, the
background colour (i.e. the colour of the ‘off’ pixels) can change from
one character cell to another as can the foreground colour.

This limitation of two colours can be overcome at the expense of a loss
in resolution by switching to multi-colour mode. In this mode, 4
colours are possible within each character cell. Each coloured dot or
pixel, however, is twice as wide as in normal hires mode. Thus the
number of pixels across is 160. The vertical resolution is still 200. Also
in this mode, the background colour must be the same for all 1000
character cells.

[n multi-colour mode, more colourful pictures can be created, but the
loss in resolution causes lines to be more jagged and curves to be less
smooth. It will be up to you to determine which mode is more suitable
for your application.

e 9 (159,154)

(0,199 p—

L 1 [K:V)

Y

The Multi-Colour HI-RES Screen

L
(0,0) (i$2,0)

As | mentioned earlier, all the graphic capabilities are available in
BASIC through a series of complex PEEKS and POKES. Aside from the
complexity involved, the time required to execute a command can be
unbearable (eg. 30 seconds to clear the hires screen). Thus to be at all
useful, the commands must be carried out in machine language with
hopefully a simple interface to BASIC.

Listing 1. is a BASIC loader that, when run, will create a PRG file called
HIRES on your disk. This is the machine language program that will
contain all the graphic commands. Type this program in carefully,
save it, and run it. The loader program contains a ‘check’ every 10
lines in an attempt to catch typing errors, but be careful, it is not
foolproof, and a single typing error could make your program bomb.
Listings 2, 3, and 4 are sample BASIC programs that make use of the
commands. Before we look at these, let's go through the actual
commands, their syntax, and the various options available.

1. Turning On The Hires Screen

To turn on the hires screen, a line with the following syntax is
required.

100 SYS HIRES,0,BG,C1

In this line, BG is a number between 0 and 15 representing the
background colour of the screen (note: 0 =black, 1 =white, etc.) and
C1 is anumber representing the plotting colour. Variables or numbers
may be used for either BG or Cl.

When this command is executed, the screen is cleared to the back-
ground colour and any points that are subsequently plotted or lines
that are drawn (see below) will appear in the colour determined by C1.

It is also possible to turn on the hires screen without clearing it. The
following line will do this.

100 SYS HIRES,0
(1.e. leave off the background and plotting colour)

This would be useful if your program needs to flip between the hires
screen and the text screen and still retain any graphics on the hires
screen. The first time you access hires graphics, you will, of course,
want to clear the screen as well.

if you want the multi-colour screen, use the following line
100 SYS HIRES,1,BG,C1,C2,C3

where again BG is the background colour and C1, C2, and C3 are the
three possible plotting colours (Remember, in multi-colour mode,
four colours are possible in each character cell - the background
colour, and three plotting colours). For those interested in technical
details, plotting colour C1 corresponds to points plotted using the
bitpair 01, C2 corresponds to the bitpair 10, and C3 corresponds to the
bitpair 11.

Turning on the multi-colour screen without clearing it is done by

100 SYS HIRES, 1

The graphics screen can be cleared at any time after the screen has
been enabled by

100 SYS CLSCR,BG,C1 (in hires mode)

and 100 S8YS CLSCR,BG,C1,C2,C3 (in multi-colour mode)

2. Setting Plotting Colours

The background and plotting colours are set when hires mode is first
turned on. They may, however, be changed later on by the command

200 SYS COLOUR,C1 (in hires mode)

and 200SYS COLQOUR,C1,C2,C3 (in multi-colour mode)
In multi-colour mode, all three plotting colours must be included
even if you only want to change Cl1.

3. Selecting A Plotting Colour

When graphics mode is enabled, colour C1 is the default plotting
colour. In multi-colour mode, you may wish to change to colour C2,
or colour C3, or back to colour C1 again. This is done by the command

300 SYS SELPC,C

where C=1 if you want colour C1
C=2 if you want colour C2

and C=3 if youwant colour C3

The Transactor

Volume 5, Issue 06




If executed when in normal hires mode, this command is ignored
since there is only one plotting colour CI.

4, Setting The Drawing Mode

Any plotting or drawing in hires mode can be done in any of three
ways.

ERASE mode - In this mode, the points and lines are erased rather
than drawn (i.e. the pixels are turned off)

DRAW mode - In this mode, all points and lines are drawn (i.e. the
pixels are turned on)

FLIP mode - In this mode, the condition of all points and lines are
flipped (i.e. the pixels that are on are turned off and vice-versa)

To set a particular drawing mode, simply include
400 SYS DMODE .M

where M =0 if you want erase mode
M=1 if you want draw mode

and M=2 if youwant flip mode

5. Plotting A Point

To plot a point at coordinates (X,Y) (Remember: (0,0) is in the lower
left=hand corner of the screen), use

500 SYS PLOT,X,Y

The point will be plotted in the current plotting colour (as selected in
3. above) in the current drawing mode (as set by 4. above). If you wish,
you can include up to two additional parameters.

500 SYS PLOT,X,Y,C
will select plotting colour C before plotting the point at (X,Y) and
500 SYS PLOTX,Y,C,M

will select plotting colour C and drawing mode M before plotting at
(X.Y).

6. Moving The Drawing Cursor

Whenever a point is plotted or a line is drawn, the drawing routines
remembers the coordinates of the last point plotted. This point is
called the drawing cursor, and is used in the DRAW TO command
described below. It is possible to move the drawing cursor to a new
position with coordinates (X,Y) and without plotting or drawing by the
command

600 SYS MOVE XY
7. Drawing Lines

This is the most versatile of the commands and offers the most
options.

will draw a straight line from the current position of the drawing
cursor (i.e. the last point plotted) to the point with coordinates (X,Y). It
will also set the new position of the drawing cursor to (X,Y). The line
will be drawn in the current plotting colour and in the current drawing
mode. As with the PLOT command, the plotting colour and the
drawing mode may be changed before the line is drawn by the
addition of one or two more parameters; that is,

700 SYS DRAW,X)Y,C
will draw the line to (X,Y) in plotting colour C, while
700 SYS DRAW,XY,C.M
will draw the line in plotting colour C and in drawing mode M.
(ii) The DRAW...TO.. . command
700 SYS DRAW,X1,Y1 TO X2,Y2
will draw a line from the point (X1,Y1) to the point (X2,Y2) and set the

drawing cursor to (X2,Y2) (The initial position of the drawing cursor is
ignored). As above, you can have

700 SYS DRAW,X1,Y1 TO X2,Y2,C
or 700 SYS DRAW,X1,Y1 TO X2,Y2,C.M
You can even have
700 SYS DRAW,X1,Y1,C,M TO X2,Y2
or 700 SYS DRAW,X1,Y1,C M TO X2Y2,D,N

In the latter case, the C,M will, in fact, be ignored and the line will be
drawn in plotting colour D and in drawing mode N.

(iii) The DRAW...TO...TO...TO... command

This feature makes this command similar to the HPLOT command on
the APPLE. and allows you to draw a straight line from one point to
another, then from that point to another, and so on. The syntax is.. . .

700 SYS DRAW,X1,Y1 TO X2,Y2 TO X3,Y3 TO X4,Y4

with as many points Xi,Yi as you can fit into a BASIC line. This
command is useful for drawing shapes that can be made up of straight
lines, eg. parallelograms, hexagons, etc. As above you can include

C,M anywhere after an Xi,Yi but keep in mind that it won't take effect
until the line is drawn to that particular point.

8. Drawing Rectangles
A rectangle may be drawn using the command
800 SYS BOX,X,Y,WIDTH,HEIGHT
where (X.Y) are the coordinates of the top left-hand corner of the

rectangle, and WIDTH and HEIGHT are the width and height of the
rectangle respectively. As usual, you may optionally have

(i) The DRAW command 800 SYS BD}(,X,Y.WEDTH,HEIGHT,C
700 SYS DRAW, XY or 800 SYS BOX, X.YWIDTH,HEIGHT,C\M
The Transactor Volume 5, Issue 06




9. Restoring The Text Screen

If you wish to return to normal text mode from graphics mode, you
can do so by

900 SYS TEXT

This will return you to the text screen with exactly the same condi-
tions that prevailed prior to entering graphics mode (eg. if you were in
upper/lower case prior to entering graphics mode, you will still be
there when you return to text mode). Used in conjunction with the
command SYS HIRES,0 or SYS HIRES,1 this can be used for flipping
between the graphics screen and the text screen.

10. Printing To The Graphics Screens

Text or character graphics can be printed to the hires screen using the
PRNT command. For example,

1000 SYS PRNT,C,R,A%

will print whatever is in A$ onto the hires screen, starting in column C
of row R.

Notes: 1. Printing takes place only in the ‘character cells’. Therefore R
and C are the row and column numbers as determined by the text
screen, not the Cartesian coordinates on the hires screen (i.e. 0 <= R
<= 24and 0 <= C<= 39 with (0,0)in the top left-hand corner of the
screen),

2. The string to be printed may be a string variable, a string of
characters between quotes, or even a string expression using MID$,
LEFTS$, or RIGHTS$. The string expression may involve concatenation,
for example:

1000 SYS PRNT,5,10,A% + "DONE "
but don't forget the ‘+ ' sign

1000 SYS PRNT,5,10,A%; "DONE "
will yield an error.

3. The characters to be printed can be anything that you would
normally use in a PRINT statement on the text screen, including
cursor control characters such as cursor left, etc. , RVS ON/OFF,
colour control characters such as CTRL-1 (for white), etc. You can
even use CNTRL-N to switch to lowercase and CHR$(142) to switch to
uppercase. Only CLR and HOME for clearing the screen and homing
the cursor are ignored.

Cursor up and down work properly, but be careful when trying to
cursor up beyond the top line of the screen or down below the bottom
line. Strange things will result, but the program will not crash.

4. The text can be printed in either hires mode or multi-colour mode.
In multi-colour mode, the characters will look a little funny and may
be unreadable depending on the settings for the three plotting col-
ours. If you set C1 and C3 to the colour you want the characters to be
and C2 to the background colour, the characters are perfectly read-
able. By changing C2 and C3, you can get some interesting effects (see
the sample programs for an illustration). The best solution is to create
your own custom characters using a multi-colour character editor and
use those characters instead (see below).

11. Changing Character Sets

Text can be printed in upper case/graphics, upper/lower case, and
even a combination of the two (something that can’t be done on the
normal text screen without using raster interrupts). It is even possible
to print characters that you created with a character editor and stored
in RAM. To print such characters, simply precede the printing with the
command

1100 SYS CHSET,AD

where AD is the address of the RAM character set. Because of the way
character sets work, AD must be a multiple of 2048. Thus

1100 SYS CHSET,7+2048

would be required if your character set were stored in memory at
address 14336 (=T7+2048).

Note also that AD=0 will choose the ROM character set containing
upper case and graphic characters while AD=1 will choose the
upper/lower case characters in ROM.

12. The TRAP Command

When drawing mathematical curves, errors such as ‘division by zero’,
‘illegal quantity’, etc. can quickly halt a program. When this happens,
the TRAP command, which is the equivalent of the ONERRGOTO
command on the APPLE, can overcome this. For example,

1200 SYS TRAP,1500

once executed, will cause control to be transferred to line 1500
whenever an error occurs. The routine at line 1500 could then check
for the type of error and take appropriate action. The important point
1s that the program will not stop unless you tell it to.

To check for the type of error, include the following in your error
handling routine.

1500 X = PEEK(781)

This will be the error number that would normally be passed on the
BASIC interpreter.

eg. if X=20 then a division by zero error occurred
if X=14 then an illegal quantity error occurred
etc.

The TRAP command can be disabled (i.e. the BASIC interpreter
handles all errors) by leaving off the line number in the TRAP
command, ie.

1300 SYS TRAP

Caution: When an error occurs, the stack pointer can be in an
unpredictable position. For this reason, before sending control to the
line of your error handling routine, the stack is cleared. This includes
all information about FOR . . . NEXT loops and RETURN addresses of
subroutines. Thus after handling a specific error, you must not go into
the middle of a FOR ... NEXT loop or the middle of a subroutine,
even if that is where the error originally occurred.

The Transactor

Volume 5, Issve 06




Listing 2 is a short demonstration program that shows how easy itisto
make a pie chart. Notice how the HIRES routines are loaded in line 20,
and the variables. that are the addresses of the various commands, are
initialized in lines 120 through 150.

At this time, there is no command for drawing circles in my routines.
When it is complete, there will be such a command with the following

syntax.
SYS CIRCLE XC,YC,XR,YR,SA,EA,INC

where XCYC are the coordinates of the centre of the circle
XR s the radius in the horizontal direction
YR isthe radius in the vertical direction
SA s the starting angle in degrees (i.e. the angle with
the horizontal where the plotting will start)
EA is the ending angle in degrees (i.e. the angle
where the plotting will end)
and INC isthe increment in degrees
Note: The circle is drawn as a series of straight lines (and so is
really a polygon). INC determines how many sides this polygon

has, and hence how ‘'smooth’ the circle IS,

Since the command is notimplemented yet, a BASIC equivalent is
given in line 500 of Listing 2. To draw a circle then, it is only
necessary to initialize the variables XC,YC,XR,YR,SA EA, and INC
and then GOSUBS500.

Notice that to get a complete circle, the starting angle and the
ending angle must be 360 degrees apart. Also by making INC
equal to 120 degrees, 60 degrees, and 72 degrees, you can draw
a triangle, hexagon, and pentagon respectively.

Listing 3 is another demo that draws a bar chart, and ilustrates
what printing looks like in multi-colour mode. Experiment with
lines 460, 480 and 520 and observe the effects.

Listing 4 is a program that draws the graph of a mathematical
curve. When typing it in, put a REM in front of each TRAP
command. This will allow you to debug the program more easily -
otherwise the TRAP command will trap all your typing errors and it
can become frustrating.

The program draws the sinusoidal curve
y = sin(2*x) + cos(3*x) (line 220)

After the program is debugged, try drawing the curves

y = 1/sin(x)
or y = sin(x)/cos(x)
or y = sqr(4-x+x)

Try it with and without the REM statements in front of the TRAP
commands.

This program can be described as a general purpose drawing routine;
that is. it will draw the graph of virtually any function. As such, it is
somewhat slow. The plot can be speeded up by decreasing the
number of plotting points (line 770) but this will also have a negative
effect in that the curve will be more jagged. Special purpose routines,
for drawing graphs that do not have undefined regions and for which
all plotting occurs within the specified range will proceed much
quicker.

One Final Note On Memory Usage

The hires screen is located at $E000 (i.e. underneath the kernal ROM).
As such it does not steal any memory from BASIC. The routines
themselves are stored in the $C000 block from $C000 to $CBIE.
Colour memory for the hires screen is located at $CC00 and extends to
$CFFF. Since the DOS wedge also uses this area, these routines will
not work with the wedge installed. Similarly, it may not work with
other utilities that use the $C000 block of memory.

Listing 1

BC | 100 open 1,8,15,"i0 " :close1

HF | 110 open 1,8,1," @0:hires”

LG | 120 print#1,chr$(0);:print#1,chr$(192);
BJ | 130 for j=1to 2080

DG | 140 read x : print#1,chr$(x);

GL | 150 chk =chk + x

Cl | 160 next |
GO | 170 if chk<>245727 then print "has an error "
closel1:end
HI | 180 close1

PL | 190 print " save successful * :end

JI | 1000 data 76, 194, 193, 76,247,195, 76, 98
BG | 1010 data 195, 76,110,194, 76, 30,194, 76
PO | 1020 data 214, 196, 76,228,196, 76, 11,6197
AG | 1030data 76, 67,197, 76,169, 192, 76,206
JL | 1040 data 197, 76,199,199, 76, 4,200, O
O | 1050data 0O, 0, O, O, O O, O, O

JCl1060data 0, 0, 0,255,128, 0, 7,248
MP | 1070data 0, 0O, 0, 0O, 0O, O, O, O
CH|1080data 0, 1, 0, 15,240,240, 0, O
D | 1090 data208, 0, 0, 0, 0,173, 58,192
DI | 1100 data 208, 27,173, 0,221,141, 57,192

IA | 1110 data 173, 24,208,141, 58,192,173, 17
HK | 1120 data 208, 141, 59,192, 173, 22, 208, 141
FD | 1130 data 60,192, 32,110,192, 96,173, O
MF | 1140 data 3,201,231,208, 7,173, 1, 3
HI | 1150 data 201, 192, 240, 44,173, 0, 3,141
JM | 1160 data 234, 192, 173, 1, 3, 141,235,192
HM | 1170 data 169, 231,141, 0, 3, 169, 192, 141
MI | 1180data 1, 3,173, 2, 3,141, 41,193
PH| 1190 data 173, 3, 3,141, 42,193,169, 8
JN | 1200 data 141, 2, 3,169,193,141, 3, 3
PO | 1210 data 96,173, 58,192,240, 26,141, 24
FG | 1220 data 208, 173, 57,192,141, 0,221,173
GH | 1230 data 59, 192, 141, 17,208, 173, 60,192
HD | 1240 data 141, 22,208,169, 0,141, 58,192
GG | 1250 data 96, 72,169, 127, 141, 13,220, 165
GO| 1260 data 1,141, 56,192, 41,253,133, 1
FN | 1270 data 104, 96, 72,173, 56,192,133, 1
KJ | 1280 data 169, 129, 141, 13,220,104, 96, 16
NG| 1290 data 3, 76,139,227,142, 13, 3, 44
BC | 1300 data 76, 192, 16,245,169, 0,133, 20
MG | 1310 data 169, 0,133, 21,162, 250, 154, 169
DP | 1320 data 167, 72,169,233, 72, 76,163, 168
BC | 1330 data 32, 169, 192, 173,234,192,141, O

JC | 1340 data 3,1783,235,192, 141, 1, 3,173
EJ | 1350 data 41,193,141, 2, 3,173, 42,193
GL | 1360 data 141, 3, 3,169, 0,141, 76,192

HL | 1370 data 76, 131, 164, 164, 254, 240, 13, 160
GB | 1380 data 0, 145, 251, 200, 208, 251, 230, 252
FH | 1390 data 198, 254, 208, 243, 164, 253, 240, 10
BH | 1400 data 136, 240, 5, 145, 251, 136, 208, 251
BJ | 1410 data 145, 251, 96, 32,201,192,160, O
HK | 1420 data 132, 251, 160, 204, 132, 252, 160, 232
JJ | 1430 data 132, 253, 160, 3,132,254, 32, 43
NK | 1440 data 193, 169, 0, 133, 251, 169, 224, 133
JB | 1450 data 252, 169, 64, 133,253,169, 31,133
EO | 1460 data 254, 169, 0, 32, 43,193, 76,218

The Transactor

Volume 5, Issue 06




KG | 1470 data 192, 32,253, 174, 32, 138,173, 32 BF | 2170 data 98, 169, 0,245, 99, 149, 99, 96
PA | 1480 data 247, 183, 166, 21,165, 20, 96, 32 DK | 2180 data 21, 98,208, 4, 149, 106, 149, 107
GC | 1490 data 253, 174, 32, 124, 193, 141, 43,192 KP | 2190 data 96, 165, 99, 74, 133, 103, 165, 98
CF | 1500 data 142, 44,192, 32,121,193, 141, 45 MN | 2200 data 106, 133, 102, 24, 169, 0,229, 98
IF | 1510 data 192, 142, 46, 192, 169, 63, 162, 1 MA | 2210 data 133, 104, 169, 0, 229, 99, 133, 105
ID | 1520 data 44, 53,192, 16, 4, 169, 159, 162 Al | 2220 data 96, 24, 165, 102, 101, 100, 133, 102
BA | 1530 data 0, 205, 43,192, 138,237, 44,6192 HL | 2230 data 170, 165, 103, 101, 101, 133, 103, 197
LG | 1540 data176, 3, 76, 72,6178, 169, 199, 205 BC | 2240 data 99, 144, 19,208, 4,6228, 98, 144
MI | 1550 data 45, 192, 169, 0, 237, 46, 192, 144 NF | 2250 data 13, 138, 56,229, 98, 133, 102, 165
KF | 1560 data 241, 96, 32, 77,6192, 32,121,193 CC | 2260 data 103, 229, 99, 133, 103, 56, 96, 32
PB | 1570 data 240, 2,169, 128, 141, 53,192, 32 OO0 | 2270 data 135, 193, 32,121, 0, 240, 44, 201
FB | 1580 data121, 0,240, 3, 32, 30,194,173 DF | 2280 data 164, 208, 16, 32,113,194, 32,115
GJ | 1590 data 0,221, 9, 3, 73, 3,141, 0 EM| 2290 data 0, 32,138,193, 32,121, 0, 201
Gl | 1600 data 221, 173, 24,208, 41, 7, 9, 8 NB | 2300 data 44,208, 13, 32,228, 196, 32, 121
EF | 1610 data 9, 48, 141, 24, 208,173, 17,208 GP | 2310data 0,201, 44,208, 3, 32 214 196
LG | 1620 data 9, 32,141, 17,208, 44, 53,192 EO | 2320 data 32, 43,196, 32,121, 0,201, 164
Bl | 1630 data 16, 12,6173, 22,208, 9, 16, 141 AC | 2330 data 240, 220, 96, 32,201,192, 162, 0
Gl | 1640 data 22, 208, 169, 3,208, 10,173, 22 PB | 2340 data 134, 2, 32,129, 195,162, 2, 32
IK | 1650 data 208, 41,239, 141, 22,208, 169, 7 HO | 2350 data 129, 195, 165, 98, 197, 100, 165, 99
MA | 1660 data 141, 54,192, 73,255, 141, 55,6192 LL | 2360 data 229, 101, 144, 62, 32, 185, 195, 36
IO | 1670 data 169, 255, 141, 51,192, 96, 169, 1 ME | 2370 data 107, 16, 10, 32,113, 194, 56, 169
ME | 1680 data 141, 65, 192,173, 67,192, 141, 66 JJ | 2380 data 0,229, 108, 133, 108, 32, 125, 194
KO | 1690 data 192, 169, 128, 141, 52,6192, 32,135 GE | 2390 data 32, 14, 195, 230, 104, 208, 4, 230
JJ | 1700 data 193, 173, 45,192, 10, 10, 10, 10 DB | 2400 data 105, 240, 102, 238, 39, 192,208, 3
OD | 1710 data 141, 62, 192, 141, 70, 192, 173, 43 EJ | 2410 data 238, 40,192, 32,209, 195,144, 9
AK | 1720 data 192, 41, 15,6141, 61,192, 44, 53 OM | 2420 data 24,173, 41,192, 101, 108, 141, 41
NO | 1730 data 192, 48, 12, 13, 62,192, 141, 62 JN | 2430 data 192, 32, 125, 194, 32, 14,6195, 76
HH | 1740 data 192, 141, 70,192, 76, 75, 193, 141 MO | 2440 data 91, 196, 162, 1, 181, 98, 180, 100
MN | 1750 data 33, 208, 32,121,193, 41, 15 141 NC | 2450 data 149, 100, 148, 98,202, 16,245, 32
AF | 1760 data 63, 192, 32,121, 193, 141, 64, 192 GO | 2460 data 185, 195, 36, 107, 16, 10, 32. 113
HD | 1770 data 173, 62,192, 76, 75,6193, 32,135 HG | 2470 data 194, 56, 169, 0,229, 108, 133, 108
JC | 1780 data 193, 162, 3,189, 43,192, 157, 39 DD | 2480 data 32, 125, 194, 32, 14, 195, 230, 104
MM | 1790 data 192, 202, 16,247, 96, 56, 169, 199 MA | 2490 data 240, 31, 24,173, 41,192,101, 108
DD | 1800 data 237, 41,192, 72, 74, 74, 74,133 LO | 2500 data 141, 41,192, 32,209, 195, 144 8
JF | 1810 data 252, 160, 0, 132,251, 74, 102, 251 KE | 2510 data 238, 39, 192, 208, 3,238, 40, 192
CD | 1820 data 74, 102, 251, 101, 252, 133, 252, 173 LC | 2520 data 32, 125, 194, 32, 14,195, 76, 166
GJ | 1830 data 39, 192, 174, 40,192, 45, 55 192 AE | 2530 data 196, 36, 107, 16, 3, 32, 14,195
HL | 1840 data 44, 53,192, 16, 6, 10, 72 138 NH | 2540 data 32, 113, 194, 76, 218, 192, 32, 121
DC | 1850 data 42,170, 104, 24,101, 251, 133, 251 NB | 2550 data 193, 41, 3, 73, 3,106, 106, 106
AM | 1860 data 138, 101, 252, 133, 252, 104, 41, 7 JC | 2560 data 141, 52,192, 96, 32,121, 193, 41
NF | 1870 data 24, 101, 251, 133, 251, 133, 253, 144 R | 2570 data 3,240, 27, 44, 53,192, 16, 22
Ol | 1880 data 2, 230, 252, 165, 252, 74,102, 253 KH | 2580 data 141, 65, 192, 170, 189, 61, 192, 141
IH | 1890 data 74, 102, 253, 74, 102, 253, 133, 254 KN | 2590 data 70, 192, 189, 66, 192, 141, 66, 192
GC | 1900 data 44, 53,192, 48, 16, 24,169, 0O NF | 2600 data 189, 7,197, 141, 51,192, 96, 0
El | 1910 data 101, 253, 133, 253, 169, 204, 101, 254 PE | 2610 data 85, 170, 255, 32,121,193, 10, 10
LB | 1920 data 133, 254, 76, 249, 194, 173, 65, 192 KA | 2620 data 10, 10, 141, 62, 192, 44, 53,192
BD | 1930 data 201, 3, 144,234, 24,169, 0, 101 FK | 2630 data 48, 9, 13, 61,192, 141, 62, 192
GL | 1940 data 253, 133, 253, 169, 216, 101, 254, 133 CE | 2640 data 76, 51,197, 32,121,193, 41, 15
JD | 1950 data 254, 24, 165, 251, 105, 0, 133, 251 KG | 2650 data 141, 63, 192, 32,121,193, 41, 15
JL | 1960 data 165, 252, 105, 224, 133, 252, 173, 39 AD | 2660 data 141, 64,192,174, 65, 192, 189, 61
MK | 1970 data 192, 45, 54,192,170, 96,169, 0 AQ | 2670 data 192, 141, 70,192, 189, 66, 192, 141
IO | 1980 data 168, 44, 52,192, 16, 4,112, 20 AL | 2680 data 66, 192, 96, 32, 110, 194, 32,135
EB| 1990data 80, 15, 36, 2, 48, 9, 169,255 JL | 2690 data 193, 162, 3, 189, 43,192, 157, 47
EE | 2000 data 133, 2, 36,107, 48, 1, 96,6177 EL | 2700 data 192, 202, 16,247, 32,121, 0,240
CB | 2010 data251, 77, 51,6192, 44, 53,192, 48 BF | 2710 data 11, 32,228,196, 32,6121, 0,240
DA | 2020 data 10, 61, 86,195,133, 97, 189, 86 K | 2720 data 3, 32,214,196, 24,173, 39, 192
HD | 2030 data 195,208, 8, 61, 94,195,133, 97 ND | 2730 data 109, 47,192, 141, 43,192,173, 40
JD | 2040 data 189, 94,195, 73,255, 49,251, 5 LA | 2740 data 192, 109, 48, 192, 141, 44 192,173
EP | 2050 data 97, 145, 251, 177, 253, 45, 66, 192 EE | 2750 data 41,192, 141, 45,192, 173, 42, 192
AC | 2060 data 13, 70, 192, 145, 253, 96, 128, 64 OP | 2760 data 141, 46, 192, 32, 156, 193, 32, 43
DJ | 2070 data 32, 16, 8, 4, 2, 1,192, 48 HJ | 2770 data 196, 56, 173, 45,192, 237, 49, 192
EK | 2080 data 12, 3, 32,110,194, 32,121, 0O Pl | 2780 data 141, 45, 192, 173, 46, 192, 237, 50
HO | 2090 data 240, 11, 32,228,196, 32,121, 0 NI | 2790 data 192, 141, 46, 192, 32, 181, 193, 32
MD | 2100 data 240, 3, 32,214,196, 32,201,192 GD | 2800 data 43, 196, 56, 173, 43,192,237, 47
Cl | 2110 data 32,125, 194, 32, 14,195, 76,218 LF | 2810 data 192, 141, 43, 192, 173, 44,192, 237
Bl | 2120 data 192, 169, 1,149,106, 169, 0, 149 BG | 2820 data 48, 192, 141, 44,192, 32, 43,196
AA | 2130 data 107, 56, 189, 43, 192, 253, 39, 192 KJ | 2830 data 24, 173, 45,192,109, 49, 192, 141
CC | 2140 data 149, 98, 189, 44,192, 253, 40, 192 DM | 2840 data 45, 192, 173, 46, 192, 109, 50, 192
OA | 2150 data 149, 99, 16, 20, 169, 255, 149, 106 AD | 2850 data 141, 46,192, 76, 43,196,169, O
BO | 2160 data 149, 107, 56, 169, 0, 245, 98, 149 GD | 2860 data 133, 251, 133, 252, 32,241, 183, 224
The Transactor 42 Volume 5, Issue 06




HL
KJ
GO
N
Pl
MH
IF
NF
MM
PK
PM
PO
Kl
HL
NA
LM
FH
oF
MO
JC
Cl
HC
Al
EF
JL
BF
FG
JO
IF
MK
MM
HE
CB
AA
Fi
PM
IM
KA
B
Gl
NO
MC
MB
KM
BP
CC
KN
Pl
DA
GP
EP
NG
D
Kl
HJ
BO
BJ
CC
KH
GK
IK
KE
AA
ON
BA
LK
AN
B
CM
GL

2870 data 40, 144, 3, 76, 72,178,142, 73
2880 data 192, 32, 241, 183, 142, 74,192,138

2890 data 240,

18,224, 25,176,237, 24,165

2900 data 251, 105, 40, 133,251,144, 2,230
2910 data 252, 202, 208, 242, 24,173, 73,192
2920 data 101, 251, 133, 251, 133, 2563, 133, 3

2930 data 169,

0,101, 252, 133, 252, 24, 72

2940 data 105, 216, 133, 254, 104, 105, 204, 133

2950 data

4,

2960 data 252,
2970 data 105, 224, 133, 252, 32,253,174, 32
2980 data 158, 173, 32,143,173, 32, 166, 182
2990 data 170, 160, 0, 232,202,208, 1, 96
3000 data 177, 34, 32, 73,198,200, 76, 60
3010 data 198, 133, 215, 138, 72,162, 72,165
3020 data 215, 48, 17,201, 32,144, 28, 201
3030 data 96, 144, 4, 41,223,208, 2, 41
3040 data 63, 76,110,199, 41,127,201,127

3050 data 208,

6,251, 38,252, 6,251, 38
6,251, 38,6252, 24,165,252

2,169, 94,201, 32,144,125

3060 data 76, 108, 199, 201, 14,208, 6, 32
3070 data 219, 199, 76, 160, 199, 201, 17,208
3080 data 11, 162, 40, 32, 71,199, 202, 208
3090 data 250, 76, 160, 199, 201, 18,208, 8
3100 data 169,
3110 data 201, 29,208, 6, 32, 71,199, 76
3120 data 160, 199, 162, 3, 44,6162, 15, 221
3130 data 205, 198, 240, 6,202, 16,248, 76
3140 data 160, 199, 189, 221, 198, 10, 10, 10

3150 data
3160 data
3170 data
3180 data
3190 data
3200 data
3210 data
3220 data
3230 data

10,

6,
51,
31,
23,

6,
11,

6,

17,

1,141, 75,192, 76,160, 199

141, 62,192, 44, 53,192, 48
13, 61,192,141, 62,192, 32
197, 76,160,199, 5, 28, 30
16, 28, 30, 31, 1, 21, 22
24, 25, 26, 27, 1, 2, 5
0o, 4 7, 3 8 9 10
12, 13, 14, 15,201, 14,6208
32,216,199, 76, 160, 199, 201
208, 11,162, 40, 32, 28,199

3240 data 202, 208, 250, 76, 160, 199, 201, 18
3250 data 208,
3260 data 160, 199, 201, 29, 208, 143, 32, 28
3270 data 199, 76, 160, 199, 165, 253, 208, 2
3280 data 198, 254, 198, 253, 165, 3,208, 2
3290 data 198,
3300 data 8, 133, 251, 165, 252,233, 0,133
3310 data 252, 165, 251, 201, 0, 165, 252, 233
3320 data224, 176, 3, 32, 71,199, 96, 230
3330 data 253, 208, 2,230, 254,230, 3,208

3340 data

2,

8,169, 0,141, 75,192, 76

4,198, 3, 56, 165, 251,233

230, 4, 24,169, 8,101,251

3350 data 133, 251, 144, 2, 230, 252, 165, 251
3360 data 201, 64, 165, 252, 233, 255, 144, 3
3370 data 32, 28,199, 96, 9, 64,174, 75
3380 data 192, 240, 2, 9,128, 32,165, 199
3390 data 160,
3400 data 251, 136, 16, 249, 32, 245, 199, 200
3410 data 173, 61,192, 44, 53,192, 16, 8
3420 data 173, 64, 192, 145, 253, 173, 63,192
3430 data 13, 62,192,145, 3, 32, 71,199
3440 data 104, 168, 104, 170, 96,133, 5,169
3450data 0,133, 6, 6, 5, 38 6, 6
3460data 5, 38, 6, 6, 5, 38, 6, 24
3470 data 173, 71,192,101, 5,133, 5,173
3480 data 72,192,101, 6,133, 6, 96, 32
3490 data 253, 174, 32,138,173, 32,247,183
3500 data 166, 21,208, 9,165, 20,208, 3
3510 data 162, 208, 44, 162,216, 142, 72,192

3520 data 162,

7, 32,230,199,177, 5,145

0,142, 71,192, 96,173, 14

3530 data 220, 41,254,141, 14,220,165, 1
3540 data 41,251,133, 1, 96,165, 1, 9
3550 data 4,133, 1,173, 14,220, 9, 1

3560 data 141,

14,220, 96, 32,121, 0,240

LC

3570 data 15, 32,110,192, 32,121,193, 141

OC | 3580 data 245, 192, 142, 249, 192, 169, 128, 44

CB

JO
LF
CJ
HG
CcO
EF
CJ
AC
DL
EB
NJ
IC
MH
J
PG
FD
BH
El
GA
EG
OB
LF
EG
LA
KP
DG
JG
KA
BO
PC
LB

DD
HC

GH
M

CK
LE

CK
AO
MM
KE
PE
OF
Cl
NI
JA
FC
AM
HC
ED
AD
AG
CM
CN
GN
FB
LE
EH
GK

3590 data 169, 0,141, 76,192, 96, 0, O
Listing 2

10 print "B} " :poke 53280,5:poke 53281, 1

20 if peek(49152)<>76 then load "hires” 8,1

30 :

100 rem initialize variables

110

120 hires = 12*4096:draw = hi+ 3:plot=dr+3

130 move = pl + 3:clscr=mo + 3:dmode =cl +3

140 selpc = dm + 3:colour =se + 3:box=co+3

150 text = bo + 3:prnt=te + 3:chset = pr+ 3:trap=ch + 3

160 :

170 rem begin the show

180 :

190 sys hires,0,1,6

200 xc = 159:yc = 100:xr =70:yr=50:inc =10

210 sa=45:ea=75:gosub 620

220 sa=75:ea=160:gosub 620

230 sa=160:ea=240:gosub 620

240 sa =240:ea= 325:gosub 620

250 sys colour, 7

260 xc = 175:sa=-35:ea =45:gosub 620

270 sys colour,9

280 sys box,6,170,307,165

290 sys box,3,172,313,169

300 sys chset, 1

310 a$= "r" +chr$(30)+ "Rent” :remrvs + grn

320 sys prnt,15,9,a%

330 a$=chr$(156)+ "Food"  :rem pur

340 sys prnt,13,13,a%

350 a$ =chr$(28) + "Clothes” :rem red

360 sys prnt,18,16,2%

370 a$ =chr$(158) + "Travel " +chr$(142) remyel +

upper/graphics

380 sys prnt,24,12,a$

390 a$ =chr$(154) +chr$(176) + "CCCCCCCCCCCCCC
CCCCCCCCCCCccCCccCCCCCClC ™ +chry(174)

400 sys prnt,0,0,a%

410 a$ =chr$(221) + " [ spaces|JliflIPIE CHARTS are *
+chr$(28) + * Eas»jg 0 spaces|iel

420 sys prnt,0,1,a$ + chr$(221)

430 a$ =chr$(173)+ "CCCCCCCCCCCCCCCCCCCCC
ccecccccccecceece” +chr$(189) + [l

440 sys prnt,0,2,a%

450 get a$:if a$<>chr$(13) then 450

460 end

470 :

480 rem draw arc

490 :

500 z1 =sa*n/180:22 =ea*n/180:z3 =inc*n/180

510 x = xc + xr*cos(z1):y = yc + yr=sin(z1)

520 sys move, X,y

530 for i=21to z2 step z3

540 x = xc + xr*cos(i):y = yc + yr=sin(i)

550 sys draw,x.y

560 next

570 sys draw,xc + xr*cos(z2),yc + yr+sin(z2)

580 return

590 :

600 rem draw pie

610 :

620 gosub 500

630 sys draw, xc,yC

640 sys draw,xc + xr=cos(z1),yc + yr*sin(z1)

650 return

The Transactor

Volume 5, Issue 06




JO
LF
CJ
HG
CO
EF
CJ
AC
DL
EB
NJ
IC
JE
Mi
DJ
PB
JK
NE
GK
BO
AN
FN
KE
BP
JJ
CG
JC
JD
BA
KC
HL
HC
LG
CG
PE
KA
Pl
JP
GM
CK
ND
KL
CK
CD
DO
KA
AH
BK

FE

JO
LF
CJ
HG
CcO
EF
CJ
AC
DL
EB
IK
IC
HA
EP
DM

Listing 3

10 print" [§]" :poke 53280,5:poke 53281, 1

20 if peek(49152)<>76 then load "hires” ,8,1
30 ;

100 rem initialize variables

110 :

120 hires=12+4096:draw=hi+ 3:plot=dr+3
130 move=pl+3:clscr=mo + 3:dmode=cl + 3
140 selpc =dm + 3:colour=se+ 3:box=co+3
150 text=bo + 3:prnt=te + 3:chset=pr+ 3:trap=ch + 3
160 :

170 rem begin the show

180 :

190 sys hires,1,0,1,2,6

200 sys dmode, 1:sys selpc, 1

210 sys draw, 33,168 to 33,87 to 133,87

220 sys draw, 33,86 to 133,86
230fork=11t05

240 for |=37 to 133 step 4

250 sys plot,|,.84 + 16+k

260 next),k

270 fork=0to 5.

280 y(k) =rnd(1)+*80 + 88:c=rnd(1)+8 + 1

290 sys colour,1,c,6

300fori=0to 8

310s=43+k+*16 +I

320 sys draw,s,88 to s,y(k),2

330 next |

340 next k

350 sys move, 34,88

360 fork=0to 5

370s=47 +k+16

380 sys draw,s,y(k),3

390 next k

400 sys colour,1,0,1

410 sys prnt,11,15,"79 80 81 82 83 84"
420 a$="108642"

430 fori=1 to len(a$) step 2

440 sys prnt,6,3 +i,mid$(a%$,i,2)

450 next

460 sys colour,2,0,2

470 sys prnt, 14,2, "annual sales”

480 sys colour,0,0,6

490 a%=""":fork=1t021:a%$=a%+chr$(164): next
500 sys prnt,9,17,a

510 sysprnt,9,18, "@@bar graph 5.'
520 sys colour,5,7,7

530 sys prnt,12,20,"are nice”

540 sysprnt,2,22,"in multi-color mode”
550 get a$:if a$<>chr$(13) then 550

Listing 4

10 print" " :poke 53280,5:poke 53281, 1

20 if peek(49152)<>76 then load "hires” 8,1
30 :

100 rem initialize variables

110

120 hires=12+4096:draw=hi+ 3:plot=dr+ 3
130 move =pl+ 3:clscr=mo+ 3:dmode=cl+3
140 selpc =dm + 3:colour=se + 3:box=co+3
150 text=bo + 3:prnt=te + 3:chset=pr+ 3:trap=ch + 3
160 :

170 rem plot the graph

180 :
190 x = x+ dx:if x>xax then 650
200 sys trap,400 : rem catch any calculation errors

210 y=sin(2*x) + cos(3+x) : rem insert function to be
graphed here

Ji
OP
DB
PF
H
JP
AJ
GJ
CE
PO
EL
KN
HP
CN
JD
E
AP
AL
KA
OA
OM
El
MC
P
AE
PN
CN
MH
D
EP

BF

Gl
JD
NF
EK
LL
JA

GC

HN
JD
AO
NE
EP
CH
GL
oX
MB
FK
AD
MO
MP
BE
AG
BN
KN
PP
PO
CO
ML
AE
OP
oL
MA
LA

220 sys trap,450 : rem now catch any plotting errors
230 xp = (x-xin)*sx rem x-coordinate for plot
240 yp = (y-yin)*sy - rem y-coordinate for plot
250 on pf goto 360,420
260 :
270 rem last point was plotted ok,
280 rem so draw from last point to current point
290 :
300 sys draw,xp,yp
310 goto 190
320 :
330 rem last point was out of range,
340 rem so draw from boundary to current point
350 :
360 sys draw,xp,boundary to xp,yp
370 pf=0:goto 190
380 :
390 rem last point was not defined,
400 rem so just plot the current point
410 :
420 sys plot,xp.yp
430 pf=0:goto 190
440 :
450 rem something went wrong with the function
460 :
470 err=peek(781).pf=2
480 if err=14 then 190 : rem illegal quantity error
490 if err =20 then 190 : rem division by zero error
500 if err=16 then 190 : rem overflow error
510 iferr=11 then sys prnt,3,23, " syntax error
in function definition " :goto 660
520 sys prnt, 4,23, " oops! i forgot about error # "
+ str$(err):goto 660
530 :
540 rem tried to plot out of range. x—coord. should be o.k.
9550 rem therefore, just test the y—-coord.
560 :
570 err = peek(781):if err<>14 then 520
580 if yp>199 then boundary =199 : rem point is above
top of screen
590 if yp<0 then boundary=0 : rem point is below
bottom of screen
600 if pf =0 then sys draw,xp-dx,boundary
610 pf=1:goto 190
620 :
630 rem end by pressing <return>
640 :
650 sys prnt, 13,23, " graph completed "
660 get a$:if a$<> chr$(13) then 660

670 end

680 :

690 rem begin the show

700 :

710 xin=-2+*n  : rem minimum value for x
720 xax= 2*n  :rem maximum value for x
730 yin=-3.0 :rem minimum value for y
740 yax= 3.0 : rem maximum value for y

750 sx = 160/(xax-xin) : rem scale in x direction
760 sy =200/(yax-yin) : rem scale in y direction
770 dx =(xax-xin)/160 :rem setinc for 160 point plot

780 pf=2 : rem initialize plotting flag

790 rem pf=0 ... last point calculated was plotted o0.k.
800 rem pf=1 ... last point calculated was out of range
810 rem pf=2 .. .last point calculated was undefined
820 x = xin - dx : rem initialize x

830 sys hires,1,0,1,0,1
840 sys dmode, 1:sys selpc, 1
850 goto 190

The Transactor

Volume 5, Issue 06




VIC Parameters

Chris Zamara, Technical Editor
Program by Paul Higginbottom

C64 Video and Character Memory Allocation

The C64's flexible memory architecture and VIC-II video chip
allow you to set up screen and character memory practically
anywhere you want to, providing the ability to re-define
characters and alter the system memory map to your own
specifications. The problem is, it's not such a simple process —
as usual, there are just enough complications to create confu-
sion. This article, the enclosed program (“VICPARMS"), and the
tables below are calculated to ease some of that confusion.

Fundamental Concepts

The VIC-II video chip in the C64 generates a video display
based on data found within the 64K of memory in the com-
puter. When in regular text mode (the default after power-up),
there are two kinds of data needed to display characters on the
screen: pointers which indicate which character is to be dis-
played in each screen position, and a number of bytes which
serve as shape tables to describe what each character looks
like.

The 1000 bytes which determine which characters are dis-
played on the screen are collectively known as screen memory,
video memory, or more technically, the video matrix. The
default location of the video matrix is at 0400 hex ($0400 or
1024 decimal), just below the BASIC text workspace, but that
location can be changed at will.

Every one of the possible 256 values of each video matrix byte
has a character associated with it. The shape of that character is
defined by the contents of 8 bytes within character memory.
Since there are 256 characters it follows that character memory
must occupy 2048 bytes. On the 64, as with all Commodore
machines, there are two character sets available: upper case/
graphics, and upper/lowercase characters (these two sets are
alternately selected with the shift/Commodore keys). Alto-
gether then, there are 4096 bytes which define the shape of all
512 characters.

Character memory is normally found in ROM, at location
$D000 (this is the same address range where the 1/0 is
mapped, but either RAM or the character ROM can be mapped
in instead). Like the video matrix, the start location of character
memory (called the character base) can be changed. Of course,
if you want to see legible characters on the screen, valid
character definitions must exist in memory wherever the char-
acter base points. To accomplish that, the contents of the

character ROM starting at $D000 can be copied into RAM
wherever the new character base is. With the character defini-
tions in RAM, you can customize the character set to your own
specifications — that is the prime reason for changing the
location of the character base.

Allocating video and character data to different areas of mem-
ory means pointing the VIC-II video chip to the start of the
desired memory addresses by changing one of its registers. In
the case of the video matrix, it also involves setting a pointer so
that the kernal (operating system) knows where the screen is
located in memory.

The start address of video or character memory can't just be
anywhere; the video matrix must start on a 1K boundary, and
the character base has to start on a 2K boundary. In other
words, there are 64 possible places where screen memory can
go, and 32 possible places where the character base can start.
Table 1 contains a list of all locations where screen memory can
go, and table 2 gives the 32 possible character base locations.

VIC Chip Banks

In practice, selecting the memory areas for the video matrix
and character base is complicated by the fact that the VIC chip
has only 14 address lines and as such can access only 16K of
memory. To allow full access of all 64K of RAM in the 64, the
most significant two address bits from the VIC chip are pro-
vided by two 170 lines (port A of CIA2). What that means to the
programmer is that the video matrix and character base must
lie within the same 16K boundary, since the VIC chip can only
access one 16K “bank™ at a time.

Note the way the video tables below are organized into four
columns: each column lists the possible memory addresses in
each 16K bank. The default bank is 0, since the video matrix
begins at $0400. How then is it possible to access the character
ROM, which resides at $D000, apparently in bank 3?

Character ROM Images

That feat is accomplished by a little trick in the 64’s hardware.
The character ROM appears at $D000 only to the CPU — as far
as the VIC chip is concerned (remember it can only access up to
16K), it fetches its usual character definitions from $1000.
However, the character definitions from $D000 only appear to

The Transactor

Velume 5, Issue 06




the VIC chip at $1000 in banks 0 and 2. So if you were to put
character definitions in RAM at $1000 or $5000, the VIC chip
wouldn’t see them; it would still see the usual ROM character
table. On the other hand, in banks 1 and 3 the VIC chip can get
its character definitions out of RAM from any address within
the 16K block, including the RAM at $D000 “under” the
character ROM. To put it simply, the VIC chip will recognize
character definitions from RAM starting at any 2K block in
memory except at $1000, $1800, $5000 or $5800. Pointing the
character base at any of these locations will result in displaying
the default ROM characters.

Selecting One of Two Character Sets

As previously mentioned, there are two character sets defined
in the ROM of the 64. The 2K of memory from $D000 to $D7FF
contains the definitions for the upper-case/graphics character
set which appears as the default after a reset or a RESTORE.
The character definitions for the upper/lowercase character set
(which can be selected by simultaneously pressing the SHIFT
and “Commodore” keys) are located in the next 2K of ROM,
from $D800 to $DFFF. To select one character set or the other,
the kernal just flips the least significant bit of the character base
pointer in the VIC chip to select an odd or even 2K boundary.
This is worth noting because it means that the only way to set
up two character sets and switch between them with the shift/
Commodore key combination is to start the character defini-
tions on a 4K boundary.

Specifics: How to Change the Pointers

Both the video matrix and character base addresses within a
given bank are defined with VIC register 24, which is at
location $D018 (53272 decimal). The video matrix start loca-
tion (one of 16 addresses within the bank) is defined by bits 4-7,
and bits 1-3 give the character base. The least significant bit is
unused. In tables 1 and 2, the bit patterns necessary to select a
given memory address appear in the rightmost column.

The bank select bits are accessed through location $DDO00,
which controls port A of CIA1, one of the two 6526 1/0 chips.
Bits 0 and 1 of this location control the state of the most
significant bits of the VIC chip address bus. The bits are
inverted so that both bits set to 0 selects bank 3, and both 1
selects bank 0. The state of these bits necessary to select each
bank is given in the top row of tables 1 and 2.

It was mentioned earlier that relocating the video matrix also
involves changing an operating system pointer. This is so that
BASIC will put characters in the right place when PRINTing to
the screen. Location $0288 (648 decimal) contains the page
number of the video matrix in memory — it's normally set to 4,
since the screen is at $0400. As another example, to relocate a
screen to $4000 this byte would have to be changed to $40 (64
decimal).

It's worth mentioning here that there are other important
memory areas to the VIC chip besides screen and character
memory. There is colour memory, which appears at $D800 to

the CPU — it is fixed, and can't be put anywhere else. In fact,
colour memory isn't a part of the 64K memory map at all, but
exists in the form of a lone 1K by 4 bit chip on the 64’s circuit
board.

Another source of VIC chip display data that is moveable in
memory is the high-resolution screen. This only applies in hi-
res mode, where 8000 bytes are required for the screen. That
means that there are two possible places in each bank where a
hi-res screen can be located. As indicated in Table 3, bit 3 of
location $D018 controls whether the hi-res screen comes from
the lower or upper 8K of a given bank.

The Easy Way Out: VICPARMS

If it sounds like a real pain to re-define the character set and
re-allocate video memory, try the program in listing 1. VIC-
PARMS was originally written by Paul Higginbottom from
Commodore, and it does the dirty work for you. VICPARMS will
ask you where you want to put screen memory (the video
matrix), and where you want character memory to come from.
You must supply these addresses in hexadecimal. Given this
information, VICPARMS will determine the correct values to
store in the necessary locations, and whether or not the
character set must be transferred from ROM to RAM. Before
going ahead, it will display the steps it’s going to take, and ask if
it should proceed. Giving the reply “y” at this point will initiate
the action. If the character set must be transferred, it will take a
few seconds before the process completes,

When using VICPARMS, you have to keep in mind the informa-
tion in table 1 and 2. You can only put screen memory or
character memory at one of the locations designated in the
table. Also, if you put screen memory and character memory
close enough together so that they’ll overlap, there's going to
be problems. In short, VICPARMS works on a user-beware
philosophy, but it does the job with a minimum amount of
code; it's a programmer’s utility, after all.

When VICPARMS transfers character memory to RAM, it copies
the 2K of character definitions which appear in ROM starting at
$D000. This is the character set which defines the upper/case
graphics characters. If you want the alternate upper/lowercase
character set, change the variable ‘cset’ in line 100 from 0 to 1.
Alternatively, you could change the program so that it copies
both sets at once: change the ‘2047’ in line 450 to ‘4095’

Once you've relocated the character set to RAM, you can
redefine the characters by simply POKEing about, with one
exception: if character memory has been moved to $D000 (the
RAM under the character ROM and [/0) and the screen is
somewhere else in bank 3 ($C000 for example), the only way to
change the RAM to redefine the characters is to “map out” the
[/0. The [RQs will have to be disabled when doing this.

But before getting too deeply involved in a discussion about
memory management on the 64 (which could easily fill another
article), let's leave it at that.

The Transactor

Volume 5, Issve 06




Table 1: Video Matrix Listing 1: VICPARMS

Bank Select Register = $DD00 JF | 10 rem# "vicparms’
Bank 0 Bank 1 Bank 2 Bank 3 FL | 11 rem= this program allows you to
xxxxxx11  xxxxxx10 xxxxxx01 xxxxxx00 LA | 12 rem= put your screen memory
$D018 FJ | 13 rem= and character memory
Address Relative to CPU Contents AD | 14 rem= in any of the possible locations.
BJ | 15 rem= it will transfer the character
0000 4000 8000 C000  0000xxxx EC | 16 rem+ set from rom to ram if necessary
0400 4400 8400 C400  0001xxxx DA| 19 rem program by paul higginbottom
0800 4800 8800 C800 0010xxxx Il | 20:
0C00 4C00 8C00 CCO0  0011xxxx GP| 100 cset = 1:rem transfer: 0 = upper/graphics,
1000 5000 9000 D000  0100xxxx 1 = upper/lowercase
1400 5400 9400 D400  0101xxxx PK | 110 print " (entries in hexadecimal)
1800 5800 9800 DR800  0110xxxx IN | 120 a$ = "screen addr " :gosub 540:sc=v
1C00 5C00 9C00 DCO0  0111xxxx HG| 130 a$=" char.addr" :gosub 540:ca=v
2000 6000 A000 E000  1000xxxx GK| 140 b=int(sc/16384) :rem screen bank #
2400 6400 A400 F400 1001 xxxX Il | 150 a=int(ca/16384) :rem char bank #
92800 6800 A800 E]00 1010xxXX FO| 160 sv=sc-b*x16384 :rem screen address
2C00 6C00 ACO0 ECO0  1011xxxx JG| 170 cv= ca-a*16384 :rem char address
3000 7000  B0O00  F000  1100xxxx AK| 180 if sv=cv goto 510
3400 2400 B400 F400 1101 x3x DO| 190 rem error if screen and chars at same place
3800 7800  BSOO  F800  1110xxxx ID | 200if (b= T)or(b=3) and (a<>b) goto 510
AD| 210 rem error if in different no-image banks
3C00 7C00 BCOO FCO00 1111 xxxx : : :
FP | 220 vic=13+4096  :rem vic chip address
. o 1 MD| 230 c1 =13+4096 + 12+256 :rem cia chip 1
(X" means ‘don't care’) PE | 240 c2 = 1324096 + 13+256 :rem cia chip 2
IL | 250 p=int(cv/2048)+2 + int(sv/1024)*16:if p<O then 510
FF | 260 rem char, screen loc in lo, hi nybble
HO| 270 g=int(sc/256):if q<0 then 510
Table 2: Character Base CB | 280 rem q is screen memory page for kernal
AF | 290 print " poke vic+24," p
Bank Select Register = $DD00 BJ | 300 print " poke 648, " q
Bank 0 Bank 1 Bank 2 Bank 3 LE | 310 r = (peek(c2)and252)or(3-b)
xxxxxx11l  xxxxxx10 xxxxxx01 xxxxxx00 PK | 320 print " poke cia2, " r
$D018 DG/ 330 if (b= 0)or(b = 2)) and (((pand14) = 4)or((pand14 = 6)))
Address Relative to CPU Contents goto 350
OO| 340 print "you need to move the character set to:
0000 4000 8000 CO00 xxxx000x print ca
0800 4800 8800 C800  xxxx00Ix IC | 350 print:input "shall i do this " ;a$
1000(1) 5000 9000(1) D000  xxxx010x DA | 360 if left$(a$,1)<>"y" then end
lBU'UII?] 5800 9300{2) D800 xxxx011x Pl | 370 pgke VIC + 24’p
2000 6000 A000 E0O00  xxxx100x FJ | 380 poke 648,q
2800 6800 A800 E800  xxxx101x FB | 390 poke c2,r
3000 7000 B0O0O FOOO  xxxx110x AL | 400 if (b =0)or(b = 2)) and (((pand14) = 4)or((pand14 = 6)))
3800 7800 B800 F800 xxxx111x goto 480
Cl | 410 rem transfer character set if necessary
(1) ROM image from $D000 (upper case/graphics) appears here OJ | 420 poke c1 + 14,peek(c1 + 14)and254:rem turn off irq's
(2) ROM image from $D800 (upper/lower case) appears here CO| 430 poke 1,peek(1)and251:rem see chars
LF | 440 rom =vic + cset*2048 :rem character rom
Note: Bit 1 of $D018 is toggled by the shift/Commodore keys. LF | 450 for i = 0t02047:poke ca +i,peek(rom +i):next
.rem move chars
BM| 460 poke 1,peek(1)ord:rem see i/o again
GA| 470 poke c1 + 14,peek(c1 + 14)or1: rem enable irq again
_ EC | 480 print chr§(147);
Table 3: Bit Map Memory KO | 490 end
IG | 500:
Bank Select Register = $DDO00 e ",
Bank 0 Bank 1 Bank 2 Bank 3 m: g; g :prmt ?legal parameters " :end
xxxxxx11l  xxxxxx10 xxxxxx01 xxxxxx00 JI | 530 rem= input/convert subroutines
_ $D018 MI | 540 print a$;:a$ = "":v=0:input a$
Address Relative to CPU Contents MD| 550 if a$ = "" goto 540
0000 4000 8000 C000 xxxx0XXX BJ | 560 fori=1tolen(a%).a= asc(mid$(a$,i))-48
2000 6000  A000  E000  xxxxlxxx a=a+7s(@>9)v=v+16+anex
GF | 570 return

The Transactor 47 Volume 5, Issue 06




BIGPRINT

Program by Allen R. Mulvey, Fulton, New York
Presented by Chris Zamara

A True Proportion High—Res Printer Dump Utility

Remember PICPRINT in the “Protection and Piracy” issue (Vol 5,
issue 03)? Well, this one is better! In the true spirit of program
evolution (of which this magazine is a firm believer), a reader took a
given program, added a dash of brilliance, and came up with a
winner.

To refresh your memory, PICPRINT allowed you to view a high
resolution picture in memory (at 2000 hex), and print the picture to a
Star Gemini or similar printer, using the 64's function keys. The
picture could be printed in a “wide mode” which st r et c h e d
it out across the page; a wierd and perhaps less than useful feature.
Alas, even the “normal mode” printout served to stretch the picture
slightly, since the aspect ratio (pixel width vs. height) of the printer
differs from that of the screen.

The good news: like Brainstorming, wierd concepts of no intrinsic
value can spark thought. (Light bulb suddenly appears in thought
bubble over man’s head - Eureka!) Which brings us back to
BIGPRINT. When a “wide” picture dump is initiated (via the F3 key),
the resulting picture takes up about the width of a standard printer
page, but its height is also increased, so that the overall proportions
match up quite well to those of the screen. Specifically, the big
printout is 50 percent wider than the normal size and twice as high.
Now why didn’t | think of that?

BIGPRINT retains the option of printing a “normal” sized picture,
which it does in the same manner as PICPRINT. Some pictures are
designed to look right on a printer rather than the screen, and look
best printed in normal mode.

After BIGPRINT is installed with SYS 49152, F7 will toggle high-res/
text mode, F3 will print the picture in normal size, and F5 will give the
big print. The stop key can be used to halt a picture in progress at the
end of a line.

The BASIC loader follows. Have fun with it, and keep those brain-
storms coming in!

Notes:

1) Change the 76 in line 1030 to 121 to take advantage of the double
speed print mode of the Star Gemini-10x printer.

2) The 4 in line 1280 is the secondary address for the Cardco interface,
and selects graphics mode with auto-linefeeds. You may have to
use the no-linefeed graphics mode (5), depending on the DIP
switch settings on your printer.

CJ
CA

LI
JM

MJ
PF

JC
GE
EM
CD
BH
MD
Jl
AC
MI
OJ
PG
PK
LJ
FD
BM
HA
IL
NP
LI
LB
FL

10 rem# data loader for " bigprint”

15 rem= for star gemini printer and
cardco interface

20cs=0

30 for 1=49152 to 49639:read a:poke I,a
‘cS=cs+anexti

40 :

50 if cs<>58931 thenprint " *+++* error in
data statements =**=*": end

60 sys 49152

7/0end

80 :

1000 data 76, 46,192, 0, 0, O

1010data 0, 0O, 7,100,128, 64

1020 data 32, 16, 8, 4, 2, 1

1030 data 27, 76,192, 3, 27, 75

1040 data 64, 1, 64, 0, 64, O

1050 data 64, 64, 0O, 64, 0, 64

1060 data 64, 0, 64, 64, 0, 64

1070 data 64, 64, 0, 0,120,169

1080 data 59, 141, 20, 3,169,192

1090 data 141, 21, 3, 88, 96, 165

1100 data 197, 201, 64,208, 8,169

1110 data 0,141, 4,192, 76, 49

1120 data 234, 173, 4,192,208, 43

1130 data 169, 1,141, 4,192, 165

1140 data 197, 201, 3, 240, 35, 201

1150 data 6,208, 16,169, 3, 141

1160 data 7,192, 141, 45,6192, 169

1170data 0,141, 5,192, 76, 143

The Transactor

Volume 5, Issue 06




PO| 1180 data 192,201, 5,208, 8,169 DJ | 1500 data 192, 29, 10,192, 153, 34
LM| 1190data 0, 141, 7,192, 76, 143 CE | 1510 data 192, 200, 192, 8, 208, 234
Ol | 1200 data 192, 76, 49,234,173, 17 MC| 1520 data 232, 224, 8, 208, 216, 173
GF| 1210 data 208, 73, 32,141, 17,208 OA| 1530 data 7, 192, 240, 68,169, 7
BD| 1220 data 173, 24,208, 73, 8,141 FO| 1540 data 141, 45,192,174, 5,192
DK | 1230 data 24,208, 76, 49,234,169 JG | 1550 data 189, 7,192, 141, 6,192
EB| 1240 data 0, 141, 3,192, 173, 141 NL | 1560 data 160, 7,185, 34,192,174
Kl | 1250data 2, 41, 4,240, 5,169 CG| 1570data 6, 192, 61, 10,192, 240
IC | 1260 data 255, 141, 3,192,173, 9 LP | 1580 data 16, 185, 26, 192, 174, 45
LA | 1270 data 192, 32, 195,255,173, 9 KO| 1590 data 192, 29, 10,192,202, 29
CB| 1280 data 192, 162, 4,160, 4, 32 HJ | 1600 data 10, 192, 153, 26, 192, 136
NM| 1290 data 186, 255, 169, 0, 32,189 'GB| 1610 data 16, 226, 206, 6, 192, 206
HB | 1300 data 255, 32,192, 255,174, 9 IMC| 1620 data 45, 192, 206, 45, 392. 16
NA| 1310 data 192, 32, 201, 255,169, O EA | 1630 data213, 160, 7,185, 26, 192
CF | 1320 data 133, 251, 169, 32, 133, 252 IO | 1640 data 153, 34, 192, 136, 16,247
FI | 1330 data 169, 27, 32,210, 255, 169 AM| 1650 data 162, 0, 189, 34,192, 77
BN | 1340 data 51, 32,210, 255, 169, 16 GP| 1660 data 3, 192, 32,210,255, 172
CL | 1350 data 32, 210, 255, 169, 25, 141 GH| 1670 data 7,192,240, 6, 32,210
FB | 1360 data 42,192,173, 5,192, 240 LL | 1680 data 255, 32, 210, 255, 232, 224
BP| 1370 data 13, 56, 165, 251,233, 64 DD| 1690 data 8, 208, 231, 76, 167, 193
DL | 1380 data 133, 251, 165, 252, 233, 1 GB| 1700 data 76, 6,193,206, 43, 192
EC| 1390 data 133, 252, 162, 0, 189, 18 HO| 1710 data 208, 248, 169, 13, 32,210
DN| 1400 data 192, 172, 7,192,208, 3 MO| 1720 data 255, 165, 197, 201, 63, 240
CN| 1410 data 189, 22, 192, 32,210,255 NE| 1730 data 27,208, 3, 76,218,192
DN| 1420 data 232, 224, 4,208, 237, 169 OF | 1740 data 173, 7,192,240, 12,173
EN| 1430 data 40, 141, 43,192,169, O BA| 1750data 5,192, 73, 1, 41, 1
LE | 1440 data 162, 7, 157, 34,192,157 CB| 1760 data 141, 5, 192, 208, 236, 206
JA | 1450 data 26, 192,202, 16,247,162 | | 1770 data 42, 192, 208, 231, 169, 27
EO| 1460 data 0,160, 0,177,251, 141 AN | 1780 data 32,210, 255, 169, 64, 32
NJ| 1470 data 44, 192, 230, 251,208, 2 CL| 1790 data 210, 255, 173, 9,192, 32
OE | 1480 data 230, 252, 173, 44,192, 57 JJ | 1800 data 195, 255, 32, 204, 255, /6
EC| 1490 data 10, 192,240, 9,6185, 34 | BJ | 1810 data 49, 234
“Mickey” by Coy V. Ison
created with ‘Picture Perfect’, printed with BIGPRINT
The Transactor Volume 5, Issue 06




Two Short Sprite Editors

Chris Zamara, Technical Editor

The good thing about sprite editors is they make it easy to
design your own sprites. The bad thing about sprite editors is if
you don’t have one, you have to type one in.

Of course, that's only bad news if the sprite editor program is
very long. And that will serve as introduction to the programs
presented below.

The sprite editors below work in different ways, but they share
the same basic philosophy: why have oodles of code to allow
cursor movement, character printing and deletion, etc. when
the built-in BASIC editor will do all that just fine, thank you?

Sprite Editor Number 1

The first one is the shorter of the two, and a bit boring perhaps,
but it works. The idea behind this one is to have the sprite
definition contained within DATA statements. That way you
can edit all the DATA statements on the screen, press RETURN
over each one, then RUN the program to define and display the
sprite. A bonus of doing it this way is that saving the program
once a sprite 1s so defined also saves the sprite definition.

Look at listing 1. Where are the data statements? The program
shares a trait with a monster robot in an old Japanese sci-fi
movie: it can “program itself to enlarge” (honest, that's what
the robot did in the movie). Enter the program, then RUN 300.
Lines 1000 to 1020 will be added to the program, and will be
listed for your convenience. Each period between the quotes in
the DATA statements represents one pixel in the sprite. Change
a dot to anything else (I like asterisks) to set the corresponding
sprite pixel. You'll have to press RETURN over each line to
enter it (the program sets auto-repeat on all keys so just start at
line 1000 and hold down the RETURN key to enter all lines).

When you want to see the sprite, RUN the program; the newly
defined sprite will appear at the top left corner of the screen. To
continue editing, LIST1000- or just LIST to display the current
DATA statements. The sprite is defined at sprite page 13 which
s location 832. Thus, the bytes stored from 832 to 895 com-
prise the sprite definition, and may be written to a disk file or
otherwise saved in lieu of saving the sprite editor program with
the DATA statements. Sure, it's primitive, but it works, and the
program is only 20 lines long. The main inconvenience is that

you can't see the sprite dynamically change as each point is
changed; you have to RUN the program each time to see the
new sprite, and the re-definition process isn’t quick. Enter
Sprite Editor #2.

Sprite Editor Number 2

This one is a bit longer, but much more exciting. The sprite
definition process occurs dynamically, as you plot or erase each
point. It can be fun to use, since the routine is interrupt-driven
and you keep complete control over the machine while you
define the sprite by putting asterisks on the screen. RUN it
(leaving out the opening REMs if you wish), and after a few
seconds, an array of dots will be printed starting at the top left of
the screen. After the dots appear, the computer returns to its
normal state - you are free to enter commands, edit or LIST a
program, whatever. But try changing some of the dots to
asterisks. As asterisks are entered in any of the indicated screen
locations, the sprite is instantly updated and displayed at the
right of the screen. Unlike program one, you shouldn't press
RETURN over each line or you'll get a syntax error - use SHIFT/
RETURN instead. The dots which are printed aren't really
important at all, but they serve as a guide to the boundary of the
sprite definition area (24 characters across by 21 down).

Remember, once the program has been RUN, any change in
the sprite definition field on the screen will affect the sprite. If
you were to LIST the program for example, you'd see the a
funny looking sprite form, and then appear to “scroll” upwards
with the program listing. As the asterisks in the program listing
move across the sprite definition field, the sprite continuously
changes to reflect the new asterisk pattern. Of course, listing is
slowed down considerably, since the interrupts are stealing so
much time.

When you've played around enough to come up with a sprite
you're happy with, you can disable the interrupt-driven sprite
program and print out the 64 bytes defining the sprite by
entering CONT. This command appears below the dots which
are printed out, so you can just move the cursor over the CONT
and press RETURN. After the values have been printed out, the
interrupt routine can be re-enabled with SYS 49152, and
disabled with SYS 49165.

The Transactor

Volume 5, Issue 06




Both programs can be embellished to give more features, for
example multi-colour sprite capability. Even if the programs
grow to the point of belying their calling in life (being small), it
doesn’t matter. Somehow, it seems easier to write a huge
program than to type someone else’s program in.

Listing for Sprite Editor #1

KJ | 100 rem* simple sprite designer *
NP| 110sp=13 :rem sprite page
FD | 120 s=sp+*64:rem sprite position
KL | 130 poke2040,sp
OC| 140 v=53248:pokev + 21,1:rem display mob
RJ | 150 pokev +39,1:pokev,25:pokev + 1,51
PJ | 160 fori=0to7:.e(7-1) = 2%i:next
LJ | 165 poke 650,128: rem repeat all keys
BG| 170 :rem convert data to mob
BK | 180 fori = 1t0o21:reada$:forj= 1to24step8
EM| 190 v =0:fork =0to7:ifmid$(a$,j+ k,1)<>"."
then v=v +e(k)
PC | 200 next k:poke s,v:s=s+ 1:nextj,i
CN| 210 end
BN | 220 :rem add data statements
IE | 300 ifa>20thenlist1000-
BD| 310 printchr$(147)1000 +a " data";
CE| 315 print chr$(34) " .cvrvrvernrrnrrarananns " chrd(34)
FI | 317 rem 24 periods
CN| 320a=a+1:print"a="a":goto300"
DI | 330 poke198,3:poke631,19:poke632,13:poke633,13
EF | 340 end

OA
OJ
CB
LI
BN
OE
EB
HG
GE
EN
IP
DI
DJ
HL
Cl
ME
KH
IC
AH
BM
AK
AE
El
OJ
HG
Ol
EG
MH
DD
JG
KN
BP
OF
DE
EH
BF
DE
KO
Bl
EM
NH
BP
AL
CO
00
CH
EH
CH
LC
DE

Listing for Sprite Editor #2

100 rem = >> easy sprite editor << *
110 rem * —use normal editor to draw. *
120rem * -use " *  to plot points. *
130 rem * —press return over "cont:" =
140 rem *  to print sprite values.  *
150 rem = aug84 —--cz-- *
160 :

170 fori =49152t049278:reada: pokei,a:next
210 :

220 rem * display sprite #13 (at 832) =

230 v =13+4096

240 poke2040,13

250 poke v,30:poke v+ 1,100:poke v + 16,1
260 poke v+21,1: poke v +39,1

270 :

280 rem * print design grid *

290 print chr$(147);:fori=1t021

295 print” cicissssessserssasereas "nexti
296 rem 24 periods

300 print" cont:”

310 sys49152: rem * enable sprite draw
320 end

330 rem = "cont" executes the following
340 sys49165: rem = disable sprite draw
350 print chr$(147)

360 rem = print sprite values *

370 fori=832to895:printpeek(i) ", " ,:next
380 end

1000 data 120, 169, 37,141, 20, 3
1010 data 169, 192, 141, 21, 3, 88
1020 data 96, 120, 169, 49,141, 20
1030 data 3, 169, 234, 141, 21, 3
1040 data 88, 96,128, 64, 32, 16
1050data 8, 4, 2, 1, 0, O
1060 data 3,169, 0, 133,251,169
1070 data 4, 133,252,162, 0, 169
1080 data 3, 141, 35,192, 32, 101
1090 data 192, 173, 34,192, 157, 64
1100data 3,169, 8,141, 36,192
1110 data 206, 35, 192,208, 10, 169
1120data 3, 141, 35,192,169, 24
1130 data 141, 36, 192, 165, 251, 24
1140 data 109, 36, 192, 133, 251, 144
1150 data 2, 230, 252, 232, 224, 64
1160 data 208, 210, 76, 49,234, 169
1170data 0, 141, 34,192,160, 7
1180 data 177, 251,201, 42,208, 9
1190 data 185, 26, 192, 13, 34,192
1200 data 141, 34,192,136, 16, 238
1210 data 96

The Transactor

Volume 5, Issue 06




A List Scrolling

Routine For The C64

Darren James Spruyt
Gravenhurst, Ontario

Dig out program lines from beyond the screen limits !

This program allows you to scroll both forwards and
backwards through a BASIC program on the screen using
the cursor up/down keys. It saves countless typings of
‘LIST" and having to press the RUN/STOP key at the
correct time.

The operation is very simple: after you have run the
BASIC loader program (Listing 1), give the enabling ‘SYS.’
To scroll backwards through the listing, place the cursor
on the top row of the screen and press cursor up. If the
screen has no numbers along the left hand side, the listing
will start from the very last line of the program. Con-
versely if you are at the bottom of the screen (with no line
numbers on the screen) and press cursor down, the listing
will start with the first line in the program.

If line numbers appear on the screen, upwards scrolling
will list the line previous to the number closest to the top
of the screen, and if scrolling down, the line number that
follows the one closest to the bottom of the screen will be
listed.

One note: Be sure to stop a real list before pressing the
cursor down, or else nasty things may happen. That is, if
you typed ‘LIST 100-", press the RUN/STOP key before
trying to scroll down the listing.

Listing 1 is the BASIC loader for LIST SCROLLER, while
listing 2 is a disassembly of the program. A few notes; The
vector at ($0300) is the ‘ERROR MESSAGE LINK', and all
errors pass through this vector as well as the list routine
when it is finished. This vector is changed so that the
program can regain control after a line has been listed or
when an error occurs during line number fetches.

The programming method used could be denoted ‘POST-
INTERRUPT" - that is, when an interrupt occurs, a little
pre-interrupt code is done, then the system interrupt code
is performed (keyboard scan, updating TI$), and finally,
control is returned to the post-interrupt routine before the
interrupt returns. The advantage over a simple pre-
interrupt technique is that the program can check if
certain keys are pressed before the screen editor even
knows they exist.

CC
LI
BF
DH
GK
LJ

Cl
AF
IN
IB
DC
EJ
OE
PC
NH
NP
DJ
BP
LL
HB
ID
JK
CF
AA
LN
AP
BP
CC
CA
GG
MM
HC
AC
GG
KC
KF
HH
DH
GH
0G
DL
KK
OG
GO

Listing 1: BASIC loader for scroll routine

0 rem+ data loader for "scroller™ =
20cs=0

30 for 1=51456 to 52049:read a:poke i,a
40 cs=cs+a:nexti

50:

60 if cs<>73817then
print” =+ + error in data statements **+* " : end

70 rem sys 51456

80 end

100 :

1000 data 120, 173, 20, 3,141, 43
1010 data 201,173, 21, 3,141, 44

1020 data 201, 169, 201, 141, 21, 3
1030 data 169, 30, 141, 20, 3,169
1040 data 0, 141, 67,203, 88, 96
1050 data 44, 67,203, 16, 3, 76
1060 data 126, 234, 165, 157, 48, 3
1070 data 76, 49, 234, 169, 255, 141
1080 data 67, 203, 160, 5, 104, 153
1090 data 69, 203, 136, 16, 249, 160
1100 data 73, 169, 201, 72,152, 72
1110data 8, 72, 72, 72, 76, 49
1120 data 234, 164, 198, 240, 13, 185
1130 qata 118, 2,162, 1,221, 60
1140 data 203, 240, 6, 202, 16, 248
1150 data 76, 159, 202, 165, 214, 221
1160 data 62, 203, 240, 3, 76, 159
1170 data 202, 142, 77,203, 32,178
1180 data 202, 32, 25,203, 32, 187
1190 data 202, 198, 198, 174, 77, 203
1200 data 224, 0,208, 3, 76, 4
1210 data 202, 162, 255, 232, 224, 25
1220 data 240, 11,181,217, 16, 247
1230 data 32, 229, 202, 144, 242, 176
1240 data 6, 169, 255, 133, 20, 133
1250 data 21, 32, 19, 166, 164, 95
1260 data 228, 44,208, 7,196, 43
1270 data 208, 3, 76, 156, 202, 202
1280 data 228, 44,176, 5,166, 44
1290 data 164, 43, 136, 134, 64, 132
1300 data 63, 160, 0,177, 63, 240
1310 data 6, 200, 208, 249, 76, 156
1320 data 202, 200, 177, 63, 197, 95
1330 data 208, 243, 200, 177, 63, 197
1340 data 96, 208, 236, 136, 152, 24
1350 data 101, 63, 133, 95, 165, 64

The Transactor

52

Volume 5, Issue 06




60
L | 1370 g:ta 105 0,133
Mll_s’. :igﬂ data 13§’ 2551 233, 152' 162, 23
MJ 14?0 data 133, 2?? 165,217, S' 32 Zoile Listing 2: C
BO | 1 0 data 162, 1, 169, 39, 1 128 cooésta Scoz lookaoutrg's ommented Dis
420 da ' 1, 142 . 133, 213 c807 $c92b .- py old irg to cSch i
DF ta13 , 146 Ida $03 juse | . ny bl
14 4- 21 ' c90a 15 .nmﬂm c9 . y
06 | 1440 e e 202 162 T 2 o0kt #405. e coc9ida SNy
1440 d 5, 202, 162 233, 76 o 59 | cacb ampses ‘check value agai ca3
1A ata 11 ' ) o5 J o sta $0315 ..seinﬁw.“ mhnﬂﬁﬂgbb -the link hi gainst nagdpla _

D 1450 data 229, 181,217 ,202, 48 e qecier oo to match o edion pull Byte from
A | 1460 da 29' 202 144' 161 2491 30 591??;2 $0314 ﬁd1g|: :m:ﬂk c&EIEEE ‘_:‘:ﬂﬂnt routine
MG 1 ta 169, 2 ' 1244_’ 1 y c919 sta #$00 1'5&! c9d? adc - e ($of) cad7 i fm _m find line

VG | 1470 deta 7 02, 144,244,176, 9 G T e 28 e SR e
A 1480 data 2r 2081 21' 220‘- 133: 21 $1drt; : n acti mm: Egglda ::3; ;Plua. Eﬂﬂlmp Eﬂ,ﬁ fﬂtf:‘::t:i‘;xﬂ
| | 1490 dat 4,169, 13 4, 24,208 cotebt o043 cadBad: #$00 they registe cadt ldy #500 ener fxup in
NE | 1 a 23,2 , 208, 24 9 bpl $c926 ;processing act mﬂa $60 offset can da $cbd5 jmain exit ro e
B 500 data 16, 08, 5,232 5,224 923 mp Seare ino acive?  codolda $08) ’. oty ! ‘.’m‘ﬂlme”t
L 1510 data 243,169 181,217 028 brmi $< akip out quick 960 b 006 check bottom ine cast cp saved das
K|1 230 , 255, 2 c92a | 1$c92d mmediate m c9e2 i$coe? a link caa8 y #4506 | onto
iE EED data 32’ 20‘ 208 2' DB. 232 Eﬂ‘ﬂd:rdnap $eadl r;ﬂ: ode cﬂﬂdldx #517 :nﬂt limked MI;;BREE' r!mmﬂ
1530 d . 19, 166! , 230, 21 c92f st o 'Isatwmem 96710 Seot E;{mmmﬂ caac sta #500  sel
GB ata 9 , 165, 2 c932 a $cbdd processin c9e9 x #$00 | im half lines om caaf | $cbad processin
B | 1540data 1 e a1s 1o s A A Same S
1550 da ' 32. 255 ' 21 B: 162 c935sta $cbd :frmwe six bytes c9ee ora ;dg -;ﬁ:n:m _ cab5lda kzﬂ? :Bray,:m
KH | 1560 ta 134,214 ,233,162, 2 0938 dey o "p”‘ﬂ"lt:?gmk' gm sta $§§u Jlink @ top lines cab7jsr $eald :ruulin:urmr
DL data 1 , 32, 210 2 , 104 {;Q,']d!x #3849 _';Et""-'ptruuﬁm cot6 Id $d5 f'x't“ﬂﬂgtha]m cabdsta $d6 sav
1580 d 177, 9 . 255, 160 co3f #5c9 up false | cof8 x #301  set cacO | $cbab & CUrsor raw
JP ata 64,203, 5. 240, 37, ooty roum U8 stx $0202 setinsert mode cac0lda $a3
LM 160 ta 132 15 ' 0 145 E9r41 pha ‘it onto th put cafe stx $d6 -sel curso Ida fsmc . column
AO 0 data 16 ! 165, 9 ' , 95 2php gk cofe fo :memma”ﬂ cac7 sta $d3 ‘et colum
16 5 9 , 95,133 943 pha 'bush 1 jm $e010  positio cacs s a zer nto
10 dat Br 133 ' 63 944 false sta cal4 P $cass . n caca o value
KJ a 133 ' 64, 1 pha .push 3 m tus Idx #%19 into main li cﬂﬂdlm $cbdb
1620 d 20,1 ’ 69 25 c945 ph d ore calé de -ggt list six resto
FL ata 166 ’ 33. 21 ! 5 cO46 | a 'ﬂ_:mm']" values r_';.ﬂ,ﬂ?'b": . to scan cact Ida $d6 ' re cursor
H 1630 data 20, 100, , 76,215 o Seadt contwit oo camolcm Saon screen cact \da Sanic o o
P | 1640 64, 203 , 240, 26 ! t with interr Gaﬂbl:.ﬂ §d0x - ne all fines add | a $d3 : ore cursor col
FK data 169 ' 160, 1 ' 173 c949| fﬁnﬁm rmu‘.nﬁl':m cald pl $cal6 f?ﬂtilﬂh byte mﬂ?ﬂ $e56c '-f'
1650 dat 13, 32,2 . 145, 63 mhg;qiaﬁ ;uzlrewhan irngm -‘-‘-31[1{3;35““5 -_'ﬂl-:ad, retry mdgst: #$00 71::5“'Wsta1u5
Eg 1660 dﬂt: 202,202, 32 lg 255, 32 o $0276y got # chars nbuf ou12 bos Soki notpresent bovrend so26c :up all the dela
D. l ' ; Idx #%0 : igﬂ“m ida #% ;'jl'assk- Eil'1':|r . counters ¥
iy 1670 data 20 141,146, 2 203, 169 gﬁ-?.:mp;ﬂb;ﬁ ;_ char calb sta o :Ismfmlfﬁ.“' oack &ty $0d that scrolin
1680 d 2, 104 1 ’ 76. 15 55 beq $c9 X check . 18sta $15 line 1sty $028 will occ ¢
CM| 1680 data 128, 202 4, 2 10199 omw e o S sy S i
690 da ' 02. 230 ! 4, TG 058 bpl $ : chars calbbne $cald :push caed jsr $6910 . er
KG | 1700 d 18202, 160, O, 198, 76,133 ﬁggwﬁéf caldcpx Ty Tmp over cod cooalcy 46 setline
0 | 171 ata 72,200, ,185, 69 Cout cmpseb o metches i #3500 ?r..”f“""ﬂ*mmme . caebds |
BA 0 data 169 , 192, 6 , 203 o962 pScbdex : ursor row 0823 br #30d . caedcp, (8dt)y
1720 data 0,141 208, 247 mﬁ:qscﬂﬁ? _':"m against row .:_325':"5513313 Put byte onto stac caef b‘;’!’q#ﬂ? 'Igftﬂharf,m e
' 087 of . o ex ca?2 . . cafi y line
HG | 1730 d 129,234,174 67.203, 76 o ::fﬂm '_nneamdﬂdmm acule Tbﬂ:g; was line# k ﬂmp:;';é jyﬂ:ndm
EP | 1740 data 206, 32, 19, 135, 2,165 ovet Scab2 o/cown 10 foeatin o ospom | caf3 beq Scace e
i ' M- ; :
CL 1?5{] atﬂ 2141 141 ' 23.4. 96 ':g'Tﬂjl::’ $cb19 ;ﬂ_?::ﬂl.llsm ca2c b:l :g:-g: ' was bo - caf? bccp:zﬂﬂ under N
data ' 75 2 ’ 165 c973 $cabb | ge ($0300 ca2 1 ttom li caf9 b17 ascii ‘0
GE 1760 141! 76 ' 03: 165 ,:grﬁdec $cb _'SEVE{:UEW ) Gﬂaglﬂa #S1f :?ﬁ.bﬁﬂm;:ilﬂd cafb cmp#$3a -_'jl"BS
DB I 1 data 211 ' 203: 169 : 211 EBTBHH $cbad :purﬂﬂ frﬂmt?;s caﬂg::‘nﬂ $cala ! oK cafd t;r.‘:s $cb17 TWE' ascii '9
L|1 14,1 , 75,2 corabne S9! :down num ca34 bre Scads .increase Inu kK caff fix (87a) to
EA 780 data 3 ,173, 76,20 , 203, 134 gg;ﬂ’m':'ﬁcam '_“‘“ﬂquﬂ_bar ca3 inc §15 mby1  cbO adc $d1 :match ($d1)
1790 da 2,108 229- 3,133, 211 mﬁ idx #$ff imnmcumﬂpm magﬁ; 613 find | "-‘-I:ﬂ.]iﬁ;a 73 Tiuathﬂ
JD | 1800 d ta 207, 14[}' 14 160, 0,132 5932::;! " sianﬂf CUrsor up n Gﬂgdbmiﬁ :E number cmsagﬂﬁ {::ﬁ:
ECG 1810 d::E 205, 140, 133’ 2,200, 132 gg‘éfé“"‘*ﬂ; checked s a1 50 ;’333 e neion  coovmr 30 rogsr
a ' i ' a $d9 ; d YBS, ke '
S | 1820 data 240,233, 160, 2 2,200,132 g i gtk asio 0 50 i st g
H | 1830 09, 192 , 255, 200, 1 R o line’s linked ret g 4 vl rebyodeiy R Soaa save x - 169 ”
On | 1630 data 52,240, 02020017 i SR 2 e et
1 ¥ f ) L] rsor . L]
G | 1850 data 24, 10 e 176 38,201 sopea 31 e s 0 ol o oem vt o
BK | 1 ata 24 ! 176 ‘ c995 st a top ca50 bmi ‘0l Screen cb191d | carry ol
8 , 10 , 2 sta $1 most| bmi $cas5 pull a y #8501 - '
BG 60 data 210 1,209, 133 6,152 ﬁ"rﬂf 5321 3 1o be;gzm '2:52!3" $fid2 ffﬁﬂatiﬁm Eg1b1d3 SUEE[. :copy ($0300
NN 1870 data 121, 105, 0,133, 122,165 oo fidine e idn (380, 'ﬂ'““’“ﬂrmﬂﬁ"’” cn;i‘;“b‘”’: 3”3“‘””%&1@?
’ px ' ‘main |i o
K 1880 data 107, 0,142 ,123, 32 ca06 bne 098 compare wi ca5s bea Sca s e ey st e
| 07 , 68,2 c9al 7 with ca5b 0 kage cb24| b
1890 dat ' 169| 1?4 ¥ 03. 32 cﬂaﬂcpy $2b -of basic hi Start ﬂaﬁﬂm $cbd0 -end of lines cb26 da #%75 '
AJ' 19m d 36 E ' 681 203 ﬁadbm $c9a7 Empﬂrg with ﬂamldﬂ #3500 ;_E'aﬁlinhbm chggsm $£0300 :Betﬂ'ﬂwmc
kH | 191 data O g* 96,160, 1. 56 contom e of besiclo Sat  cacosty SO changelink o100 e a0
¥ i ' Bvi i ' .
NJ 1920 data 16 24?- 153, 65, 203" 185 g'-’;gc:nx $2¢ check xmnﬂﬂ ﬂ'ﬂﬂ $5¢ st list ;{::;“[:?1 gggf:’; b
AO 0 data ' ! 169, 11 ' 136 mbﬁ $cob1 ‘_sm“l:rf basi than caﬁﬂm $3f jmp':’ ($50) to g cb32 $cbd1 '
1930 d 3,169 202' 7.141, 0 m:d“ $2c not at all N mmﬂ $60 (830 cmﬂﬂ $0300 '-msgm"”"wu
FH | 1940 data 96,173, 6 141, 1, 3 00y comect Hlower cabasia $40 sttt $000, (30300) vect
LE 1950 data 3! 1?3' 651 203! _141’ ﬂ gg;::“ $40 .ﬂ rt of basic ﬁgﬁ::: §14 E,[E:“inﬂll'ﬁltﬂp Egggnﬁ o1
LB | 196 ata 3 gﬁ' 6, 203, 141' cﬁbﬁmy $3 ' up indirect ca72 jm :;gd : a maximum valu cbe data
KA 0 data 1 ' 17. 14 ’ 1 ":Eb?ld: #300 :551_- cal’bc P 7 1:int : e cb3t cu cursor up/down
1l B o 139, 227, ooy 0 ﬁ"gbw‘sﬂﬁ ey ca77 b $cads ol oukine 040 o upine
’ bbi . : o byte ca’9 : ror f c i in
1980 data 5 224 137, 9 , 23,173 EngEL ;’:;:_iﬂlng end of line cate :[.-_:: :Emu ﬁ:ﬂlu fxd pnt HTnT cm; :L;‘;by‘te s.au:
0, O 7, 0 e e e atch GGy ey o . chad '[sﬂaau”w‘““
. 65 9 iny ‘no more cha - |_da #30d .-chﬂngadaar_aﬂ b4 -processing
The Tre , 65 ﬂﬁua ($30 ;chﬂﬂhtmw"m r.:a:E jor $fd2 print lier c|;.45 x-reg tem status
nsactor Eﬂcﬁﬂmpssf ! :againstﬂ"ﬂ!inf caﬂgjsr $caca @ return r,:hq; m m'fgztﬂmg&
bne Sc9bb 1o o caBblda #500 cbig (sbytes)
1 Meich, retry fdﬂlﬂ $0292 turn off inse gﬁb .
90 jmp $cad : nmde  cbdd . CUTSOF FOW
’3 ‘into exit routine 4d E':l.lrgur col value
'”p"dﬂﬁ"ﬁag
Volume
3
; Issue 06




STP: Execute From A Sequential File

Chris Zamara, Technical Editor

STP stands for “Sequential To Program”, as this utility was
originally written to convert a sequential program listing into a
BASIC program. That enables you to LIST a program to disk,
edit it with a word processor, then merge it with a program
currently in memory. And if you felt like it, you could even
write a program from scratch with a word processor, save it as a
sequential file, then use STP to turn it into a normal program.

As often happens with programs, STP turned out to be more
useful than it was intended to be. STP turns a sequential file
into a program by reading a disk file line by line (assuming
carriage returns at the end of each line) and processing that line
as if it were entered from the keyboard. So if the disk file
happens to look like a BASIC program, then that program gets
entered just as if you typed it in yourself. Consider, however, a
file that looks like this:

load " game.ml” 8,1
new

load "game.bas" ,8
10 rem

list

run

This file could be created like this:

openl, 8,12, " O:test file,s,w "

print*1, " load " chr$(34) " game.ml " chr$(34)",8,1 "
print*1, " new "

print*1, " load " chr$(34) " game.bas " chr$(34)" 8"
print*1," 10 rem "

print*1, " list "

print*1, "run "

close*1

STP-ing that file would give the same results as typing in those
commands from the keyboard: you'd LOAD some machine
language, NEW, load a BASIC program, REM out line 10, LIST,
then RUN the newly loaded program. STP can automate some
procedures that you currently don’t have a program to do. You
could use it to boot up some programming utility packages,
change some parameters, set up some defaults, colour your
screen and border nicely, etc. If you're familiar with the Power

64 utility, you'll notice that STP does the same thing as
Morepower’s EXEC function.

STP is only 173 bytes long, and as listed here, it lives at $C000
or 49152 decimal. It may be convenient to assemble a version
to lie at 828 in the cassette buffer (such a version is on the
Transactor disk for this issue). To use it, just call it with a SYS
followed by a comma and the filename of the sequential file to
be STP'd. For example:

sys 49152, " test file

Any string expression is valid, for example:

10 input” filename " ;$
20 sys 49152,1$
30 end

STP can be called from within a program, but will only become
active AFTER the program ends. Pressing the STOP key will
halt STP at the end of the line currently being read in.

For the curious, STP works through the 64’s warm start link at
$0302-0303. It routes this vector to the main routine, which
reads in a line, prints it on the screen, puts a cursor-up and
carriage return in the keyboard buffer, then jumps to the
normal warm link entry point. The new line will be entered,

and after it has been processed, control is again passed through

the warm start vector and the process repeats until end-of-file
1s reached. At that point, the link vector is restored to its normal
state.

The only other catch is the bit of trickery necessary to prevent
the disk file from being closed after a BASIC line is entered or a
NEW is performed. All open files are normally closed by a
routine that is fortunately vectored through an “abort 1/0
vector” at $032C-032D. The vector points to $F32F, and the
first thing that happens there is the accumulator is loaded with
a zero to be stored in the number of open files variable at
$0098. To keep one file open at all times, STP points the abort
[/0 vector to its own routine which loads the accumulator with
one, then sneaks by the LDA instruction in the abort [/0
routine, jumping to $F331 instead of $F32F. This effectively
prevents the first file opened from ever closing. STP closes all
open files before it opens the disk file so that the disk file will be
the first open file.

The Transactor

Volume 5, Issue 06




The BASIC Loader Program LE | 1240 Istx = $c5 last key pressed
| PK | 1250 ndx = $cb -# of keys pressed
AN | 10 rem# data loader for "stp " * ON| 1260 keyd = $277 ‘keyboard buffer
LI | 20 cs=0 MG| 1270,
PF | 30 fori=49152 to 49325:read a:poke i,a MH| 1280 ;get flename
DH| 40 cs=cs+a:next| MP| 1290 jsr  $aefd .check for comma
GK| 50: IN | 1300 jsr  $ad9e .evaluate expression
OH| 60 if cs<>21681 thenprint” =++* error in data LI | 1310 jsr  $adsf .check for string
statments **** " : end AF | 1320 Ida #$64: Idy #3$65
PB | 70 print"to run stp: sys49152 filename " BA| 1330 jsr  $bbdb -clean descriptor stack
AF | 80 end CL | 1340 ;
IN | 100: DO| 1350 Idy #0:Ida ($64),y: pha ;length
AF | 1000 data 32,253,174, 32,158,173 DI | 1360 iny:lda ($64),y:pha ;addr low
AD| 1010 data 32, 143, 173, 169, 100, 160 IH | 1370 iny:lda ($64),y:pha ;addr hi
AM| 1020 data 101, 32,219, 182,160, O KN | 1380 ;
PB| 1030 data 177, 100, 72,200, 177,100 HL | 1390 jsr clall .close any previous files
IG | 1040 data 72,200,177,100, 72,173 00| 1400 ;
AF | 1050 data 2, 3,141, 92,192,173 KP | 1410 ;change warm start link
GH| 1060 data 3, 3,141, 93,192,169 HL | 1420 ;and abort i/o vector
CJ| 1070 data 94,141, 2, 3,169,192 FH| 1430 lda warmink : sta oldwarm
MG| 1080 data 141, 3, 3,169, 87, 141 ME| 1440 |da warmink + 1: sta oldwarm + 1
Cl | 1090 data 44, 3,169, 192,141, 45 NJ | 1450 Ida #<newarm : sta warmink
LI | 1100 data 3, 169, 127,162, 8, 160 KI | 1460 lda #>newarm : sta warmink + 1
Pl | 1110 data 12, 32, 186, 255, 104, 168 BO| 1470 |da #<newio : sta abortio
JJ | 1120 data 104, 170, 104, 32, 189, 255 AM| 1480 lda #>newio : sta abortio + 1
CN| 1130 data 32, 192, 255, 32, 183, 255 IE | 1490 ;
EM| 1140 data 208, 28, 96,169, 1, 76 HN | 1500 ;open disk file
EM| 1150 data 49,243, 0, 0,162,127 JA | 1510 lda #127: |dx #8: Idy #12
MA| 1160 data 32, 198, 255, 32, 228, 255 ML| 1520 jsr setlfs :open 127,8,12
EM| 1170 data 32, 210, 255, 201, 13,240 EB| 1530 pla:tay:pla:tax:pla
PM| 1180 data 38, 32, 183, 255, 240, 241 FM| 1540 jsr  setnam
CA | 1190 data 169, 127, 32, 195, 255,173 Cl | 1550 jsr open
HP| 1200 data 92,192,141, 2, 3,173 KP | 1560 jsr readst: bne outO ;disk error
MB| 1210 data 93, 192,141, 3, 3,169 OA| 1570 rts
AD| 1220 data 47,141, 44, 3,169, 243 CK| 1580 ;
NB| 1230 data 141, 45, 3, 32,204, 255 KG| 1590 newio = =+ :keep 1 file open
KL | 1240 data 108, 92,192,169, 2,133 AK | 1600 |da #1: jmp $f331
FE | 1250 data 198, 169, 145, 141,119, 2 AM| 1610,
HJ | 1260 data 169, 13,141,120, 2,165 RJ | 1620 oldwarm .wor O
DG| 1270 data 197, 201, 63, 240, 203, 76 EN| 1630 ;
|OD| 1280 data 141, 192, 32, 210, 255, 165 MG| 1640 newarm =  «
HI | 1650 :new warm start link points here
MG| 1660 Idx #127: jsr chkin
The source code for STP FL | 1670 nexbyt = =
NN| 1680 jsr getin:jsr chrout
HH| 00 sys700 pal 64 EN| 1690 cmp #13: beqg endlin
KF | 1010 .opt oo EP| 1700 jsr readst: beq nexbyt
NO| 1020 x =  $c000 EC| 1710;
MH| 1030 ; ND| 1720 outO = *
CB| 1040 ;"STP" AN | 1730 lda #127: jsr close
KM| 1050 :executes a sequential file BP| 1740 |da oldwarm : sta warmink
NK | 1060 ;syntax is: AL | 1750 |da oldwarm + 1: sta warmink + 1
EB | 1070 ;sys(addr), "filename " NE | 1760 Ida #$2f: sta abortio
OK | 1080 ; JA | 1770 Ida #$f3: sta abortio + 1
HG| 1090 ;kernal entries: LO| 1780 out = %
EN| 1100 chkin =  $ffc6 FA | 1790 jsr  clrchn
NH| 1110 chrout =  $ffd2 JK | 1800 jmp (oldwarm)
FN | 1120 clall =  $fte7 Il | 1810;
HL | 1130 close = $ffc3 KN| 1820 endlin = =
AG| 1140clrchn =  $ffcc FA | 1830 |da #2: sta ndx ;# keys in buffer
EG| 1150 getin =  $ffed Ol | 1840 |da #145: sta keyd ;crsrup. . .
HM| 1160 open =  $ffcO KN | 1850 |da #13 : sta keyd + 1 ;& cr in kbuf
NH| 1170 readst =  $ffb7 GL | 1860 lda Istx key pressed
FM | 1180 setlfs =  $ffba KC| 1870 cmp #63: beq outO ;check for stop
IL | 1190 setnam =  $ffbd IA | 1880 jmp out
GC| 1200; |OD| 1890 .end
IF | 1210 warmink =  $0302
Pl | 1220 abortio =  $032c
EE| 1230;
The Transactor 55 Volume 5, Issue 06




Quote killer was born on a bright sunny day as I lounged by the pool
sipping a tall cool drink. Serendipity you say? You would be absolutely
correct if you think serendipity has some relationship to a threat to
your computer’s well being.

My girlfriend had expressed interest in learning how to program my
C64 (neat girlfriend, eh!, and no, she is not available). To that end, |
had bought her a book for neophyte programmers into which she had
plunged with enthusiasm. But alas, there she stood trembling with
indignation and threatening to teach my machine how to do the swan
dive.

All she could say was, “Dumb stupid quote mode!”

Thinking quickly while | gingerly plied my 64 from her hands, I
promised her | would do something about it.

It is generally accepted that Commodore’s on-screen editor is one of
the best in the industry. The only major fault it has is the inability of
the programmer to take the machine out of quote mode (or insert
mode) without pressing the return key; the 64 lacks the handy ESC

key of the 8032 machines. Consequently, you have to hit return and -

cursor back to the mistake to correct it. This doesn’t present much of a
problem, other than the inconvenience, to those of us who are used to
it but for the novice, it is often a source of ongoing frustration.

The most obvious choice for a key to toggle quote killer was one of the
function keys, and indeed F1 was the key [ originally used. | immedi-
ately ran into problems with this when [ started to design a program
that made extensive use of the functon keys. At that time | realized
that Commodore, in all its mystery and imagination, had included an
apparently useless key on the keyboard. Tell me, when was the last
time you used the back-arrow key for anything?

During this change of keys | decided to add a few features to quote
killer which would make it much more useful to the advanced
programmer. Quote killer now has the ability to force the machine
into quote mode and to force a single character insert mode without
opening any space in text. As an afterthought | also included the
ability to force the repeat of any character on the keyboard when that
particular key is held down. All the keystrokes that you need to know
for the activation of quote killer's modes are included in the BASIC
loader and will be displayed when the program is run.

Gary Gunderson
Richmond, BC.

Quote killer resides at the top of the cassette buffer and is therefore

sensitive to any form of reset or tape operation. The only safe way to
disconnect it is with RUN-STOP/RESTORE. SYS903 will reconnect it.

[f for some reason you don't like my choice of the toggle key, you can
alter it by changing the first data element of line 1050 to the keyboard
matrix number of your choice. For example, a 4 in this location will
make F1 the toggle. Remember, changing the BASIC loader in this
way will change the checksum value, so change the checksum
comparison accordingly or get rid of it altogether.

For those of you who are curious, quote killer demonstrates how to go
about changing system vectors to suit your own needs. It is a very
simple but powerful technique. The machine code is less than 100
bytes and should be very easy to follow.

By the way, having a girlfriend that likes to program is not always the
most ideal situation. What do you do when she takes a piece of your
immaculate code, shortens it by one third and makes it run 25 percent
faster? Say “thank you'?

JH | 1 T ek oo o oo oo o ooboob ok ok ok oo ok

HC| 2rem =++ quotekiller  #*«

GC| 3rem == by * 4

EH | 4rem =+x gary gunderson #=

NH| 5rem s*esssmrknskmnmhnnhkhhns

FN | 10 fori=903t0998:reada:cs =cs + a:poke i,a

DP | 20 next |

LD | 30 if cs<>11893 then print " ** error in data
statements!! =" : end

OB | 40 sys903:printchr$(147) " quote killer activated. " :print

ED| 50 print" < - kills quote mode

DF | 60 print" - kills insert mode

KB | 70 print” ~ kills repeat mode " :print

IO | 80 print”

FI | 90 print" shifted <« —enables quote mode

AB | 100 print" commodore < —-one char ins mode

LK | 120 print " ctrl < —enable repeat for all

KC | 130 print” keys " :print

Pl | 150 print " run—stop/restore to deactivate

PG| 160 print " sys903 to reactivate

OB| 170 :

LO| 1000 data 173, 144, 2,201, 3,240, 86

BC| 1010 data 173, 143, 2,141,248, 3,173

KB| 1020 data 144, 2,141,249, 3,120,169

ND| 1030 data 167, 141,143, 2,169, 3, 141

JE | 1040 data 144, 2, 88, 96, 165, 203, 201

FF | 1050 data 57,208, 55,173,141, 2,201

CC| 1060 data 1,240, 22,201, 2,240, 25

CA | 1070 data 201, 4,240, 28,169, 0,133

JG | 1080 data 212, 133, 216, 133, 199, 141, 138

KO| 1090 data 2, 76,224, 3,169, 1,133

GG| 1100 data 212, 76,224, 3,169, 1,133

BA| 1110 gdata 216, 76,224, 3, 169, 128, 141

NN| 1120 data 138, 2,234, 234,234,169, 64

NK| 1130 data 133, 203, 108, 248, 3

The Transactor

36

Volume 5, issue 06




Gap Remover

Richard Evers, Editor

A rFIOS IO,

Let's set the scenario. You have just SAVEd a file to diskette and, to set
your mind at ease, performed a directory of the diskette. You view the
entire directory only to discover that your file isn’t there. You fall into
great despair. . . a feeling that all your work has been in vain. With a
sudden blast of inspiration, you look through the directory once
again, very carefully this time. Within seconds your pulse is back to
normal, but all is not right. Your file has mysteriously placed itself
smack in the middle of the directory listing, thus falling into a prior
scratched file's ‘Black Hole'.

The situation is common, but often not as dramatic. If you have used
your drive for longer than a few days, you already have accepted this
rotten fact of life. Scratched files leave holes that future files trip into.
This leads to disorganized directories, and strange delays when
performing a passive catalog. A problem that now has a cure. Enter
‘The Gap Remover'. Fire it up, answer a few important questions, and
within a few minutes your directory will be clean and fresh, all extra
spaces removed and placed at the very bottom. From then on, every
file you SAVE will appear last in the directory.,

Without burning up precious magazine space, the concept is as
follows. The directory on your diskette is held on one track, track 18
for the 1541/2031/4040 drives, and track 39 for the 8050/8250
monsters. The first directory block is sector #1, with eight file entries
per sector maximum. The first two bytes of every sector holds the
track and sector of the next directory block. The sectors are spaced 3
apart, to allow for the drive to naturally reach it as it spins around. If
the directory sector being read is the last one used, the track will read
as a zero, and the sector will be $FF. The DOS realizes that there is no
track zero, therefore the end has come. Simple so far.

The program reads in every entry from the directory track, keeping
the link pointers in check as it goes along. If a non-existent file
appears, one in which has been scratched, the file is flagged to the
screen as showing as a gap, and its space is ignored. Every valid
directory entry is kept in an array. When the entire directory has been
read through, the packing process begins. The non-existent files have
already been removed, therefore it is just a simple process of writing
the packed entries back in. Once the process determines that the end
of valid entries has occurred, null entries (32 x $00’s) are written to the
directory sector involved to fill in the extra space. When complete,
you may end up having an extra directory sector or two if the packing
required was large, but the directory will be OK. You can now SAVE
files to your heart's content and never have to worry about them
falling into the mysterious Black Holes of the DIR quadrant.

MD
AD
HD
CK
BE

GB

INL
EB
DP
DM
OF
JK
1

AF
IH

EK
0G
AK
CD
BE
CJ

FE

GE
BF
GF
M
FE
IM
GO
CC
1l
KH
LH

GH
JO

DM
JE

PK

LE

10 rem save " 0:gap fill.bas " ,8

100 rem rte/84 - gap filler for spaces left in your directory

110 print" == directory gap filler - rte/84 *+ "

120 print " drive type : "

130 input " 1) 1541/2031/4040 or 2) 8050/8250 " ;dt: if dt<1
or dt>2 then 130

140 mtrk=18: if dt=2 then mtrk =39: rem assign correct
directory track

150 input " drive # " ;dr: if dr>1 then 150

160 :

170 dim dir$(223): rem ** max directory entries

180 dim t1$(27), s1$(27): rem ==+ track/sector links

190 trk =mtrk: sec=1: rem directory track and first sector to use

200 ctr=0: Ink=0: z$ =chr$(0)

210 rp$="":for x=0to 29: rp$=rp$ + chr$(0): next: rem
«* replacement string

220 :

230 open 15,8,15: open 5,8,5, " # " : rem command channel
+ buffer

240 print*15, "ul: " ;5;dr;trk;sec: rem read dir entry into buffer

250 :

260 for x =0 to 255 step 32

270 get*5,t$,s$: if x then 290: rem get correct links

280 trk =asc(t$ + z$): sec =asc(s$ + z$): rem link t/s

290 for y =2 to 31: get*5,a$:dir$(ctr)=dir$(ctr) + chr$(asc(a$ + z$))
cnexty

300 a$ = mid$(dir$(ctr),4,16): if asc(dir$(ctr)) then 320: rem if
not scratched

310 print a$ tab(17) "<< gap >>": dir$(ctr)="": goto 330

320 print a$: ctr=ctr+1

330 next x

340 :

350 t1$(Ink) = chr$(trk): sl$(Ink)=chr$(sec)

360 if trk then Ink =Ink + 1: goto 240: rem ok - go for more

370 :

380 rem ** directory completely loaded in — now time to pack **

390 trk =mtrk: sec=1: fin=0

400 for x=0 to Ink: print*15, "b-p: " 5;0

410 ts$ =t1$(x) +sl$(x): dd$="": rem link t/s

420 for y=0 to 7: a$ =dir$(fin): if fin=>ctr then a$ =rp$

430 dd$ =dd$ +a$: if y<7 then dd$ =dd$ + chr$(0)+ chr$(0)
: rem wasted 2 bytes/entry

440 fin=fin+1: nexty

450 print*5,ts$;dd$;: print*15, "u2: " ;5;dr;trk;sec;: rem fill
buffer then write

460 trk = asc(t1$(x)): sec = asc(s!$(x))

470 next x: close5: closel5: end

The Transactor

Volume 5, Issue 06




Machine Language
Print Loader

Noel Nyman
Portland, Oregon

PRINT. . .NOT POKE. . .Machine Language Programs

Editors note: The BASIC loader program accompanying this article is
quite long, but the article contains concepts which can be digested
independently of the program. If you want a copy of the accompany-
ing program but dont feel like typing it in, you can find it on the
Transactor disk for this issue.

BASIC programs often use machine language to read disks, sort data,
or accomplish something more quickly and easily than can be done
with BASIC alone. The common ways to use ML with BASIC are:
LOAD the ML from disk or tape from the BASIC program, append the
ML to BASIC, or use READ/DATA/POKE statements.

Each of these has its place. But in this article we'll explore another
method. . .using BASIC PRINT statements to “poke” ML programs.

First, type in the following line exactly as shown. If a letter is
capitalized, hold the SHIFT key when typing it. For commands such
as (com-m) hold the Commodore key and type“m.” Press the SPACE
bar when you see (SPACE).

20 ? " (rvs—on)(SPACE)(rvs—-off)@(rvs-on)9(rvs-off)
(com-m) [ (rvs-on)com-a)rvs—off)g(SPACE)rvs-on)R(com-b)
H(rvs-off)LZ [ (Shi~(SPACE))rvs-on)s(rvs—off)THIS(SPACE)
IS(SPACE)THE(SPACE)ML(SPACE)DATA@ "

Now type RUN. You should see thirty-seven characters printed to the
screen. Shifting to lower case mode may help you count them.

Next type this additional line:
10 POKE209,88:POKE210,27:POKE211,0.POKE213,40

Type RUN again. This time you should see only the READY prompt.
Type SYS 7000, the screen will clear and the ML message will be
displayed.

We normally think of the PRINT command as “printing’’ characters on
the screen starting from the current cursor location. Of course, we
know that PRINT just stores a sequence of data into computer
memory. The VIC chip reads that data and creates the screen we see.

This may seem like a trivial distinction at first. But we can use the
sequential storing characteristic of PRINT to “poke” ML programs and
data. All we have to do is move the “cursor” away from screen
memory to the area where we want the ML to reside, then put the ML
data into PRINT statements.

The cursor position is controlled by several memory locations. We'll
be concerned with four of them. Locations 209 and 210 together form
the cursor current line “vector”, the address of the beginning of the

line the cursor is on. The vector is stored in usual 6502 format, low
byte first.

Location 211 identifies cursor location on the line by column number.

Location 213 tells the system how long a line is. The usual values for
213 are 39 or 79 for a C-64, and 21, 43, 65, or 87 for a VIC.

These numbers need to be in the proper ranges, or your screen will
look strange. But when we use PRINT to store ML, we can change
them to our advantage. In line #10 above, we re-vectored the cursor
to start at column zero on a “line” beginning at address 7000. We then
told the computer that this line is forty columns long. We could have
used any number up to 255 for line length, so long as it was greater
than the number of bytes we wanted to store.

After you typed RUN, you saw the READY prompt. This shows you
that the cursor will be vectored back to the normal screen memory by
the operating system at the end of each PRINT statement. Actually, we
could use several PRINT statements ending with ;" and the data will
be stored continuously, just as it would be shown continuously on the
screen. If we want to store over 255 bytes of ML, we'll need another
POKE line with new values at locations 209 and 210.

PRINT puts “screen codes” in computer memory, not CHR$ values.
The USER'S GUIDE that came with your machine has a table of screen
codes in an appendix. If you compare them with the CHR$ codes,
you'll notice that there are only 128 screen codes. Also they are often
in the same sequence as the CHR$ codes, but start at different places.
For example, the alphabet is in order. However, CHR$(65) which is
the letter "A" has a screen code of 1. Therefore, to get a 1 stored in
memory we PRINT an ‘A’. To store a 65, we have to PRINT a ‘spade’
symbol.

Another problem shows up if we need to store ‘34". This is the screen
code for quote marks. If the PRINT command sees quote marks, it will
end string printing and try to cope with the balance of the characters
on the line as variables. A special technique is required to PRINT a
“34” into memory.,

Since it's so much work to create the PRINT statements, are there any
advantages over the other methods? There are, especially if you use a
program to create the PRINT statements.

Of the methods mentioned at the start of this article, READ/DATA/
POKE is the most common. For short ML it saves time over LOADing
the ML routine separately. It also avoids having to store the ML as a
separate program on the same disk or tape. It has two disadvantages,
however. It's slow and it takes a big chunk of memory. Memory saving
1s most important to VIC owners. But anyone could take advantage of
improved speed.

The Transactor

Volume 5, Issue 06




Storing ML at the end of a BASIC program is becoming more common.
It requires a few POKEs to convince the system to SAVE the ML along
with BASIC, and even more cleverness if the BASIC program is
changed. It also reduces available variable memory to VIC owners,
since the ML sits in BASIC memory area.

By using PRINT statements to store your ML programs, you can save
BASIC memory and improve program run time over the READ/
DATA/POKE method. PRINT works eight to thirteen times faster than
READ/POKE. The exact memory saving depends on the ML program.
But it usually takes less than half the BASIC memory to store ML in
PRINT statements over DATA statements.

The PRINT lines are a part of BASIC, not an ML appendage. So any
editing done to the BASIC program will not affect them.

Program Operation

To make using this technique easier, we've provided ML “PRINTER”
programs for the VIC and the C-64 that will create the PRINT and
POKE statements in BASIC. We'll look at the C-64 program first.
Listing #1 is a READ/DATA/POKE program to put ML “PRINTER"
into C-64 memory. Type in the program, SAVE it, then RUN it. Then
type SYS 25856.

The screen will prompt you for the beginning and ending locations of
the ML you want to “copy”, the number of the first BASIC line to be
created, and the increment for the following BASIC lines. You'll be
given the option of entering the ML locations in hex or decimal. Type
in any locations to test the program, 828 and 1019 (the cassette buffer)
for example. After the READY prompt, type LIST. You'll see the newly
created BASIC, which has been written over the READ/DATA/POKE
program.

You could SAVE these lines to be appended to a BASIC program or
continue entering a BASIC program using them.

To use ML “PRINTER"” most effectively, you should have it as a ML
program. (You can use it to make a BASIC PRINT version of itself, but
an ML version is shorter and for a program this size, more efficient.) If
you have a monitor, you can use it to save the program. If not, type the
following exactly as shown:

CLR (RETURN)
POKE43.0 -POKE44,101 :POKE45,185 :POKE46,108 (RETURN)

This moves the start and end of BASIC to enclose ML “PRINTER.”
Now SAVE the program to tape or disk just as you would any BASIC
program. After the SAVE is complete use SYS 64738 to reset the
computer. You can now LOAD ML “PRINTER” using a ‘17 after the
LOAD statement.

This program will work best for you if you use it on relatively short ML
routines. If you go above about 1.5K bytes, it's faster to LOAD ML
routines from disk. For example, using ML “PRINTER" to store DOS
5.1 as a BASIC “PRINT” program requires loading only one program.
But it takes about three seconds longer to PRINT than it does to RUN
the boot program which LOADs the normal ML version from the disk.

If you use ML “PRINTER” to PRINT over 1K of ML, 1025 bytes or
more, you'll find that BASIC will work fine. But your keyboard won't.
Apparently when the screen gets longer than 1024 bytes, the operat-
ing system is confused and the CIA chips get “lost.” If you SYS to the
ML immediately after printing you should have no problems. If not,

follow the last PRINT statement with a BASIC line that contains:

SYS 64931:PRINT " (shift/clr-home) "

This will put everything right again. The “clear-screen” command is a
good idea in any case to restore the normal line length parameters.
Since you usually need to get the ML in place early in the BASIC
program, you could put the PRINT statements (or a GOSUB to them)
ahead of a “clear-screen” already in the program.

The C-64 program has been located in an area unlikely to have ML
residing in it. The program may give strange results if the interrupt
system has been changed by a previous program, such as the DOS
wedge. It's best to use a full RESTORE, such as SYS 64738, before
loading and using ML “PRINTER.” You may need to use the NEW
command after loading ML “PRINTER" to load the ML you want to

E'Cﬂp?l‘.!

The VIC version was written for the unexpanded VIC-20, primarily to
“copy” ML in the cassette buffer. Expanded VIC owners will want to
use a variation on the C-64 program, to be discussed later.

There are two READ/DATA/POKE programs for the VIC, because
there isn’t enough room in VIC memory to hold all the DATA. A PRINT
statement version will fit in VIC memory easily, however, which
shows how much more compact it is.

Type and SAVE each program. To save on memory, we've left the
screen prompts out of VIC ML “PRINTER.” Program #4, VIC SCREEN,
is a BASIC program that will get the various numbers the “PRINTER”
needs. Type in and SAVE this program also.

LOAD and RUN each of the VIC DATA programs in sequence. This
will POKE the ML portion of the “PRINTER” in place. Then type the
following directly to the screen:

POKES5,0 :POKE56,25 (RETURN)
NEW:CLR (RETURN)

This will move the end of BASIC memory below ML “PRINTER" to
protect it. Now LOAD the VIC SCREEN program and RUN it. It will ask

for the same information as the C-64 version, except that the ML

locations must be entered in decimal (base 10). To SAVE VIC ML
“PRINTER” we'll use it to make a PRINT statement version of itself.

Type 6927 and 7678 to answer the prompts for starting and ending ML
locations. Use ten as a starting line for BASIC, and one as the
increment.

When you see the READY prompt, type SYS 6927 and hit RETURN.

Then type LIST. VIC SCREEN has been replaced with POKE and
PRINT statements that will create ML “PRINTER.” To make this
version complete, you'll want to append VIC SCREEN to it. To do this,
you move the start of BASIC to the end of the present BASIC program
by typing the following directly:

CLR (RETURN)
POKE43,PEEK(45)-2:POKE46,PEEK(44) (RETURN)

Now LOAD VIC SCREEN. When READY appears, reset the BASIC
pointers by typing:

POKEA43,1:POKE44,16 (RETURN)

The Transactor 59

Volume 5, Issue 06




LIST and you'll see VIC SCREEN added onto the POKE/PRINT lines.
Then add the following line:

1150 SYS 6927 (RETURN)
SAVE this completed version of VIC ML “PRINTER."”

Both versions of ML “PRINTER” update the BASIC start and end
parameters after the new BASIC lines are created. Since the BASIC
memory location is different for different Commodore computers, the
VIC and C-64 versions use different values. Expanded VICs have
BASIC relocated, so the VIC ML “PRINTER" won't work with them. If
you have an expanded VIC that has memory in the range 25856 to
27500, you can use the C-64 “PRINTER" with a few changes. These
can be made easily with any VIC monitor programs such as VICMON.

The data from $6500 to $6508 are C-64 border and screen color
commands. Change them to $EA for NOP. Change the starting
address information in locations $666B and $6667 to correspond to
your beginning BASIC memory area, PEEK(43) and PEEK(44). Sub-
tract one from PEEK(43) and put the result in $6671. Change $$6672
to the PEEK(44) value. Change the data at $676C and $6776 to
correspond to your normal top of BASIC, PEEK(55) and PEEK(56).
The program should then function correctly, although the screen will
still be in C-64 format.

To append the POKE/PRINT statements to another BASIC program,
you can use the following technique with the C-64 or any VIC. LOAD
the program with the lowest line numbers. The lowest line number in
the program to be appended must be higher than the highest line
number of the first program. ML “PRINTER" gives you the option of
selecting line numbers to make this easy. Type:

PRINT PEEK(43),PEEK(44) (press RETURN)

Write down the two numbers that appear on the screen as “x"’ and "y.”
This is the start of BASIC memory in your computer. Type:

PRINT PEEK(45) (RETURN)

This is the lower byte of the address of the end of the BASIC program
you just LOADed. If this number is not zero or one, type:

POKE43,PEEK(45)-2:POKE44,PEEK(46) (RETURN)
If PEEK(45) gave you zero or one, type:

POKE43,PEEK(45) + 254:POKE44,PEEK(46)-1 (RETURN)

These statements move the start of BASIC memory to the end of the
program. Now LOAD the second program as a BASIC program. Then

type:
POKE43,x:POKE44,y (RETURN)

Where “x" and "y are the two numbers your wrote down earlier. This
moves the start of BASIC back to the beginning of the first program.
LIST will now show the second program appended to the first,

I'd like to thank Barbara Horton for her help in developing the VIC
version of this program.

FL
LI
OF
DH
GK
DC

N
AF
IN
LG

oD
FA
ED
FD
AK

DI
FI
CH
OL
HI
ID
IG
Ol
EN
LK
DL
LA

CD
CN
LN
AP
DP
LA
GF
AD

1O
PE
ID
PD
AD

MN
BF
GG
GH
LH
MI
EG
DL
LO
MF
MC
HD
CE
OP
HO
PO
MO
KB
NA
JB
BP
PD
EF
NH

Listing 1: BASIC loader for C64 version

10 rem= data loader for "print ml" =
20cs=0
30 for 1=25856 to 27832:read a:poke i,a
40cs=cs+a:nexti
50
60 if cs<>203777 thenprint” *+++* error in data
statments #+++ " : end
70 rem sys 25856
80 end
100 :
1000 data 160, 6, 140, 32, 208, 200
1010 data 140, 33, 208, 169, 213, 133
1020 data 139, 169, 106, 133, 140, 32
1030 data 137, 103, 169, 108, 133, 140
1040 data 169, 96, 133, 139, 169, 1
1050 data 141, 167, 2, 32, 151,103
1060 data 173, 192, 2, 56,233, 72
1070 data 240, 8,169, 1,141,254
1080 data 2, 76, 55,101, 141, 254
1090 data 2, 32, 6,104,169, 85
1100 data 133, 139, 169, 107, 133, 140
1110 data 32, 137, 103, 173,254, 2
1120 data 24, 105, 4,141,167, 2
1130 data 201, 5,240, 7,6 169, 114
1140 data 133, 139, 76, 93, 101, 169
1150 data 101, 133, 139, 169, 108, 133
1160 data 140, 32, 151, 103, 173, 254
1170data 2,201, 1,208, 6, 32
1180 data 24, 104, 76,116, 101, 32
1190 data 114, 104, 173, 171, 2, 141
1200 data 252, 2,173,172, 2, 141
1210 data 253, 2, 32, 6, 104, 169
1220 data 110, 133, 139, 169, 107, 133
1230 data 140, 32, 137, 103, 173, 254
1240 data 2, 208, 22,169, 114, 133
1250 data 139, 169, 108, 133, 140, 169
1260 data 4, 141, 167, 2, 32, 151
1270 data 103, 32, 114, 104, 76, 188
1280 data 101, 169, 101, 133, 139, 169
1290 data 108, 133, 140, 169, 5, 141
1300 data 167, 2, 32, 151,103, 32
1310 data 24, 104, 173,171, 2, 141
1320 data 250, 2,173,172, 2, 141
1330 data251, 2, 32, 6, 104, 169
1340 data 133, 133, 139, 169, 107, 133
1350 data 140, 32, 137, 103, 169, 101
1360 data 133, 139, 169, 108, 133, 140
1370 data 169, 5, 141,167, 2, 32
1380 data 151, 103, 173, 192, 2,208
1390 data 39, 169, 49, 141,192, 2
1400 data 32, 210, 255, 169, 48, 32
1410 data 210, 255, 141,193, 2, 32
1420 data 210, 255, 141,194, 2, 32
1430 data 210, 255, 141, 195, 2, 32
1440 data 210, 255, 141, 196, 2, 169
1450 data 5,141,168, 2, 32, 24
1460 data 104, 173, 171, 2,141,248
1470data 2,173,172, 2,141,249
1480 data 2, 32, 6, 104, 169, 196
1490 data 133, 139, 169, 107, 133, 140
1500 data 32, 137, 103, 169, 101, 133
1510 data 139, 169, 108, 133, 140, 32
1520 data 151, 103, 173, 192, 2, 208
1530 data 21, 169, 49,141,192, 2
1540 data 32, 210, 255, 169, 48, 141

The Transactor

Volume 5, Issue 06




LK | 1550 data 193, 2, 32,210, 255, 169 EN| 2210 data 168, 2,170,173,167, 2
ME| 1560 data 2, 141,168, 2, 32, 24 BO | 2220 data 205, 168, 2,240,195, 138
HF | 15670 data 104, 173, 171, 2,141, 246 IP | 2230 data 32, 210, 255, 145, 141, 238
IF | 15680 data 2,173,172, 2,141,247 OF | 2240 data 168, 2, 165, 197,201, 64
DB| 1590 data 2, 32, 6,104,169, 8 GA | 2250 data 240, 250, 160, 0, 136, 208
OF | 1600 data 133, 114, 169, 1,133, 113 BE | 2260 data 253, 76, 164,103, 172, 168
EH| 1610 data 169, 0,141, 0, 8,141 BA | 2270data 2, 240, 167, 206, 168, 2
FH| 1620 data 244, 2,141,245, 2,141 PC | 2280 data 32, 210, 255, 76, 234, 103
NI | 1630 data 237, 2,141,236, 2,173 HL | 2290 data 160, 15,169, 2,133, 142
RJ | 1640 data 253, 2, 133, 248, 173, 252 BG| 2300 data 169, 192, 133, 141,169, O
MJ | 1650 data 2, 133, 247,173,249, 2 DH| 2310 data 145, 141, 136, 16,251, 96
BL | 1660 data 141,243, 2,173,248, 2 IF | 2320 data 173, 168, 2,170,169, O
ML | 1670 data 141, 242, 2,169, 107, 133 JD | 2330 data 141, 170, 2,141,171, 2
HK | 1680 data 140, 169, 241, 133, 139, 32 GG| 2340 data 141, 172, 2,169, 192, 133
KO| 1690 data 137, 103, 32,174, 105, 32 GF | 2350 data 141, 169, 2, 133,142,172
HO| 1700 data 239, 105, 32, 62, 106, 169 CG| 2360 data 170, 2,177,141, 72, 14
IO| 1710 data 0, 141,237, 2,168,177 EF| 2370data171, 2, 46,172, 2,173
CA | 1720 data 247, 133, 254, 201, 128, 176 HE | 2380 data 171, 2,172,172, 2, 14
HN| 1730 data 21, 173,245, 2,201, 1 DJ|2390datai171, 2, 46,172, 2, 14
FD| 1740 data 208, 32, 169, 146, 32, 232 PJ | 2400 data 171, 2, 46,172, 2, 24
OP | 1750 data 104, 206, 245, 2,238, 244 Cl | 2410 data 109, 171, 2,141,171, 2
MF| 1760 data 2, 76,222,102, 173, 245 PJ | 2420 data 152, 109, 172, 2,141,172
NO| 1770data 2,201, 1,240, 11,169 HH| 2430 data 2, 104, 56,233, 48, 24
JC| 1780 data 18, 32,232, 104, 238, 245 AK | 2440 data 109, 171, 2,141,171, 2
AE | 1790 data 2,238,244, 2,6 165, 254 JM | 2450 data 144, 3,238,172, 2,238
PP| 1800 data 10, 74,201, 34,208, 6 JC | 2460 data 170, 2,202, 208, 190, 96
OG| 1810 data 76, 79,106, 76, 24,103 NF | 2470 data 173, 195, 2,208, 26,173
BL | 1820 data 133, 254, 10, 10,176, 16 JP | 2480 data 194, 2,141,195, 2,173
GH| 1830 data 10,144, 5,165,254, 76 PP | 2490 data 193, 2,141,194, 2,173
CK| 1840 data 18, 103, 165, 254, 24,105 HA | 2500 data 192, 2, 141,193, 2,169
El | 1850 data 64, 76, 18,103, 10, 144 IE | 2510 data 48, 141,192, 2, 76,114
Cl | 1860 data 8, 165, 254, 24,6105, 64 GO| 2520 data 104, 169, 0,141,170, 2
PP | 1870 data 76, 18, 103, 165, 254, 24 NE | 2530 data 169, 192, 133, 141, 169, 2
CH| 1880 data 105, 128, 32,232, 104, 238 MB| 2540 data 133, 142, 160, 0,177,141
GJ | 1890 data 244, 2,6 238,236, 2,230 KC| 2550 data 141, 174, 2,238,170, 2
FJ | 1900 data 247, 208, 2,230, 248,173 BF | 2560 data 172, 170, 2,177,141, 168
CL| 1910 data 250, 2,197,6247,173, 251 JE | 2570 data 173,174, 2, 72,152, 32
Pl | 1920 data 2,229, 248,176, 6, 32 KD| 2580 data 222, 104, 141,173, 2,104
PM| 1930 data 143, 106, 76, 91,103,173 ID | 2590 data 32, 222,104, 10, 10, 10
AL | 1940 data 236, 2,201,255,208, 6 HG| 2600 data 10, 13,173, 2,168,173
NP | 1950 data 32,172, 106, 76, 149,102 CC| 2610data 170, 2,201, 3,240, 13
MD| 1960 data 173, 244, 2,201, 57,144 NH| 2620 data 152, 141,172, 2,238,170
ON| 1970 data 11, 32,194,106, 32, 62 NE| 2630 data 2,172,170, 2, 76,160
DN| 1980 data 106, 169, 0, 141,244, 2 FP | 2640 data 104, 152, 141,171, 2, 96
JB | 1990 data 76, 169, 102, 230, 113, 208 OA | 2650 data 56, 233, 48,201, 16, 144
LM | 2000 data 2, 230, 114, 165, 113, 133 HC| 2660 data 2,233, 7, 96,162, O
KJ | 2010 data 45, 133, 47,133, 49, 165 Kl | 2670 data 129, 113, 230, 113, 208, 2
KD | 2020 data 114, 133, 46, 133, 48, 133 KP | 2680 data 230, 114, 96, 169, 48, 141
HE | 2030 data 50,169, 0,133, 51,133 PL | 2690 data 165, 108, 141, 166, 108, 141
NK| 2040 data 53, 133, 54, 133, 55, 169 00| 2700 data 167, 108, 166, 248, 232, 169
LG | 2050 data 128, 133, 56, 133, 52, 169 Il | 2710data 0, 202, 240, 43, 24,105
GB| 2060 data 1,133, 43,169, 8,133 LL | 2720 data 1,201, 10,240, 3, 76
JI | 2070 data 44, 169, 147, 32,210, 255 CM| 2730 data 3,105,169, 1, 24,109
PN | 2080 data 96, 160, 0,177,139, 240 IH | 2740 data 166, 108, 201, 58,240, 6
GF| 2090 data 7, 32,210, 255,200, 76 JH | 2750 data 141, 166, 108, 76, 1,105
JA | 2100 data 139, 103, 96, 169, 0, 141 OE | 2760 data 169, 48, 141, 166, 108, 169
CH| 2110 data 168, 2,169, 192, 133, 141 NE| 2770data 1, 24,109, 165, 108, 141
MF| 2120 data 169, 2,133,142,160, O KC| 2780 data 165, 108, 76, 1,105, 24
LA | 2130 data 177, 139, 141,169, 2, 32 Al | 2790 data 105, 48, 141,167,108, 96
GL | 2140 data 159, 255, 32, 228, 255, 172 NE | 2800 data 169, 48, 141, 156, 108, 141
NJ | 2150 data 169, 2,209, 139,240, 6 AE | 2810 data 157, 108, 141, 158, 108, 166
LJ | 2160 data 136, 240, 233, 76, 180, 103 JC | 2820 data 247, 232, 169, 0, 202, 240
PO| 2170 data 201, 20, 240, 54,201, 13 DP| 2830 data 43, 24,105, 1,201, 10
EQ| 2180 data 208, 15, 168, 165, 197, 201 GG| 2840 data240, 3, 76, 72,105, 169
JF | 2190 data 64, 208, 250, 162, 0, 202 AK | 2850 data 1, 24,109, 157,108, 201
GN!| 2200 data 138, 208, 252, 152, 96,172 GO| 2860 data 58,240, 6,141,157,108
The Transactor 61 Volume 5, Issue 06




NO| 2870 data 76, 70,105, 169, 48, 141 JD| 3530data 71, 69, 32, 34, 80, 82
CO| 2880 data 157,108, 169, 1, 24,109 IG | 3540 data 73, 78, 84, 69, 82, 34
JG | 2890 data 156, 108, 141, 156, 108, 76 GB| 3550 data 32, 13, 13, 32, 32, 32
PO | 2900 data 70, 105, 24,105, 48, 141 PC | 3560 data 32, 32, 32, 32, 32, 18
AK | 2910 data 158, 108, 96, 165, 113, 141 OE| 3570 data 32, 40, 67, 41, 32, 49
GH| 2920 data 240, 2, 165, 114, 141, 241 JJ | 3580 data 57, 56, 52, 32, 66, 89
Gl | 2930 data 2, 32,232,104, 32,6232 KJ | 3590 data 32, 78, 79, 69, 76, 32
JO | 2940 data 104, 96,173,242, 2, 32 NM| 3600 data 78, 89, 77, 65, 78, 32
PB | 2950 data 232, 104, 173,.243, 2, 32 NH| 3610 data 13, 13, 13, 31, 87, 73
KF | 2960 data 232, 104, 24,173, 246, 2 DO| 3620 data 76, 76, 32, 89, 79, 85
IK | 2970 data 109, 242, 2,141,242, 2 HN| 3630 data 32, 69, 78, 84, 69, 82
AQ| 2980 data 173,247, 2,6109,243, 2 NM| 3640 data 32, 76, 79, 67, 65, 84
PO | 2990 data 141,243, 2, 96, 32,243 LM| 3650 data 73, 79, 78, B3, 13, 32
BE | 3000 data 104, 32, 56, 105, 32,125 AA| 3660 data 73, 78, 32, 72, 69, 88
JG | 3010 data 105, 32, 142,105,160, O NO| 3670 data 32, 79, 82, 32, 68, 69
KB | 3020 data 169, 108, 133, 140, 169, 151 KP| 3680 data 67, 73, 77, 65, 76, 32
HD| 3030 data 133, 139, 177, 139, 240, 7 LM| 3690 data 40, 72, 47, 68, 41, 63
HD| 3040 data 32, 232, 104, 200, 76, 196 AC| 3700 data 0, 13, 13, 83, 84, 65
GG| 3050 data 105, 169, 0, 32,232, 104 KP| 3710 data 82, 84, 73, 78, 71, 32
KE | 3060 data 32, 216, 105, 96, 173, 240 GE| 3720data 77, 76, 32, 76, 79, 67
NP | 3070 data 2,133, 141,173,241, 2 KD| 3730 data 65, 84, 73, 79, 78, 63
CD| 3080 data 133, 142, 162, 0, 165, 113 LF | 3740 data 32, 0, 13, 13, 69, 78
JE | 3090 data 129, 141, 230, 141, 165, 114 BE | 3750 data 68, 73, 78, 71, 32, 77
LP | 3100 data 129, 141, 96,169, 0, 141 EF | 3760 data 76, 32, 76, 79, 67, 65
FE | 3110 data 245, 2,141,244, 2 141 KE| 3770 data 84, 73, 79, 78, 63, 32
HF | 3120 data 237, 2, 169, 108, 133, 140 LH| 3780data 0, 13, 13, 76, 73, 78
BN | 3130 data 169, 59, 133, 139, 32, 137 FI | 3790 data 69, 32, 78, 85, 77, 66
EJ | 3140 data 103, 165, 248, 32, 38, 106 Al | 3800 data 69, 82, 32, 70, 79, 82
DN| 3150 data 32, 210, 255, 165, 248, 32 KF| 3810 data 32, 70, 73, 82, 83, 84
GJ | 3160 data 54, 106, 32, 210, 255, 165 DH| 3820 data 32, 80, 82, 73, 78, 84
PP| 3170 data 247, 32, 38,106, 32, 210 Gl | 3830 data 32, 83, 84, 65 84, 69
MM| 3180 data 255, 165, 247, 32, 54, 106 EJ| 3840 data 77, 69, 78, 84, 13, 40
GO| 3190 data 32, 210, 255, 96, 74, 74 LK | 3850 data 18, 82, 69, 84, 85, 82
IM | 3200 data 74, 74, 24,6105, 48, 201 BH| 3860 data 78, 146, 32, 70, 79, 82
GP| 3210 data 58,176, 1, 96, 24, 105 EL| 3870 data 32, 49, 48, 48, 48, 48
GB| 3220data 7, 96, 10, 10, 10, 10 IL | 3880 data 41, 63, 32, 0, 13, 13
BO| 3230 data 32, 38,106, 96, 32,125 PM| 3890 data 76, 73, 78, 69, 32, 78
AQ | 3240 data 105, 32, 142, 105, 169, 153 EN| 3900 data 85, 77, 66, 69, 82, 32
Bl | 3250 data 32, 232, 104, 169, 34, 32 GA| 3910 data 73, 78, 67, 82, 69, 77
KA | 3260 data 232, 104, 96, 32, 194, 106 LM | 3920 data 69, 78, 84, 32, 13, 40
DF | 3270 data 32, 62, 106, 165, 254, 10 LP| 3930 data 18, 82, 69, 84, 85 82
AK | 3280 data 144, 15,169, 18, 32,232 BM| 3940 data 78,146, 32, 70, 79, 82
HA| 3290 data 104, 169, 34, 32, 232, 104 LN | 3950 data 32, 49, 48, 41, 63, 32
NC| 3300 data 169, 34, 32,232,104, 198 EM| 3960 data 0,147, 17, 17, 17, 17
JA | 3310 data 113,208, 2,198, 114, 160 KP| 3970 data 17, 17, 17, 17, 17, 29
DC| 3320 data 1,169, 108, 133, 140, 169 NC| 3980 data 29, 29, 29, 29, 29, 29
AF | 3330 data 133, 133, 139, 177, 139, 240 KD| 3990 data 29, 67, 82, 69, 65, 84
KA | 3340 data 10, 32, 232, 104, 200, 238 GB| 4000 data 73, 78, 71, 32, 80, 82
HK | 3350 data244, 2, 76,121,106, 169 JD| 4010data 73, 78, 84, 32, 83, 84
FG| 3360data 1,141,237, 2, 76, 24 HH| 4020 data 65, 84, 69, 77, 69, 78
OF | 3370 data 103, 173,237, 2,208, 5 MD| 4030 data 84, 13, 13, 29, 29, 29
KH | 3380 data 169, 34, 32,6 232, 104, 169 JG | 4040 data 29, 29, 29, 29, 29, 29
IE | 3390 data 0, 32,232,104, 32,216 KI'| 4050 data 29, 29, 70, 82, 79, 77
EM| 3400 data 105, 169, 0, 32,232,104 PG| 4060 data 32, 65, 68, 68, 82, 69
MI | 3410 data 169, 0, 32,232,104, 96 PD| 4070 data 83, 83, 32, 32, 32, 32
OK| 3420 data 173,237, 2,208, 5,169 AL | 4080 data 32, 32, 0, 19, 17, 17
AJ | 3430 data 34, 32,6232, 104,169, O KG| 4090 data 17, 17, 17, 17, 17, 17
CP | 3440 data 141,236, 2, 32,232,104 NI | 4100 data 17, 17, 17, 29, 29, 29
BF | 3450 data 32, 216, 105, 96, 169, 34 PK| 4110 data 29, 29, 29, 29, 29, 29
GG | 3460 data 32, 232, 104, 169, 59, 32 JL | 4120 data 29, 29, 29, 29, 29, 29
FB | 3470 data 232, 104, 169, 0, 32,232 DM| 4130 data 29, 29, 29, 29, 29, 29
JP | 3480 data 104, 32, 216, 105, 96, 147 KJ| 4140 data 29, 29, 32, 0, 4, 68
CJ | 3490 data 32, 32,142, 32, 32, 32 PJ | 4150 data 72, 13, 20, 12, 48, 49
GO| 3500 data 32, 151, 18, 32, 77, 65 OJ | 4160 data 50, 51, 52, 53, 54, 55
FF | 3510 data 67, 72, 73, 78, 69, 32 MM| 4170 data 56, 57, 13, 20, 18, 48
NG| 3520 data 76, 65, 78, 71, 85, 65 GMI| 4180 data 49, 50, 51, 52, 53, 54
The Transactor 62 Volume 5, Issve 06




CA| 4190 data 55, 56, 57, 65, 66, 67 EH| 1420 data 1, 24,109, 235, 29, 141,235, 29
BN| 4200 data 68, 69, 70, 13, 20, 34 AN | 1430 data 76, 58, 28, 24,105, 48,141,237
LN| 4210 data 199, 40, 51, 52, 41,199 FO| 1440 data 29, 96,169, 48, 141,226, 29, 141
BJ | 4220 data 40, 51, 52, 41,199, 40 CA | 1450 data 227, 29, 141,228, 29, 166, 247, 232
HL | 4230 data 50, 48, 41, 34, 0,151 NI | 1460 data 169, 0, 202, 240, 43, 24,6105, 1
CB| 4240 data 50, 48, 57, 44, 48, 54
ON| 4250 data 48, 58,151, 50, 49, 48
HP | 4260 data 44, 48, 48, 51, 58,151 Listing 3: second loader for VIC version
CE | 4270 data 50, 49, 49, 44, 48, 58
CN| 4280 data 151, 50, 49, 51, 44, 50 KB | 10 rem+* second data loader for “printing ml " =
| KJ | 4290 data 53, 83, O, JJ | 15 rem= vic version *
LI { 20cs=0
FM| 30 fori=7303 to 7678:read a:poke i,a
Listing 2: first loader program for VIC-20 version DH| 40 cs=cs+a:next|
GK| 50:
KK | 10 rem= first data loader for " printing ml "~ * CJ | 60 if cs<>33737thenprint” =*** error in data
LI | 20cs=0 statements #+++ " : end
LL | 30 fori=6927 to 7302:read a:poke i,a AF | 80 end
DH| 40 cs=cs+a:next| IN | 100 :
GK| 50 CA | 1000 data 201, 10,240, 3, 76,129, 28,169
JI | B0 if cs<>43462thenprint” ===+ error in data CN| 1010data 1, 24,109,227, 29,201, 58, 240
statments =**= " end BC| 1020 data 6, 141,227, 29, 76,127, 28, 169
AF | 80 end ME| 1030 data 48, 141,227, 29,6169, 1, 24,109
IN | 100 : CG| 1040 data 226, 29, 141,226, 29, 76,127, 28
IG | 1000 data 160, 16, 132,114,160, 1,132,113 IG | 1050 data 24, 105, 48,141,228, 29, 96, 165
HK| 1010 data 136, 140, 0, 16,140,244, 2,140 AA | 1060 data 113, 141,240, 2, 165, 114, 141, 241
MP| 1020 data 245, 2,140,237, 2,140,236, 2 CD| 1070 data 2, 32, 33, 28, 32, 33, 28, 96
PA | 1030 data 173, 253, 2,133,248,173,252, 2 NE | 1080 data 173,242, 2, 32, 33, 28,173,243
NB| 1040 data 133, 247, 173,249, 2,141,243, 2 IF | 1090 data 2, 32, 33, 28, 24,173,246, 2
KO| 1050 data 173,248, 2,141,242, 2, 32,231 JE | 1100 data 109, 242, 2,141,242, 2,173,247
KL| 1060 data 28, 32, 40, 29, 32, 52, 29,169 DM| 1110 data 2,109,243, 2,141,243, 2, 96
HE| 1070 data 0, 141,237, 2,168,177,247,133 Kl | 1120 data 32, 44, 28, 32,113, 28, 32,182
EO| 1080 data 254, 201, 128, 176, 21,173,245, 2 PM| 1130 data 28, 32,199, 28,160, 0,169, 29
CA | 1090 data201, 1,208, 32,169, 146, 32, 33 CK | 1140 data 133, 140, 169, 221, 133, 139, 177, 139
PK| 1100 data 28, 206, 245, 2,238,244, 2, 76 AL | 1150 data240, 7, 32, 33, 28,200, 76,253
FF | 1110 data 123, 27,173,245, 2,201, 1,240 BO| 1160 data 28,169, 0, 32, 33, 28, 32, 17
IK | 1120data 11,169, 18, 32, 33, 28, 238, 245 GM| 1170 data 29, 96,173,240, 2,6133,141,173
NI | 1130 data 2,238,244, 2, 165,254, 10, /4 DI | 1180 data 241, 2,133,142,162, 0,165, 113
MF| 1140 data 201, 34,208, 6, 76, 69, 29, 76 FL | 1190 data 129, 141, 230, 141, 165, 114, 129, 141
MK | 1150 data 181, 27,133,254, 10, 10,176, 16 HN| 1200 data 96,169, 0,141,245, 2,141,244
OJ| 1160 data 10, 144, 5,165,254, 76,175, 27 ND| 1210 data 2,141,237, 2, 96, 32,182, 28
BN | 1170 data 165, 254, 24,105, 64, 76,175, 27 EP| 1220 data 32,199, 28,169, 153, 32, 33, 28
Gl | 1180 data 10,144, 8, 165,254, 24,105, 64 OB| 1230 data 169, 34, 32, 33, 28, 96, 32,184
PE | 1190 data 76, 175, 27,165,254, 24,105, 128 BO| 1240 data 29, 32, 52, 29, 165,254, 10,144
BM| 1200 data 32, 33, 28,238,244, 2,238, 236 DH| 1250 data 15,169, 18, 32, 33, 28,169, 34
DM| 1210 data 2,230, 247,208, 2,6230,248,173 KH| 1260 data 32, 33, 28,169, 34, 32, 33, 28
BN | 1220 data 250, 2, 197,247,173,251, 2,229 JP | 1270 data 198, 113, 208, 2,198,114,160, 1
HP| 1230 data 248, 176, 6, 32,133, 29, 76, 248 HF | 1280 data 169, 29, 133, 140, 169, 203, 133, 139
BP| 1240 data 27,173,236, 2,201,255,208, 6 CB| 1290 data 177, 139, 240, 10, 32, 33, 28,200
BC| 1250 data 32,162, 29, 76, 61, 27,173,244 OC/| 1300 data 238,244, 2, 76,111, 29,169, 1
HA| 1260 data 2,201, 57,144, 11, 32,184, 29 KD| 1310 data 141,237, 2, 76,181, 27,173,237
LI | 1270 data 32, 52, 29,169, 0,141,244, 2 FE | 1320data 2,208, 5,6169, 34, 32, 33, 28
MN| 1280 data 76, 70, 27,230,113,208, 2,230 IF | 1330data 169, 0, 32, 33, 28, 32, 17/, 29
DD| 1290 data 114, 165, 113, 133, 45,133, 47,133 Il | 1340 data 169, 0, 32, 33, 28,169, 0, 32
NM| 1300 data 49, 165, 114, 133, 46,133, 48,133 CP| 1350 data 33, 28, 96,173,237, 2,208, o
CM| 1310 data 50, 169, 255, 133, 51,133, 53,133 AH| 1360 data 169, 34, 32, 33, 28,169, 0, 141
KG| 1320 data 54,133, 55,169, 29,133, 56, 133 KH| 1370 data236, 2, 32, 33, 28, 32, 17, 29
LF | 1330 data 52,169, 1,133, 43,169, 16,133 MB| 1380 data 96, 169, 34, 32, 33, 28,169, 59
LE | 1340 data 44, 96,162, 0,129, 113,230, 113 LH| 1390 data 32, 33, 28,169, 0, 32, 33, 28
MD| 1350 data 208, 2,230,114, 96, 169, 48, 141 NE | 1400 data 32, 17, 29, 96, 34,199, 40, 51
GA | 1360 data 235, 29, 141,236, 29, 141,237, 29 FM| 1410 data 52, 41,199, 40, 51, 52, 41,199
DM| 1370 data 166, 248, 232, 169, 0, 202, 240, 43 BK| 1420 data 40, 50, 48, 41, 34, 0,151, 50
IN | 1380 data 24,105, 1,201, 10,240, 3, 76 EE | 1430 data 48, 57, 44, 50, 53, 50, 58, 151
DO| 1390 data 60, 28,169, 1, 24,109,236, 29 CP| 1440 data 50, 49, 48, 44, 50, 48, 55, 58
DI | 1400 data 201, 58,240, 6,141,236, 29, 76 MA| 1450 data 151, 50, 49, 49, 44, 48, 58, 151
FN| 1410 data 58, 28,169, 48,141,236, 29,169 |MJ | 1460 data 50, 49, 51, 44, 50, 53, 53, O
The Transactor 63 Volume 5, Issue 06




Aligning The Commodore

1541 Disk Drive

WARNING:

FOLLOWING THE STEPS IN THIS ARTICLE
COULD RESULT IN DAMAGE TO YOUR DISK
DRIVE AND WILL VOID ANY WARRANTY

The warning above is real and should be read carefully. Any
time you open a sealed unit, whether a disk drive or an electric
toaster, you will void any warranty on the unit. You may also
damage the unit. Damage may occur regardless of the instruc-
tions you are following. You may injure yourself while attempt-
ing repairs. Electrical equipment always carries with it the risk
of shock and electrocution. BUT. . .if you are careful and
patient, you can align your disk drive and save up to $70.

If your disk drive is still under warranty, DON'T FIX IT. Take
the drive back to your dealer for repair or replacement. Doing
anything else is foolish.

The other step to take before opening the case is to make sure
that indeed alignment is needed. In other words, IF IT AIN'T
BROKE, DON'T FIX IT. Be sure the drive is out of alignment
before you start. Use the test demo disk that comes with your
drive and check the alignment using PERFORMANCE TEST. If
that program says the drive is alright, then something else is
wrong. If you can’t get PERFORMANCE TEST to load, then try
the single line programs included here. But be sure BEFORE
you start. | have used these instructions to align 11 disk drives
this fall in the school at which | work. Only one would not
align. Later work traced its problems to a bad chip.

1. Read these instructions all the way through one or more
times. Be sure you understand what they say BEFORE you

start.

2. Find a dry, stable place to work. You will need a diskette that

can be erased, the TEST DEMO disk that came with the
drive, a medium Phillips (star head) screwdriver and a sharp
pointed knife (the smaller the better).

3. Unplug the disk drive from the C64 computer and from the
power source (wall plug). Turn the disk drive upside down
and use the screwdriver to remove the four screws from the
bottom of the unit. (You just voided the warranty!)

Bob Drake
Brantford, Ont.

4, Turn the drive right way up. Don't lose any of the four
screws. Gently lift the top off and set it to one side. Don't sit
or step on it — that plastic shell will break easily.

5. Find the red and black wires leading from the power light
onto the main circuit board you should now be looking at
and unplug it. Note where it came from — you have to put it
back. (Figure 1)

6. The disk drive is held into the bottom half of the case with six
(6) Phillips screws driven into the plastic. Remove them and
set them to one side. (Figure 1)

7. CAREFULLY, not using the circuit board, lift the disk drive
out of the bottom of the case, turn the case over, and insert
one of the metal tabs on the drive into a slot on the plastic
bottom. The drive should stand self supported. (Figure 2)

8. Find the two screws on either side of the stepper motor.
CAREFULLY use the knife to scrape away the green glue
holding those screws down. Don'’t cut any wires accidentally
or you could be buying a new drive. This is, for me, the
hardest part of the job. When the glue is broken off, use your
screwdriver to undo each screw slightly (no more than 2-3
full turns). Turn the stepper motor fully clockwise. Note — it
only moves about a quarter of an inch at most. (Figure 3)

9. Plug the drive into the computer. Plug the power back into
the drive. KEEP YOUR FINGERS OFF ANY PART THAT

LOOKS LIKE IT COULD CARRY POWER. Turn on the
power.

10. The drive will not be far out of alignment.
Insert your TEST DEMO disk and VALIDATE it using:

open 1,8,15,"v0" : close 1

The Transactor

Volume 5, Issue 06




When in alignment, the red light on the front of the drive
should stay on without flickering. Gently move the stepper
motor (about 1/32 inch at a time) until the red light stays on.
You may have to validate the disk several times. Tighten one
SCrew.

Format a blank disk using:
open 1,8,15," nO:test,tt" : close 1

Watch the light — it should stay on. Expect that 3 or 4 tries may
be needed.

12. When you are sure the drive is aligned, run the PERFORM-
ANCE TEST from the TEST DEMO disk to confirm the

alignment. Be sure that tracks 1 and 35 will both read and
write.

13. Unplug the drive.

CAREFULLY, lift the drive, turn the bottom over and place
drive back into the bottom.

Replace the 6 screws holding the drive in the plastic bottom,
replace the red-black wires to the green light, and put the top
back on. Finally, turn the drive over and replace the 4 screws in
the bottom.

14. CONGRATULATIONS! You have just aligned your 1541 disk
drive.

Speed Control

, r S an ERN oo NS
»
Iﬂ/ Stepper Motor
[ ] L]
-y
: /
| | &
» Circuit | Bottom
Screws Board
|\ /
E ™ '
| |
Front Bottom Case
Upside Down
Figure 1
3
Figure 2 @ Figure
Glued Down
Cabled Wire @
Don’t Cut
Glued Down
The Transactor Volume 5, Issue 06




Super Cat

Richard Evers, Editor

10 | 10 rem save " @0:super cat.bas " 8
HA | 100 rem == rte/84 - a super catalog routine that supplies
all file info
PE | 110 print " #+ super catalog - rte/84 == "
EK | 120 ft$(0)= "del ": ft$(1)= "seq": ft$(2)= "prg":
ftH(3)= "usr": ft$(4)= "rel "
B MK'| 130 print " drive type ;"
a ~ y 7 MH | 140 input " 1) 1541/2031/4040 or 2) 8050/8250 : " :ty:
. if ty<1 or ty>2 then 140
NP | 150 dtrk=39: if ty =1 then dtrk = 18: rem *=* directory track
JM | 160 input " drive # " :dr: if dr>1 then 160
Super Cat is a program written for the sole purpose of providing all | PH | 170 print " selective directory ?"
that detailed directory information that we all require, but have sucha  [OO | 180 print " 1) seq, 2) prg, 3) usr, 4) rel, 5) all "
hard time locating. Whatever is tucked away on the directory track of | HP | 190 input sl: if sl<1 or sI>5 then 190
your diskette magically reappears with the use of Super Cat. Foran |00 | 200 sl$= "all ": if sI<5 then sl$ = ft$(sl)
added bonus, the output can be generated to your screen or attached | BE | 210 input " 3) screen or 4) printer : " :dv:
printer. Look below for a quick synopsis of available data to be if dv<3 or dv>4 then 210
generated by the program : FC | 220 open 15,8,15: open 5,8,5,"# ": open 1,(dv)
Super Cat will display the directory track and sector, and the index Ol | 230 e I ctr=ﬂ:.bu:[]: 28 =chrd(0): sps =
. ) . . ) GL | 240 print#15, "ul: " 5:dr:dtrk:sec: rem ** block read
into the sector that the filename resides on. It will also provide you CM | 250 print*15. " boo: * 5:0: ctr—0: vx Dosition th
with the usual data of block count, file name, and file type. Along with print » D=pi 97k cr=0: rem == position the
this, the track and sector of the first data block of the file itself is given. bufier pointer .
As a final bonus to REL file type users, the program will show the first KL 1 260 get*5,nt3,ns$: rem += next track:a’sectur links
. : HH | 270 get*5,ft$: ft =asc(ft$ + z$)and 15: if ft>4 then ft=0
side sector track and sector link, plus the record length of each record .
o . o : JL | 280 ft$ = ft$(ft): rem == assign file type
within the file. This is the sum and total of data that will become 4 _ :
available to the Super Cat user. AK | 290 get#5,t$,s$: rem == first data trk/sector
FP | 300 trk =asc(t$ + z$): skt=asc(s$ + z$)
Here's what to expect when generating reports with the program. DP | 310fl$="":for x=1to16: get*5,a$: fl$ =f1$ +
39:16:66 63 mim 64.pal  prg trk 50 sec 19 chri(asc(a$ +29)): next: rem filname
OB | 320 get*5,sr$,ss$,r1$: rem *+ first trk/sec side sector +
Above is a regular display for a file, excepting REL. The first three length if rel file
numbers, “39:16:66" refer to the directory track, sector, and index JC | 330 sr=asc(sr$ +z$): ss=asc(ss$ + z$): rl =asc(rl$ + z$)
into the sector that the filename has been located on. The next | GC | 340 get*5,gb$,gb$,gb$,gb$,gb$,gb$: rem ** 6 bytes not used
number, “63" is the block count consumed by the file on diskette. The | MG | 350 get*5,bl$,bh$: blks = asc(bl$ + z$)+ 256 +asc(bh$ + z$)
data following is the filename followed closely by the file type. After | HG | 360 get*5,gb$ gb$: rem =+ two wasted bytes at start of
that comes the track and sector that the first data block is held on. next record
That's everything. IB | 370 if ft=0 then 470
39:1:2 727 writer-datal rel trk 38 sec 1 ss : trk 38 sec 8 len 254 | NF | 380 dp$ =mid$(str$(dtrk),2)+ ": " + mid$(str$(sec),2)+ ":"
JE | 390 dp$ =dp$ + mid$(str$(ctr+32 + 2),2)
This display line is from a REL type file entry. Everything is the same BG | 400 dp$ = mid$(dp$ +sp$,1,len(dp$)+ (10-len(dp$))) +
till you get past the track and sector link to the first data block. From right$(sp$ + str$(blks),5)+ " °
“ss’ on, the data printed refers to the first side sector block. In this PC | 410if si$="all" then 430: rem == everything ok
example, the first side sector is located on track 38, sector 8, with afile | gp | 490 i sIS<>ft$ then 460 : rem =+ file type incorrect
length of 254 characters. OK | 430 print*1,dp$fl$ " "ft$" trk "trk " sec " skt:
When the entire directory has been peered through by the program, | CA | 440if ft$<>"rel" then print*1: goto 460
the total number of blocks consumed by the programs in the directory | MK | 450 print*1, "ss : trk "sr "sec"ss "len "1l
are display, as shown below. IB | 460 bu=bu + blks: rem =+ blocks used in total
HN | 470 ctr=ctr+ 1: if ctr<8 then 270
.. . total # blocks used : 2054 . . . FF | 480 dtrk = asc(nt$ + z$): sec = asc(ns$ + z$)
The program has been written to work with all Commodore floppy | FF | 490 if dtrk then 240
drives, and will even allow for a selective evaluation of the directory | HP | 500 print*1,". . . total # blocks used : "bu". . ."
by using the pattern matching capabilities of the Commodore DOS. KD | 510 closel: close5: closel5: end
The Transactor 66 Volume 5, Issue 06




Software Numeric Keypad

For the Commodore 64

Michael Kwun
Okemos, MI

DS HuGeeTT

The following program was written because of the wealth of
Commodore 64 programs which contain DATA statements. |
often overlook interesting looking programs printed in maga-
zines due to the multitude of data statements found within and
my lack of proficiency with the top row on the keyboard (the
numbers). Wouldn't it be nice to have a numeric keypad?

One day while looking over a memory map searching for some
ROM routines, | found the following entries:

EB81 60289 Keyboard 1 - unshifted
EBC2 60354 Keyboard 2 - shifted

Investigating these locations, it turns out that by changing their
values (by transferring the ROM to RAM and switching the
Kernel out), you can change the characters that are accessed by
each key. The following program, “Software Numeric Keypad",
was written using this knowledge.

Type it in with any machine language monitor, and save it. To
use it, just load it and run. After a brief pause, the “READY.”
prompt will appear. The keyboard has been redefined, and at
this point the program is no longer required. These are the key
re-~definitions:

789  (nochange) 789
UIO changesto 456
JKL  changesto 123
M,. changesto 00,

| “It’'s expandable to 48 keys”

To return the keyboard to normal, use RUN-STOP/RESTORE
or POKE 1,55 (the poke is tricky to enter in numeric keypad
mode). To regain access to the numeric keypad, enter POKE
1.53. While in the numeric keypad mode, the U, I, O, J, K, L
and the period can be accessed by pressing SHIFT. The ‘<’ and
the *>" can be accessed by using the Commodore key. Happy

typing!

Hex dump of the program:

0B
31
A9
91
FC
FC
DO
85
9E
CA
31
33
29
DB

0A
00
85
c8
CO
00
F6
A2
BD
F1
30
2C
aA
4C

00
00
FB
DO
DO
B1
FC
12
SE
60
32

9E
A9
AO
F9
F1
FB
DO
BD
08
34
36
3A 40
30 4D
DD 2E

32 30
A0 85
00 Bt
E6 FC
A9 EO
91 FB
F& A9
4C 08
9D DF
56 39
4B 2B
30 55
4B 4F
5B BA

.: 0801
.. 0809
.- 0811
.: 0819
.. 0821
.. 0829
.. 0831
.. 0839
.- 0841
.. 0849
.. 0851
.: 0859
.: 0861
.. 0869

08
00
00
FB
C9
A0
F9
01

EB
DO
30

2D
49
DO

36
FC
FB
A5
85
C8
35
9D
EB
35
50
D6
CE
2C

Now save from $0800 to S0871.

The Transactor

67

Volume 5, Issue 06




Disk/Extramon 64

Mike Forani
Burlington, Ontario

Disk/Extramon 64 is the all-in-one ultra-monitor for the Commodore 64. It has just about
everything you could ask for, and then some. Just one problem though - it's over 7K long!
And 8 pages of DATA statements not only consumes too much magazine space, but makes
hand entry far too impractical. So why print instructions without the program? Mike uses
standard commands and command syntax which makes the instructions practically
universal for all other monitor utilities. Mike's program may have commands that the
others dont, but odds are the others have none that Mike doesn t include. Two assembled
versions of Disk/Extramon 64 are available on Transactor Disk #5. - M Ed.

Embarking on an investigative journey through your 64? Yes? Then
Disk/Extramon 64 is a travel companion you shouldn’t be without.
It's the monitor program to end all monitor programs.

A lot of you may be saying, “Why should I bother with this one?".
Agreed, there are several monitor programs around, some for sale,
others for free. Disk/Extramon 64 has features not found in other
monitors which was going to be a strong “selling point” for the
program. However, the program is now public domain so all those
selling points make the fact that it's free even more attractive.

Disk/Extramon 64 has all the common machine language monitor
commands such as Hunt, Assemble and Disassemble, Transfer, plus
Newlocate, Interrogate, Compare, Quick Trace, and Bank Switching
commands especially for the 64. Hex/Decimal conversions are in
there too.

The Disk Monitor portion of the program has everything the budding
young drive programmer needs for experimenting with the inner
workings.

Note: The program has been tested with Commodore equipment
only. | therefore cannot insure that it will work properly with non-
Commodore printers, disk drives, or IEEE interfaces. (There has been
some success with the 4040 dual drive and the Bus-Card Il interface.)

The following is a list of the Disk/Extramon 64 commands. Some of
the commands require special attention so please read on.

Affected Memory

This program is located at $1000 or at $8000 and uses 8K of memory.
The page 3 vectors; IRQ, BRK, and ICRNCH are changed and the
upper 5 bytes of page 0 are used by the monitor program. A number of
kernal routines are also used and these will affect some zero page
variables. CHRGET is used by the monitor program and this will affect
the page 2 input buffer. On a break instruction before anything can
change, zero page and page two are saved at $9e00 to $9fff with the
$8000 version or at $2e00 to $2fff with the $1000 version of the
monitor program. Therefore you will always be able to see what zero
page or page two locations your program affected. Also on a break
instruction the VIC chip’s video and character generator registers are
reset to their defaults as is the [/O port in page 0.

Note: While in the monitor all numeric input must be in hexadecimal
numbers except when doing decimal to hexadecimal conversion.

Monitor Commands

DISPLAY REGISTERS: Display the current processor status.
r

DISPLAY MEMORY: Display contents of memory in hex.
m adrl adr2 adrl ;beginning address
adr2 ;ending address (optional)
If adr2 is left out then one line of eight bytes will be displayed.

ALTER MEMORY: Alter contents of the 64's memory
.+ 1000 00 00 00 00 00 00 00 00 alter memory

ALTER REGISTERS: Alter contents of 64's processor registers.
pC irq srac xryr sp

.3 1000 ea31 b0 00 00 00 ff alter processor status

GO: Begin execution of a machine language program.

g adrl adr] ;beginning address of execution (optional)

* If the kernal is banked out the processor status is not restored at the
'go’ command and the [RQ's are disabled. Also if the address is
omitted or invalid, the 64 will jump to address in the program counter.

LOAD: Load a program into the 64's memory.
1" sdr:filename " ,dn,adrl
sdr ;source drive number (optional)
dn ;device number (08 - 0f)
adrl ;load address (optional, defaults to the disk load address)

SAVE: Save a program from 64 to disk.
s "ddr:filename " ,dn,adr1,adr2
ddr ;destination drive # (optional)
dn  ;device number (08 - 0f)
adrl ;beginning address of save
adr2 ;end address of save (last byte is saved)

EXIT: Exit the monitor to BASIC.
x * All wedges are left intact so the monitor may be reentered.
Extra Monitor Commands

MONITOR: Enter monitor from BASIC.
mon

The Transactor

Volume 5, Issue 06




BANK: The kernal and/or basic may be banked out of memory so
that the RAM memory sitting behind it may be modified,
assembled, saved, executed or traced.

bbout  bank out the basic ROM to give RAM
bbin bank in the basic ROM

bkout  bank out the kernal ROM to give RAM
bkin bank in the kernal ROM

TRANSFER: A portion of memory may be transferred from one
memory location to another.
tadrl adr2 adr3 adrl ;start address
adr2 :end address
adr3 ;beginning address of transfer

FILL: Fill a portion of memory with a given value.
fadrl adr2 xx  adrl ;start address

adr2 ;end address

xx ;value to fill memory with

HUNT: Hunt for a string of values in a specified portion of memory.
h adrl adr2 ‘string’ adrl :start address
h adrl adr2 xx xx xx adr2 :end address for hunt
'string’  ;characters to be searched for
XX ‘hex values to be searched for
(max. length of string or bytes is 20)

COMPARE: Compare two portions of memory to each other.
cadrl adr2 adr3  adrl ;start address

adr2 ;end address

adr3 :start address (second block)
* memory locations that do not compare equal will be displayed.

INTERROGATE: Display the screen printable characters along with
the memory locations values.

adrl ;start address

adr2 ;end address (optional)

iadrl adr2

QTRACE: Trace a machine language routine and display the proces-
sor status after each instruction is executed.

adrl ;address to begin execution

* Pressing the ‘n’ key skips the trace

* Pressing the ‘m’ key speeds it up

* Pressing the space bar halts execution
* No separate interrupt control, unless non maskable, is allowed
during the trace routine and any i/0 routines may be affected. The
gtrace works on an interrupting system. Interrupts occur after each
instruction is executed, therefore IRQ control in the program being
traced may crash the system. (CIA #1 - Timer A is used for interrupt
timing.)

q adrl

ASSEMBLE: Assemble a machine language program in memory.
(this is a simple assembler)
a adrl lda #$41 adr] ;beginning address for assembly

* To end assembling a return (blank line) must be entered before
doing any other operations such as altering the assembled code.

DISASSEMBLE: Disassemble hexadecimal memory location values
into mnemonic op-codes with operands.

adrl ;start address

adr2 ;end address (optional)
* If adr2 is left out then only one op-code and its operand will be
displayed.

d adrl adr2

ALTER DISASSEMBLY: Change the screen disassembly.
., 1000 20 d2 ff jsr $ffd2

* The hex values are to be changed not the mnemonics.

NEW LOCATER: Relocate a machine language program.
n adrl adr2 offset adr3 adr4 w

adrl  ;beginning address of code to be relocated

adr2 ;end address

offset :value to be added to absolute indexed memory loca-
tions

adr3 :lower address limit of absolute addressed data which is
to be changed

adrd ;upper limit

% -relocating a word table - if included

* The code to be relocated must first be transferred, this is a two step
command.

DEC/HEX CONVERSION: Convert a hexadecimal number to a
decimal number or a decimal number
to a hexadecimal number.

-decimal to hexadecimal

‘hexadecimal to decimal

*65535
* $ﬂﬂ

KILL: The disk/extra monitor wedges are destroyed and normal
basic operations may be done - the monitor may not be
reentered unless you jump to the start of the program. ie.
$1000 or $8000.

k * All the page three vectors used are restored.

COLD: Do a power on reset sequence.
P
Disk Monitor Commands

DIRECTORY: Do a screen list of the directory.
/ -directory of disk

/"m* directory of files starting with the letter ‘m’
/"1: directory of drive 1
READ: Read a sector from the disk to a disk buffer.
Srddttssbb dd :drive

tt ;track

ss ;sector

bb :buffer (optional, default is 01)

WRITE: Write a disk buffer to the disk surface.
Sw dd tt ss bb dd :drive
tt :track

ss ;sector
bb ;buffer (optional)

GET: Get disk memory to the 64's memory.
$g adrl adr2 adr3 adrl ;start address of get
adr2 :end address
adr3 ;address to store at in C64

PUT: Put 64's memory to disk memory.
$p adrl adr2 adr3 adrl ;start address of put
adr2 ;end address
adr3 ;address to store at in drive

The Transactor

Velume 35, Issue 06




VIEW: View (he disk drives memory.
Sv adrl adr2 adr] ;start address
adr2 ;end address (optional)

ALTER: Alter the disk drives memory.
.$:0300 00 00 00 00 00 00 00 00

DIRECT: Send a direct command to the disk drive.
$>... :any basic 2.0 disk command

* The disk status is displayed after the command is executed.

TRACE: Trace a files track and sector links and display them. (begin
tracing at. . )
Stddttssbb dd ;drive
tt track
ss ,sector
bb ;buffer (optional)

FETCH: Fetch a sector from the disk drive surface to the 64's

memory.
$f adr1 dd tt ss bb adrl ;start address in C64
dd ;drive
tt  ;track
ss :sector
bb ;buffer (optional)

DUMP: Dump a block of the 64's memory to the disk surface.
$d adrl dd tt ss bb adrl ;start address in C64

dd drive

tt  track

ss .sector

bb :buffer (optional)

CHANGE: Change the device number of the disk drive. (send to drive
or just for program defaults.)

do ;old device number

dn ;new device number
* If the asterisk is included the change is only done in the 64’s
memory so that a device 09-0f may be used as a default if hard wired.

Sc do dn+

ALLOCATE: Allocate a sector as being used in the BAM.
Sa dd tt ss dd :drive
tt :track
Ss ;sector
* To de-allocate sectors use the basic 2.0 command Validate (v0)

EXECUTE: Execute disk memory.
$e adrl adrl :beginning of execution

BLOCK EXECUTE: Load a sector off the disk surface into a disk
buffer and execute it.

dd :drive

tt :track

ss :sector

bb ;buffer (optional)

$b dd tt ss bb

STATUS: Check the disk status.
8s

INTERROGATE: Display screen printable characters while display-

Note 1 After doing any disk memory commands the drive should be
initialized to avoid any unfriendly errors. ($>i0)

Note 2 An automatic scroll up and down is built into the memory
display routines and the disassemble.

Note 3 Pressing the run/stop and restore keys will reset the com-
puters page 3 vectors, this will result in the monitor not
working on the scroll routines therefore the monitor must be
exited and reentered at its starting point to reset the vectors
once more.

Disk/Extramon 64 Quick Reference Chart

MONITOR COMMANDS
a adrl simple assembler
bbin bank basic in
bbout bank basic out
bkin bank kernal in
bkout bank kernal out

c adrl adr2 adr3

d adr1 [adr2]

f adrl adr2 xx

g [adrl]

h adrl adr2 ‘string’

hadrl adr2 xx xx xx ...

i adrl [adr2]

k

1 "sdr:filename " ,dn,[adr1]
m adr]l [adr2] display memory bytes
mon enter monitor from basic
n adr1 adr2 offset adr3 adr4 [w] relocate program code

compare memory
disassemble memory

fill memory

begin execution of program
search memory for string
search memory for bytes
interrogate memory

kill monitor wedges and exit
load a file from disk

1] do a power on reset sequence
q [adrl] quick trace of program code
r display processor registers

s "ddr:filename " ,dn,adr1,adr2
t adrl adr2 adr3

save a file to disk
transfer memory

X exit the monitor to basic

* XXXXX decimal to hex conversion

*§ XXXX hex to decimal conversion
DISK MONITOR COMMANDS

Saddttss allocate a sector in BAM

$b dd tt ss [bb] block execute

$cdo dn change disk device number

$c do dn+ change disk default device #

8d adr1 dd tt ss [bb] dump memory to disk

Se adrl execute disk memory

$f adr1 dd tt ss [bb] fetch sector from floppy

$g adrl adr2 adr3
$iadrl [adr2]

$p adrl adr2 adr3
Sr dd tt ss [bb]

Ss

St dd tt ss [bb]

$v adrl [adr2]

Sw dd tt ss [bb]

get disk memory

interrogate disk memory

put memory to disk memory
read a sector to disk buffer
check disk status

trace file link pointers

view disk memory

write a buffer to disk

ing the memory of the disk drive. §> ‘string’ send disk command
Siadrl adr2  adrl ;start address / directory
adr2 ;end address (optional)
The Transactor 70 Volume 5, Issuve 06




Drive Peeker:
A Quick Peek

Inside Your Drive
Richard T. Evers

Drive tripping has become one of North America’s prime
vacation pastimes over the past few years. With disk protection
making its entry in such a big way, plus so many new tricks
being uncovered on a daily basis, dashing about within your
drive unit is the thing to do.

Well, in keeping with new trends, we bring you ‘Drive Peeker’,
a program guaranteed to trip the light fantastic with you
throughout every private part of your drive. Each and every
hidden recess is no longer so, with Drive Peeker at your side.
Now on to a more serious vein.

To look inside of disk memory and extract the information that
lies within is not a difficult task. All that is required is to inform
the drive of your intentions and proceed along with what you
want to do. Before progressing on to the program, let's first
explain how this can be done.

The very first thing required is to place a call to the drive along
its private channel, then keep the channel open for further
updates of procedures.

open 15,8,15

Once opened up, you have to inform the disk drive the reason
for the call. A command as follows will do the trick

print#15, " m-r " chr$(ml)chr¥(mh)chrd(numchr)

The "M-R" informs the drive that you would like to read its
memory. CHR$(ML) and CHR$(MH) tells it what portion of
memory you are interested in. CHR$(numchr) is an optional
parameter not discussed by Commodore in past. This will
inform the drive that you would like to read the value of
(numchr) characters at a time. (numchr) represents a number
up to 255 decimal. To get these characters, the GET*15 com-
mand is the used. If required, you can GET# more than one
character at a time, ie. GET#15,a$,b$,c$,d$ . . . etc. The drive
understands this and will return to you the number of charac-
ters desired.

With all disk operations using CBM equipment, a zero byte
cannot be retrieved at all. You can write it to disk and it will
actually make it there in one piece. But when you try to read it
back, the drive unit eats it and gives you nothing in return.
Something like a users fee. Well, whenever reading data from
disk, a test should be made to see if the string received is
actually there. If not, assign it with a value of chr$(0), and your
programs will be happier.

Once you have that byte, you can do whatever you please. In the program
below, | have used it for one specific purpose, to show you what is hiding
in your unit. Once the data is received, its ASCII value is OR'd with 64 to
make it nice to work with, then it is added to a string. From there, the
original data byte received is converted to hexadecimal and is printed
out. A maximum of 8 bytes will be displayed per line, then the string of
the CHR$(value or 64) will be printed. This will help you at times when
you know you're peering at a .byte table.

Every time a line is dropped, the current location is memory is printed at
the beginning of the new line in hexadecimal. In this way, you always
know where the data is coming from, just in case you want to find it back
later on. As an extra bonus, the program has been written to allow output
to be directed to the screen or printer, as you please. With everything
taken into consideration, the routine isn't bad for the amount of work it's
going to cost you keying it in. And, as usual, you will have learned but
another new programming trick, to add to your already overflowing
collection.

100 rem : save " @0:drive peeker " ,8:verify " 0:drive peeker " ,8

105 rem : =+ drive peeker — rte/84 =+

110 rem : == will scout about within your drive & report back to you ==

115 print" #= drive peeker **

120 hx$ = "0123456789abcdef”

125 input " hex : start, end ";s%,e$

130 va$ =s$ : gosub215 : s=val(va$) :rem convert start to dec

135 va$ =e$ : gosub215 : e =val(va$) :rem convertend to dec

140 input " s) screen : p) printer " ;sp$

145dv=3:ifsp$="p" thendv=4

150 open 1,(dv)

155 open 15,8,15

160 for pk=stoestep8:vh=""

165 mh% = pk/256 : ml = pk-mh%=+256

170 print#15, " m-r " chr$(ml)chr$(mh%)chr$(8) :rem read in 8 chars

175flag=1:v=mh% : gosub 190 : print#1,ht$; : v=ml: gosub 190
print#1,ht$" ", :flag=0

180 forx=0to7

185 get#15,a$ : v=asc(a$ + chr$(0)) : v§ =v$ + chry(vor64)

190 h% =v/16 : lo=v-h%=*16

195 ht$ = mid$(hx$,h% + 1,1) + mid$(hx$,lo+ 1,1) : if flag then return

200 print#1,ht$" °;

205 next x ; print#1,v$ : next pk : close1 : close 15 : end

210 rem hex - dec

215In=Ilen(vad) : f=0

220 forx =0toln-1 : v =asc(mid$(va$,In-x,1))-48 : y = abs(v>9)

225 f=f+((v-(y*7))*161x) : next : va$ =midd(strd(f),2) : return

The Transactor

71 VYolume 5, Issue 06




File Compare

Richard Evers

Compare Disk Files In A Flash

A while ago | took it upon myself to convert the PET resident
monitor for the Commodore 64. Considering how many MLM’s
are already out there, this was a pretty useless task. Needless to
say, you will never actually see the completed version in the
pages of our magazine. To get back to the story, troubles
occured immediately with my assembled pseudo source. To get
the source, | simply SAVEd the MLM from the PET in memory
to disk, then disassembled it with a disk unassembler program.
After a few mods to this apparent source, it was assembled, just
to check if everything was OK. With a crash and heave my
hopes dissolved. It wasn't quite right. LOAD and SAVE were
OK, so were all but one of the other commands. G, the GO
command, would crash the machine by trampling back into
BASIC with the decimal flag set. It came close to driving me
crazy because the machine would have to be powered down
after every attempt at correcting the error.

If a comparison of code was made between the original MLM in
the PET, and my pseudo assembled code, the trouble could
quickly be found. The incorrect or missing bytes would easily
be pointed out, with the right program. An so, File Compare #1,
a BASIC version, was conceived.

In reality the BASIC program took a very short period of time to
write. How much effort does it take to OPEN two files for a read,
read in each byte in tandom, compare them, then flag to the
screen when something wasn't quite right. Not that complex.
Needless to say, my 5 minutes of tedious labour found the
problem. A byte was mixed up in my disassembly, therefore
the new code would always err out. Once the byte was fixed,
the code was great. A happy ending. And so, the BASIC version
of File Convert became part of my already overflowing archives
of limited use programs.

Enter the utilities issue. A perfect occasion for the rebirth of a
concept long forgotten. With a burst of BAID, and a final lunge
with PAL, File Compare, machine code version, was born. No
longer the boring little BASIC ditti that took forever to finish.
This one goes like a bad odor on a windy day, which means, it
goes like stink. For an encore it will generate its report to your
screen or printer. The best part of this one is the fact that, as
Chris Zamara says, it doesn't do you any favours. It simply does
its job without messing up your computer in the process. A
simple bit of code for a simple task.

The programs listed below are for the sole purpose of creating a
program on diskette with a single BASIC line to SYS to the start
address. Once created, LOAD the new program in and RUN it
as a normal BASIC program. The code has been written to start

at $0401 for the PET/CBM and $0801 for the C64. The code
cannot be relocated without reassembling the source.

Once up and running, the first prompt will ask you for the
device # in which to output the report to, either 3 (screen) or 4
(printer). Answer the question, hit return and wait for the next
question. The next prompt,

"dr#:filename >"

will appear. Type in the name of one of the files in which to
compare then hit return. The prompt will then reappear imme-
diately. Reply this time with the name of the second file. The
compare begins.

The display is formatted to first show the index (ie. 0-max) into
the file that the mismatch was found, followed by the byte
value found in the first file, then the byte value from the second
file. Everything is displayed in hex. If no errors are found, the
files will simply be read through without any great excitement.
When complete, it will return to perform a BASIC warm start
back to READY mode. Very simple.

If you specify a file that doesn't exist, the program will under-
stand and close everything up, then return to BASIC without
harm. If you find that you have to STOP the program, for
whatever reason at all, press the STOP key, and control of your
computer will be passed back to you, with all files correctly
closed up.

Quick note before the code. ST is checked after the byte is
taken from the second file specified. If you know that one file
will be larger than the other, and don’t want to extend beyond
the limit of the smaller one, then specify the larger file first, the
smaller one last. This will save a display full of $0D’s from the
small file in comparsion to the larger on. The two files will not
match too well at this point, so you will generate a report of
garbage.

Please remember to SAVE the program(s) below before running
them. Even though it creates another program for you, it won't
hurt to have the generator around in case of an error.

The Transactor

Volume 5, Issue 06




File Compare: BASIC 4.0 Version

File Compare: Commodore 64 Version

CP| 10 rem save " ‘O:flcomp pet.dat” .8 LC| 10 rem save” @O:filcomp c64.dat " ,8
MC| 100 rem =* rte/84 — data to create IH | 100 rem =** rte/84 — data to create

‘file compare 4.0' on diskette as prg ‘file compare c64’ on diskette as prg
FI | 110 input" drive #, new program name " ;dr$,fl$ FI | 110 input" drive #, new program name " ;dr$,fl$
HF | 120 open 15,8,15: open 5,8,5,(dr$) + " " HF | 120 open 15,8,15: open 5,8,5,(dr§) + ": "

+f$+ " pw’ +f1$+ " ,pw”
Pl | 130 input#15,e,e$,b,c: if e then close 15: Pl | 130 input#15,e,e$,b,c: if e then close 15:

print e,e$,b,c: stop print e,e$,b,c: stop
DE | 140 for j=1025 to 1409 : read x: print#5,chr$(x);: CG| 140 for j=2049 to 2433 : read x: print#5,chry(x);:

ch =ch + x: next: closeb ch =ch + x: next: closeb
DH| 150 if ch<>39775 then CG| 150 if ch<>38861 then

print " checksum error " : end print" checksum error " : end
IP | 160 print" ** program complete ** " : end IP | 160 print” ** program complete ** " : end
OB| 170: OB| 170:
MC| 180data 1, 4, 37, 4, 10, 0,188, 32 ID| 180data 1, 8, 37, 8, 10, 0,158, 32
KB| 190 data 49, 48, 54, 51, 32, 58, 32, 42 BA| 190 data 50, 48, 56, 55, 32, 58, 32, 42
GC| 200 data 42, 32, 70, 73, 76, 69, 32, 67 GC| 200 data 42, 32, 70, 73, 76, 69, 32, 67
FF| 210data 79, 77, 80, 65, 82, 69, 32, 52 OF | 210 data 79, 77, 80, 65, 82, 69, 32, 67
HH| 220 data 46, 48, 32, 42, 42, 0, 0, O CG| 220data 54, 52, 32, 42, 42, 0, 0, O
NE | 230 data 160, 5,169, 71, 32, 29,187, 32 NB| 230 data 160, 9,169, 71, 32, 30,171, 32
Bl | 240 data 207, 255, 56,233, 48, 133, 90, 201 Bl | 240 data 207, 255, 56, 233, 48, 133, 90, 201
NB| 250 data 3, 48,244,233, 5,176,240, 169 NB| 250data 3, 48,244,233, 5,176,240, 169
JP | 260 data 13, 32,210, 255,169, 0,133,208 AB| 260 data 13, 32,210, 255,169, 0, 133, 183
OE| 270 data 169, 1,133,210, 165, 90, 133,212 CH| 270 data 169, 1,133, 184, 165, 90, 133, 186
JG | 280 data 169, 255, 133,211, 32, 99, 245, 169 NG| 280 data 169, 255, 133, 185, 32, 74,243,169
ED| 290 data 0, 133, 87,133, 88,162, 5,160 ED| 290 data 0,133, 87,6133, 88,162, 5,160
FC| 300data 5,169, 97, 32, 11, 5,162, 6 JD| 300data 9,169, 97, 32, 11, 9,162, 6
MM| 310 data 160, 5,169, 97, 32, 11, 5,165 AO| 310 data 160, 9,169, 97, 32, 11, 9,165
OB| 320 data 155, 201, 239, 208, 3, 76,246, 4 BC| 320 data 145, 201, 127,208, 3, 76,246, 8
FG| 330 data 162, 5, 32,198, 255, 32,207, 255 FG| 330 data 162, 5, 32,198, 255, 32, 207, 255
DE | 340 data 133, 89, 32,204, 255,162, 6, 32 DE | 340 data 133, 89, 32,204, 255, 162, 6, 32
JL | 350 data 198, 255, 32,207,255, 72,165, 150 DM| 350 data 198, 255, 32,207,255, 72,165, 144
HO| 360 data 133, 91, 32,204, 255, 104, 197, 89 HO| 360 data 133, 91, 32, 204, 255, 104, 197, 89
PH| 370 data 240, 78, 72,162, 1, 32,201,255 PH| 370 data 240, 78, 72,162, 1, 32,201,255
MJ | 380 data 169, 36, 32,210, 255, 165, 88, 32 MJ | 380 data 169, 36, 32, 210, 255, 165, 88, 32
HO| 390 data 49, 5,165, 88, 32, 61, 5,165 DP| 390 data 49, 9,165, 88, 32, 61, 9,165
JA | 400 data 87, 32, 49, 5,165, 87, 32, 61 JB| 400 data 87, 32, 49, 9,165, 87, 32, 61
OJ| 410data 5,169, 32, 32, 210,255,169, 36 KK| 410data 9,169, 32, 32,210, 255, 169, 36
HA| 420 data 32,210, 255,165, 89, 32, 49, & DB| 420 data 32, 210, 255, 165, 89, 32, 49, 9
DI | 430 data 165, 89, 32, 61, 5,169, 32, 32 DJ | 430 data 165, 89, 32, 61, 9,169, 32, 32
IM | 440 data 210, 255, 169, 36, 32,210, 255, 104 IM | 440 data 210, 255, 169, 36, 32, 210, 255, 104
BM| 450 data 72, 32, 49, 5,104, 32, 61, 5 BO| 450data 72, 32, 49, 9,104, 32, 61, 9
KC| 460 data 169, 13, 32,210, 255, 32, 204, 255 KC| 460 data 169, 13, 32,210,255, 32,204,255
FC | 470 data 230, 87,165, 87,6208, 2,230, 88 FC| 470 data 230, 87,165, 87,208, 2,230, 88
AE | 480 data 165, 91,208, 3, 76,110, 4,169 ME | 480 data 165, 91,208, 3, 76,110, 8,169
AP | 490 data 1, 32,226,242, 169, 5, 32,6226 MO| 490 data 1, 32, 145,242,169, 5, 32,145
BA | 500 data 242, 169, 6, 32,226,242, 32,204 NP | 500 data 242, 169, 6, 32, 145,242, 32,204
KE | 510 data 255, 76, 255, 179, 134, 210, 134, 211 PG| 510 data 255, 76, 116, 164, 134, 184, 134, 185
HN| 520 data 32, 29, 187, 32, 226, 180,162, O NC| 520 data 32, 30,171, 32, 96,165,162, O
HC| 5630 data189, 0, 2,240, 3,232,208, 248 HC| 530 data 189, 0, 2,240, 3,232,208, 248
GC| 540 data 134, 209, 169, 0, 133,218, 169, 2 HE | 540 data 134, 183,169, 0, 133, 187,169, 2
HE | 550 data 133, 219, 169, 8, 133,212, 32, 99 LG | 550 data 133, 188, 169, 8, 133,186, 32, 74
PJ | 5660 data 245, 96, 74, 74, 74, 74,170,189 NJ | 560 data 243, 96, 74, 74, 74, 74,170,189
CF| 570data112, 5, 32,210,255, 96, 41, 15 OF | 570 data 112, 9, 32,210,255, 96, 41, 15
CH| 580 data 170, 189, 112, 5, 32, 210,255, 96 OH| 580 data 170, 189, 112, 9, 32,210, 255, 96
BL| 590 data 51, 41, 32, 83, 67, 82, 69, 69 BL| 590 data 51, 41, 32, 83, 67, 82, 69, 69
HK | 600 data 78, 32, 79, 82, 32, 52, 41, 32 HK| 600 data 78, 32, 79, 82, 32, 52, 41, 32
IM | 610 data 80, 82, 73, 78, 84, 69, 82, 32 IM | 610 data 80, 82, 73, 78, 84, 69, 82, 32
IL | 620 data 58, 0, 68, 82, 35, 58, 70, 73 IL | 620data 58, 0, 68, 82, 35, 58, 70, 73
FB | 630 data 76, 69, 78, 65, 77, 69, 32, 62 FB | 630 data 76, 69, 78, 65, 77, 69, 32, 62
CH| 640data 0, 48, 49, 50, 51, 52, 53, 54 CH| 640data 0, 48, 49, 50, 51, 52, 53, 54
JB | 650 data 55, 56, 57, 65, 66, 67, 68, €69 JB | 650 data 55, 56, 57, 65, 66, 67, 68, 69
| PP | 660 data 70 | PP | 660 data 70
The Transactor 73 Volume 5, Issue 06




. - PLEASE DEAR NOT TONIGHT,
PLERSE HELP I HAVE A FulL BUFFER...
T DUMP |

ACCIDENTLY

D,

/

i)l
155 B RE RS NN L LR

- e
. '."-l'.; : . ! : I'.. |
S e Rt e AL o
S e L [Tt 1
3 2 : [ I_'Jl
]
f (i
kY )

LAST r:Hnu! PRINT ! HOW PROGRAMMERS HOW COmMmPuTEARS
SEE COMPUTERS CEE PROGRAMMERS
The Transactor 74 Volume 5, Issue 06




E
i

FOR HIS NEW .
MIND EXPANDER,
ON A DISK, HAY

_-'ir.-r-
= b T

APTAIN SYNTAX 1S ON THE WAY 10
Ic DR.&OT &Y'.S HOUSE WH HE BELIEVE

THERR

¥

OPLE_INSIDE / f

i

YUIR TOO
LATE MON.
FLOTSKNS

o
H ¥
s
]
7
| -
r
[]

EITHER

|:ﬁ'

=, #}} gf

.-"'1_?

WE HAVE NARY A LEAD,

o [ —
Sl g )
. 3

o F

3 ¥, D
. = * “Em

ANE LAD. |\t SOMEONE USES
THE CHIP THE. WRONG WAY,
THEY CAN CONTROL A
PERSON'S MIND OR MAKE, §
WM AVECETABLE. #WE <
GOTTA FIND FLOTSKY, HiS

\SK AND WHQEVER TOOK
FRSTY -

e
T

il

It’'ll Backup a Disk in 6 Nanoseconds!

HMM...\WHERE
CAN | LOOK?.

My Time Warp program is aimost done.

Pt

P e e e . :
" = i e aganEnn e e b
; s e et e
: i e - ik :
3 " R 'uq"r e e ‘\', R et e,
' - RaR el AR i o a2 et e
S v, e o i e e
- . Wy . () e, T '|- ol o, '|":" ot
: v i i e
) ' B e -
; B b e e e e e
i = : o e e e e
Regafl's % e e
e
gt 1T 2 L el = ' it W
prhee et e e s e e
: : e
I-II = '|I_ e ::: Tur, . .. 1 i :
x u .~ A e
s o R :
ot o P Pl ne e For e
e s, ¢ ol 2= o T
W ey i St :
el
:
o S
L
:
W
L P ]
(St
R
II III
e

I

e W)

il

SN el
o DG

| just have to de-bug the re—entry routine.

The Transactor

75

Volume 5, Issue 06




News BRK

New 16-bit Commodores for 1985

Commodore plans to regain its position in the

business market with three new entries for
1985.

The much-rumored IBM compatible based
on the Canadian Hyperion is slated for intro-
duction in the spring of 1985.

The first half of 1985 should also see the
release of Commodore’'s multi-tasking
Z8000-based machine that was first seen in
April 1984 at the Hanover computer fair in
West Germany. This Machine will support

multiple users and run an operating system
based on UNIX Version 7.

Probably the most exciting of the new ma-
chines will come from Commodore’s acquisi-
tion of Amega Corp. of Santa Clara, Calif. The
Amiga-derived Commodore is expected to
be introduced at Chicago’s Consumer Elec-
tronics Show in June 1985. The machine will
have a 68000 processor, as well as dedicated
processors for animation, graphics, and
sound (including voice synthesis). Graphics
are a strong point, with super high resolution
AND 32 colours from a palette of 3,000.

There's also the C128, a souped up 64 with
128K RAM and 80 column monochrome or
colour display output. A portable machine
was also shown to compete with the other
LCD “lap-tops”. For a more detailed report of
the Consumer Electronics show in Las Vegas,
see the February TPUG magazine.

Note to Product Review Authors

The Transactor is getting away from product
reviews and prints product comparisons in-
stead. If you have a product review you'd like
to submit, contact TPUG magazine. Nick Sul-
livan, a regular contributor to The Transactor
(Author of the TransBASIC series) is now the
editor of TPUG and tells us he’'d be happy to
consider software or hardware reviews for
publication.

If you'd like to write a product comparison for
the Transactor, let us know the subject in
advance before submitting the article. An
example of a good product comparison would
be one comparing the popular sketching pro-
grams like Flexidraw, Koala Pad, Doodler,
Textsketch, CADpic, etc.

Over 41,000 Attend World of
Commodore Il Show in Toronto

The second World of Commodore show at
Toronto's International Centre attracted
41,516 people over its four day run. Commo-
dore had a large display at the show, but held
back on the introduction of their new 16-bit
machines, displaying mainly the +4 and 16.

The winner of the draw for the PET 2001 (a
collector’s item) at The Transactor booth was
Bill Taylor of Acton, Ontario.

Transactor Disk Offer Update
As of this issue there are 5 Transactor Disks:

Disk 1: All programs from Volume 4

Disk 2: Volume 5, Issues 01-03

Disk 3: Volume 5, Issue 04 (Business & Ed.)
Disk 4: Vol. 5, Issue 05 (Hardware/Periphs.)
Disk 5: Vol. 5, Issue 06 (Aids & Utilities)

Transactor disks are now available on a sub-
scription basis through the order form in the
centrespread of the magazine. Disks can be
purchased individually for $7.95 (Cdn.) each;
the extra two dollars that was to be charged
for the first disk has been dropped.

Perhaps a word of explanation is in order
here. The original idea was to charge $9.95
for the first disk you purchased, and we'd
make up a mailer for that disk (and each
subsequent one) which contained your
name, address, paid postage, and a two dollar
off coupon for future disks. As it turned out,
post office regulations nixed the mailer idea,
so we decided to just send disks out on an
individual basis for $7.95, and offer disk sub-
scriptions. The subscription is mainly as a
convenience, since our pricing philosophy
dictates a rock-bottom price for single disks,
and the discount for a subscription rather
than individual purchase isn't that great.

To anyone who already sent in $9.95 for their
first disk we’'ll credit the two dollars toward
future disks or subscriptions.

The Complete Commodore
Inner Space Anthology

We are now taking orders for the long
awaited second edition of the Special Refer-
ence Issue. As you can see, the title is some-
what different than its predecessor, but then
so is the inside. Of course most of the material
from the first edition is included, with as
much again added. See the back cover ad.

The price? Just $12.95! Originally the price
was projected at around $25 dollars. Two
reasons account for the difference. First, the
disk we intended as part of the package will
now be made available separately (details
next issue). Secondly, we have decided to
publish the book on our own. Previously we
had considered releasing the book to an out-
side publisher but by doing it ourselves the
price can brought down substantially.

The Complete Commodore Inner Space An-
thology is currently available by mail order
only through The Transactor. The easiest
way to order is with the postage paid reply
card at the center of the magazine. Mark the
card appropriately and don't forget your
postal/zip code. If you're paying by charge
card, please include the expiry date. If you're
sending a cheque, you can tape the postage
paid card to the outside of an envelope.
Please allow 4 weeks for delivery.

Autographed by Jim Butterfield

At this moment we have 50 autographed
copies of Jim Butterfield's book, “Machine

Language for the Commodore 64, and other
Commodore Computers”. 49 of them will be
available for $17.95 each (no taxes). The 50th

we'd like to keep for ourselves.

To get one, act fast. Remember, this notice is
printed 63,000 times so they won't last long.
You can even use the postage paid reply card
at the center of this issue - just be sure to
specify the book title on the card.

Product News:
IBM COMAL

IBM hasn't officially announced it yet, but the
word is that they will soon offer COMAL for
the PC, XT, AT, and PCjr machines. It will be
completely compatible with the COMAL 2.0
cartridge for the Commodore 64.

The Gold Disk

The gold disk is a monthly magazine for the
C64 in disk format which contains high qual-
ity software. Each issue has a feature program
(eg. December’s feature was an easy to use
Database), an arcade-style game, a home
finance program with accompanying article,
educational programs, and a crossword puz-
zle. There is also a regular graphics column, a
music column, and programming tips. An
assembler, word processor, information man-
agement system, and FORTH are planned as
the feature program for future issues.

All programs and articles on the disk are
accessed from a main menu, and the menu
can be easily re-entered without leaving the
gold disk environment.

The Gold disk costs $15.00 (Cdn.) for a single
issue, $70.00 for a 6 month subscription, or
$127.00 for 12 months (plus $1.00 shipping
and handling for each issue). Contact:

The Gold Disk

2179 Dunwin Drive, #6
Mississauga, Ont.
Canada L5L 1X3

Quick Data Drive For C64 and VIC-20

The Quick Data drive from Entrepo Inc. of
Sunnyvale, CA is a high-speed replacement
for the C2N datasette unit. [t works with tiny
tape cartridges called “microwafers” which
can store from 16K to 128K of data. An
operating system which comes with the drive
called QOS (Quick Operating System) allows
normal BASIC /0 commands (OPEN, SAVE,
LOAD, etc.). Files are stored sequentially on
the wafer, but the drive will search a given
filename, appearing like a 1541 disk drive to
the user. Average access time to locate a file
on a 65K microwafer is 25 seconds. Once
located, data communication rates are
claimed to be 15 times faster than the C2N
datasette (that's faster than a 1541 disk
drive!).

Price for the drive and software on microwa-
fer is $129.95. Microwafers cost approxi-
mately $5.00 depending on storage capacity.

The Transactor

76

Volume 5, Issue 06




Entrepo

1294 Lawrence Station Road
Sunnyvale, CA

USA 94089

Software Developers Newsletter

The Software Developers Association is a
non-profit association of computer software
developers, and others in related areas, who
have joined together to strengthen software
development in Canada.

The Software Developers Association News-
letter is a monthly publication produced and
distributed by the Software Developers Asso-
ciation for our members and friends of a
developing Canadian software industry. For
further information, please contact, Bob
Bruce, Chairman, Software Developers Asso-
ciation.

Computer Software And Human Develop-
ment Conference

The impact of computer software on the fu-
ture of business and education will be exam-
ined at an international conference
sponsored by the Ontario Software Devel-
opers Association in conjunction with the
Third Annual Software Panorama at the
Royal York Hotel in Toronto, May 22-24,
1985.

Senior business, government and academic
representatives from 160 countries are being
invited to attend the Computer Software and
Human Development Conference which will
examine the many dimensions of software
development and its impact on business, ed-
ucation, health and agriculture. The Software
Panorama will also provide an opportunity
for software developers to demonstrate and
market their products. The Canadian soft-
ware industry is estimated to consist of a
thousand firms with estimated sales at $1
billion. The market is expected to grow to $5
billion by the end of the decade.

The Ontario Software Developers have estab-
lished an advisory committee of senior indus-
try representatives to make
recommendations on various aspects of the
conference coordination. Focusing on the
School of the Future, Office of the Future,
Hospital of the Future and the Farm of the
Future, the exhibitors and conference are
expected to underline current and future ori-
ented developments in software. While the
conference is expected to centre on trends
and developments in the industry, it will also
examine emerging opportunities and the ad-
justments required in the quickly changing
industry. Please contact, Reuben Lando, Con-
ference Coordinator.

The Software Developers Association
185 Bloor St. East

Suite 500

Toronto, ON

416 922-1153

Commodore Now Provides American
Educational Software in Canada.

Commodore is now offering software across
Canada from American Educational Com-
puter, Inc., one of the leading educational
software firms in North America.

"AEC’s educational publishing experience
has led to the development of the most exten-
sive collection of classroom-related pro-
grams available, including phonics, word
skills, reading comprehension, vocabulary
skills and world geography,” said Richard
Mcintyre, Vice-President - Sales, Commo-
dore, Canada.

“Unlike many producers of ‘educational’ soft-
ware who have entered the market following
the softening of the game market, AEC was
founded by experienced educational pub-
lishers who saw a genuine need for educa-
tional software that directly related to the
classroom experience. All AEC software
products follow standard school curriculum
material rather than a game format and are
designed to help student improve classroom
performance,” he said.

Commodore is looking to increased growth
from this type of product, according to Mcln-
tyre. Recent research by Future Computing
Inc. shows that while personal computer soft-
ware sales will grow at an annual com-
pounded rate of 68 percent through 1987,
educational software will grow at a 71 percent
rate during the same period and that the
home educational software portion will be
about 70 percent.

All AEC software is compatible with the Com-
modore 64. Initial products include the
EASYREADER series and the MATCH-
MAKER series. The programs are teacher-
designed and are grade-level oriented to help
the child all the way through school. By
paralleling the classroom experience, the
software consistently teaches lessons tailored
to the child’s needs. All programs progress at
the user's own pace, are easy to use and
require no previous computer experience.

EASYREADER presents phonics and word
analysis skills with high resolution graphics
and full-colour animation and most impor-
tantly, correlates with standard school read-
Ing programs.

MATCHMAKER retains the format system of
the school version which, in the home, al-
lows parents to become more active in the
child’s learning process, through the interac-
tive format.

Donald R. Thompson, AEC Vice-President &
Director of Consumer Products Division,
said, “More important than fun being written
into the program is the fact that satisfaction
and reward come from success. Our line is
programmed so the child achieves a high
level of success. Too many other educational

programs are really just games that do not
relate enough to classroom work.”

“AEC programs do contain games, but only
as rewards for learning achievement,” said
Thompson. For example, once the student
completes the objective in MATCHMAKER'S
geography program, he or she can play an
exciting game, which helps to encourage and
motivate. The focus is strictly on learning.

“AEC software has an important advantage -
its approach has been student-tested under
actual classroom conditions, so we know it
keeps the child’s interest while it teaches,” he
said. For more information, please contact:

Richard Mcintyre

Commodore Business Machines, Ltd.
3370 Pharmacy Ave.

Agincourt, On

MIW 2K4 416 499-4292

LAMP

LAMP (Literature Analysis of Microcomputer
Publications) has made available for sale the
Annual Cumulative Edition for 1983, mark-
ing the first complete year of publication for
this international index. A bi-monthly jour-
nal, LAMP presently indexes 130 periodicals
which deal exclusively with the field of mi-
crocomputers. This important publication is
the most comprehensive, single source for
information on microcomputers as they re-
late to business, education, the arts, social
and physical sciences.

The annual cumulative edition is printed in
two volumes and encompasses thousands of
subject and author entries, thousands of re-
views of books and periodicals, hardware and
computer systems, educational courseware
and video games, and information on all
phases of microcomputers.

The 1983 year-end issue is available to non-
subscribers at $69.95. Or subscribe to LAMP
for 1984 at the regular annual rate of $89.95
and take advantage of the special offer of
$39.95 for the 1983 cumulative edition. For a
brochure describing LAMP and further infor-
mation on the hard-cover or microfiche edi-
tions call toll-free 800 526-9042 or write:

LAMP/Soft Images
Brochure Department
200 Route 17
Mahwah, N.J. 07430

Porthole

Porthole announces the modern computer
magazine published entirely on disk for the
Commodore 64 and VIC-20. The first issue is
scheduled for January 1985 (or maybe De-
cember 84) and will be issued six items a
year. Porthole will have all the features you
have come to expect from a complete com-

The Transactor

77

Volume 5, Issue 06




puter magazine. Feature Articles, Games, Re-
views, Education, Programming Tutorials,
Letters and, yes, even advertising and new
product announcements. But one thing you
will never have to do again is to key in a
program. Each issue will contain ready to run
programs selected for a wide range of user
interests. These will be programs that you
will want to back up on your own disks - and
Porthole will let you do it.

Porthole is not yet available at your local
news stand. All sales are by mail. The single
issue price is $10.00 postpaid. Send your
orders to:

Porthole
P.O. Box 135
Kerby, OR 97531

WANTED - Programmers, Authors, Contrib-
utors, and most of all, Readers!

SPECIAL OFFER - Send a formatted 1541
disk with return postage to Porthole. By swift
return mail Porthole will return the disk
loaded with information on how to contribute
to Porthole. But you already know! It's this
easy. Write a BASIC “program’ like this:

0 "my name is jane. porthole sounds
1 "terrific. this isn’t the best word

2 " processor but it works! do you

3 " have something better? return by
4 "disk to 555 pal road, lincoln, ne

Don't goof up. Send return postage or Port-
hole gets a free disk. Sorry, letters without a
disk must wait on the poop deck for the galley
to empty.

EXTRA SPECIAL OFFER - Send a disk and
$5.00 and ship out in steerage. Enjoy the
view everyone else will see thru the Porthole
window at half the price. This offer may not
be repeated.

Don't miss this adventure in computing. Let’s
do it right - throw away those pencils and
paper. Start your drives and enjoy the new
spirit of magnetic publishing! For more de-
tails, contact:

Raymond Quiring
Porthole Disk
P.O. Box 135
Kerby, OR 97531
502 592-4594

New Income Tax Program
For Commodore PLUS/4

Taxaid Software, Inc. has released a new
edition of the “TAXAID" income tax prepara-
tion program for the Commodore PLUS/4
computer. TAXAID programs have been
available for other Commodore computers
since 1981. The PLUS/4 edition was written
by the experienced tax accountants and is
designed for home use.

TAXAID is easy to use with a detailed manual
that leads the user step by step through the
data entry. The program is menu driven with
advanced editing features that allow the user
to make changes and revisions at any time
during the data entry process. Data files can
be saved and reloaded at any stage of the
program. Calculations are automatic and all
tax tables, including income averaging are
built in, TAXAID will prepare any IRS form
1040. The program features computer gener-
ated forms for Schedule A, B, C, G, W, and
Form 2441 as well as a complete listing of
pages 1 & 2 of the 1040 Form.

The results can be directed to the monitor or
the printer. Low cost updates for future tax
years are published every year.

TAXAID is available on disk or tape for the

Commodore PLUS/4 at a cost of $29.95. For
more information, contact:

Taxaid Software, Inc.

606 Second Ave. S.W.

Two Harbors, MN 55616

217 734-5012 218 834-3600

INFOQUICK Bulletin Board
for the Commodore 64

Expandability: Can run on a single disk drive
or as many as 4 dual drives. Up to 16 sub-
boards for messages (including 4 privileged
areas). Files library can be expanded to an
unlimited number of sub-directories
("downloading”). Up to 400 users, 800 mes-
sages.

Speed: 100% machine language. Entire pro-
gram and all menus are loaded once - no
time consuming “chaining”. Full type-ahead.
Menus cut off instantly when commands are
typed. Abbreviated menu option.

Flexibility: Runs on all Commodore and MSD
disk drives. Runs on all the most popular
modems. Can be run so users create their
own fully-validated accounts or with user-
created accounts requiring SYSOP validation
or with all new unvalidated users on a single
“generic” account. Can use standard ASCII or
Commodore ASCIl. Messages are automati-
cally reformatted for the terminal of the user
reading them. Changeable SYSOP name.
SYSOP-selectable time limits on inactivity
and on the total length of calls. SYSOP-
definable welcome and warning messages.
Uploads or downloads can be temporarily
disabled. Optional remote SYSOP usage -
can be easily enabled and disabled. 300/
1200 baud operation. 70-plus page detailed
manual. File transfers either as straight text
or using the industry-standard XMODEM
protocol with error checking. Read/scan
messages since last call, forwards, reverse, by
sender, by recipient; optional mark during
scan for later read. Find-and-replace text
editor for message entering SYSOP desig-
nated “bulletins” shown to each user or to a

subset of the users. Convenient reply-delete
option after reading each message. SYSOP
can change public messages to private, for-
ward a copy of a message (optionally editing
it first), re-assign a message to a different
sub-board. Real-time log of logins, logoffs,
and file transfers. Multi-line descriptions of
each file and sub-directory. “Privileged”
messages and files completely invisible. Op-
tional transcript to printer. Scan userlist by
users’ interests, location. SYSOP/user chat
initiated by either SYSOP or by user.

INFOQUICK - Your once and future BBS.
Suggested retail $139 (U.S.). Ask about SY-
SOP referral rebate. Dealer inquiries wel-
come.

For more INFO QUICK-ly call 617 547-0340
or contact these operational INFOQUICK bul-
letin boards:

617 823-6140 MASSPET Il
203 397-3381 MicroTechnic Solutions
203 481-9974 SAIL Software

The SMART 64 Terminal +4

The SMART 64 Terminal +4 is a greatly
enhanced version of this versatile terminal
communications package for the Commo-
dore 64 which is already in home education
and business environments. New features
include VT52/VT100 emulation when appro-
priately configured with 80 column hard-
ware, XMODEM file protocol for direct—disk
transfers of programs and text, HELP screens
for instant reference, 300/1200 baud full-
speed downloading, direct printing of the
28K memory buffer, and an expanded status
line. Convenience items such as software
alphabetic shift, linefeed toggle, word-wrap
control, time-of-day clock and alarm clock,
key-repeat toggle, screen print, single key-
stroke ID and password transmission, color
adjustment, and echo mode provide the user
with a comfortable operating environment. A
built-in disk command processor lets the
user manage disk files directly. The PetAscii/
ASCII translation tables are adjustable by the
user, and can be deactivated by toggle con-
trol. Four redefinable function keys are avail-
able for storing multi-line tet strings, up to 80
characters each. Text uploads directly from
disk are accommodated in either continuous
or prompted mode. Automatic answerback to
ENQ is provided, as well as a BREAK function
for communicating with mainframes. The
SMART 64 Terminal supports all direct-
connect modems and most RS232 modems,
including Hayes.

A separate version of the product supports
the COMvoice speech synthesizer to provide
the user with a TALKING terminal. The Smart
64 Talking Terminal offers all of the features
of the 40 column mode in the standard pack-
age, with the exception of word-wrap con-
trol, which is replaced with two new ones
more appropriate to an audio-based product:
toggle voicing and phrasing of words or let-

The Transactor

78

Volume 5, Issue 06




ters. The voicing toggle allows silent, high-
speed downloading of extensive tet for play-
back offline, or the real-time voicing of data
as it is received by the modem. The phrasing
control can be switched to letters for intelligi-
ble reception of unpronounceable letter
groupings such as securities stock-trading
symbols. Users can make back-up copies.
Suggested retail for both versions is $39.95
(U.S.). Availability information from:

Microtechnic Solutions Inc.
P.O. Box 2940

New Haven, CONN 06515
203 389-8383

The FONT FACTORY
VIC-1525/MPS-801
Printing Enhancement System

The FONT FACTORY will read any standard
Commodore 1541 ascii sequential file, auto-
matically format, and print out the document
in any font that is selected. With this ability,
the FONT FACTORY will read text files pro-
duced by many of the popular Commodore
64 word processors and produce a more pre-
sentable and interesting document. The user
has full control over all page formatting, such
as, page length, line width, left margin, top
margin, line spacing, headers, footers, page
numbering, justification, etc.

The FONT FACTORY includes an easy-to-
use Font Generator to create or edit your own
fonts. Fonts may be as large as 9x7 pixels,
and may be printed in normal or double
width formats.

The FONT FACTORY has the ability to mix
up to fifteen different fonts within a single
document. Thirteen embedded commands
are available to give the user the ability to
reformat different areas of text within the
document. Use your word processor in con-
junction with the FONT FACTORY to turn
your 64 into a complete typesetting system!

The FONT FACTORY is user friendly and
entirely menu driven. Eight preformatted
fonts are provided including one with True
Lower Case Descenders, when you purchase
the FONT FACTORY. Additional Font Disks
may be purchased separately.

Micro-W Dist. Inc.
1342B Route 23
Butler, NJ 07405
201 838-9027

CAM-64 (Call Accounting Manager)
Phone Call Processing Software

Input Systems, Inc., designers and publishers
of popular business software for Commodore
Microcomputers, announces the release of
their new software for monitoring multi-
station phone usage.

CAM-64 was designed for companies with
new telephone systems, or ETN systems. The
program organizes SMDR data output from
the phone system switching computer. CAM-
64 utilizes the famous cost efficient Commo-
dore 64 Computer, disk drive and printer.
The CAM-64 System is Menu driven from an
Auto Load Module, plugged into the cartridge
slot of the Commodore 64. It will function on
any phone system which utilizes Station Mes-
sage Detail Recording (SMDR), such as Mitel,
AT&T and others.

The system handles up to 2500 phone calls
per disk, using a single Commodore 1541
Disk Drive. It will sort calls into several cate-
gories and sub-categories, and will send for-
matted printouts to a computer monitor, TV,
or printer. Each format may be selected from
a Menu.

CAM-64 will sort outgoing call information
by:

(1) Stations/Extensions (handles up to 100
stations)

(2) Area Codes

(3) Common Carriers (up to 4, such as Micro-
tel, Sprint, etc.)

For further information, contact;:

Input Systems, Inc.

15600 Palmetto Lake Drive
Miami, FL 33157

305 253-8100

Expandable 300/1200 Baud Phone
Modem With Clock/Calendar

ProModem 1200 from Prometheus Products
is a Hayes compatible Bell 212A, 300 and
1200 baud phone modem with built-in
clock/calendar. The unique design provides
the ability to add an optional buffer memory
with up to 64K of storage.

Standard features include Auto-Answer and
Auto-Dial, Programmable Intelligent Dial-
ing, Tone and Pulse Dialing, Built-in Speaker
with Volume Control, separate phone and
data jacks to permit switching between voice
and data, and simple yet powerful diagnos-
tics. Suggested list price is $495 (U.S.).

The ProModem 1200 can be purchased with
the optional buffer installed or it can be
added later. The buffer card comes with 2K of
battery backed-up CMOS memory to protect
time, date, operating parameter, and other
data stored in memory from loss during
power down. The buffer card lists for $99
(U.S.). Additional memory, in increments of
16K is available up to a maximum of 64K.

Memory in ProModem 1200 is dynamically
allocated between “Directory” and “Buffer".
The user can store telephone numbers, ac-
cess codes, and log on messages in each
directory entry. Up to 12 reference characters
can be used to “call up” entries in the direc-

tory and initiate unattended dialing.

The buffer is used to store messages in the
modem for transmission at a preset time, per
the internal clock/calendar, to a specified
group of phone numbers from the directory.
In the auto-answer mode, incoming mes-
sages are automatically stored and the time
recorded. Operation of ProModem can be
unattended, with or without the host com-
puter being operational.

A plug-in twelve character alphanumeric dis-
play is available for $99 (U.S.) list price. It
shows operating status, diagnostic messages,
phone numbers, and time/date information.

Delivery of the ProModem 1200 is 2 weeks
from the factory or from stock via Prome-
theus' dealers. For additional information
contact:

Robert Christiansen
Prometheus Products, Inc.
45277 Fremont Blvd.
Fremont, CA 94538

415 490-2370

Printer Ribbons for
Commodore 1526/4023 And Others

Aspen Ribbons, Inc., of Lafayette, Colorado,
is pleased to announce the Aspen Ribbons
brand replacement for the Tally/
Mannesmann Spirit 80 (SP80) multistrike rib-
bon. One hundred percent compatible to the
ribbon from the original equipment manufac-
turer (OEM), its specifications are 1/2" x 100
ft., with multistrike film. Use this ribbon on
the following printers:

¢ Accord DC80

¢ Blue Chip Enterprises M120/10

e BMC International BX-80

¢ Cal-Abco Legend 80

e Commodore 1526

e Commodore 4023

® Formula SP80

e [TT Xtra

¢ Legend 800

e Lein Yig Computer Corp. YL-80FPT

¢ Mitsubishi Super VCP80

¢ Multi-Tech Compumate CP800 Type 1
e Okidata 1600 Printer

® Ortrona AT-80

¢ Suminon 840

e Tally/Mannesmann Spirit 80 (SP80)

e Tally Spirit MT80 Microprinter

* Yocobushi Computer Union CO FP-80

Prices for this ribbon range from $6.00 to
$3.34 (U.S.) depending on the quantity or-
dered. Color ribbons are not available at this
time. For more information, please contact:

Aspen Ribbons, Inc.

555 Aspen Ridge Drive
Lafayette, CO 80026

303 666-5750 or 800 525-9966

The Transactor

79

Volume 5, Issue 06




Thas

Volume 5 Editorial Schedule

Theme Copy Due Printed Release Date

Tha Tuh!-w: JnurM; Lr 'I:II-H'IH'I!-hl‘l Camputars

Graphics and Sound Feb 1 Mar 19 Aprill

P AYS The Transition to Machine Code @ Apr1 May21 Junel

Software Protection & Piracy Jun 1 Jul23 August ]

$ 40 Business and Education Aug 1 Sep 17 October 1

Hardware and Peripherals Oct 1 Nov 19 December 1

per page for articles Programming Aids & Utilities Decl Jan19 February 1/85

We're also looking for
professionally

Volume 6 Editorial Schedule

drawn cartoons! Communications & Networking Feb 1 Mar 21 April 1/85

Send all material to:

Languages

Apr 1l May 20 Junel

Implementing The Sciences Jun 1 Jul 18 August ]

The Editor
The Transactor

Hardware & Software Interfacing Augl Sep 21 October 1

500 Steeles Avenue Real Life Applications Oct 1 Nov 19 December 1

Milton, Ontario
LI9T 3P7

CHOOSE COMAL
* USERS]

Advertisers and Authors should have material submitted no
later than the ‘Copy Due’ date to be included

with the respective issue.

COMMODORE OWNERS

(1) DISK BASED COMAL Version 0.14

« COMAL STARTER KIT—Commodore 64™ System Disk, Tutorial
Disk (interactive book), Auto Run Demo Disk, Reference
Card and COMAL FROM A TO Z book.
$29.95 plus $2 handling

(2) PROFESSIONAL COMAL Version 2.0

« Full 64K Commodore 64 Cartridge
Twice as Powerful, Twice as Fast
$99.95 plus $2 handling (no manual or disks)

e Deluxe Cartridge Package includes:
COMAL HANDBOOK 2nd Edition, Graphics and Sound
Book, 2 Demo Disks and the cartridge (sells for over
$200 in Europe). This is what everyone is talking about.
$128.90 plus $3 handling (USA & Canada only)

CAPTAIN COMAL" Recommends:

The COMAL STARTER KIT is ideal for a home programmer. It
has sprite and graphics control (LOGO compatibie). A real
bargain—529.95 for 3 full disks and a user manual.

Sserious programmers want the Deluxe Cartridge Package.
For $128.90 they get the best language on any 8 bit
computer (the support materials are essential due to the
immense power of Professional COMAL).

ORDER NOW:

Call TOLL-FREE: 1-800-356-5324 ext 1307 VISA or MasterCard
ORDERS ONLY. Questions and information must call our
Info Line: 608-222-4432. All orders prepaid oniy—no COD.
send check or money order in US Dollars to:

COMAL USERS GROUP, US.A., LIMITED
5501 Groveland Ter, Madison, WI 53716

TRADEMARKS Commodore 64 of Commodore Electronics Ltd: Captain COMAL Of
COMAL Users Group, UsA, Ltd
1 estimated

Join the world’s largest, active Commodore

Owners Association.

Access to thousands of public domain programs
on tape and disk for your Commodore 64, VIC 20
and PET/CBM.

 Monthly Club Magazine
Annual Convention
Member Bulletin Board
Local Chapter Meetings

Send $1.00 for Program Information Catalogue.
(Free with membership).

Membership Canada — $20 Can.
Fees for U.S.A. — $20 U.S.
12 Months Overseas — $30 U.S.

T.P.U.G. Inc.

Department “M"”’
1912A Avenue Road, Suite 1
Toronto, Ontario, Canada M5M 4A1

* LET US KNOW WHICH MACHINE YOU USE °




PRI H O HER G LR
ﬂl..- .:m“.. - w__“_m H mtha .u! ﬂ.._.i R
el ._.._m - m"h : m

.... Ay I.Wl“!..uumlmﬂﬁt.l.m 1lr!”“l-1w

ST

.. J.Tﬂ AT
T ”u 5_.:...-..: ,ﬁ... _._

==

.l.l ]__.. -
a4 - ﬂ.u ._JHHHM_._.- ﬁm,._ﬂ oy T

-

- | i 1..3_ -
.ﬂ,.__..;rlji_._ .-.._...|-... - 1.....___.|.. .-..I.l.ji..ﬂ.l. .ﬂ-ll!l..l_l_:-_.n-h. T i — o + .I

/ll

- B - - =

Mﬂl .Il

T e — e —

il \m-

Tlme _ll

II... s
ns S = s

- &= Mg

._ »Il .._

..|-..I|..r1

H .
1.,,._,2 A T
m... Aol ,”_H_ “

S e ...f




The Complete Commodore
Inner Space Anthology
will look like this:

-------
L A

WATCH FOR IT!
January 1985




"
= e e e S e
T e i eI o el
. Bt wt .v&.ﬂ.....nﬁx: i S . e A e RO Y. R bt M e T
Lo, = e 2 : e gt s . 5 e e h" " I
Fo ; e R R i St it S LR e o e A
) ; - - : SR P > D e
3 . i XL . Sl ; el : : r
o e S e P k ) - S e = = 4 s o
T i et e et R Lk T i S ] T R e S S e R :
gl o e e e ...vu” M.“m,. u@...um..o.... B e 0 R e e o 2 ... e L e noge e o AT . : .W... i
; : - . N ; x . ;i L L ; . Lo R s b g o o e L =
E Al e o g .v“...fkm.a?.ﬁ.ﬁ.ﬂ.@#.%?{ﬁhf.&. B Can: R . o e e i i R =it Fi S e 5] ek
g o L i b - o - : . : ; .
i - b T SR S b s L i R A ...o“..w....” e i - e bt . T, ¢ S = : ¥
et e, T e - ﬂﬁ- PR :
R e o e e S :
= 4y . T o el e N LT ot 2 :
B T e n.ﬂ. .
- e e 1
= e o= e b i e E
L 2 T - e ...ny...o?..“ ! ey e )
i e =
e * e o .n.
e e - il i R o e = |
e R Lo i ..p#ﬁ.m.mmﬁﬁam.#
- rESEeR : S R =
3 . = e e R R o P
G E: e e LS R u. E
- S .v
e
. . -+
o
= o
s
e 7
- . s

;

e .

oL
e

f
:

|
£

s
-'\f--'\n....

et B

L

‘R:-R:-l-'\-'\--":?--ﬂ-'

by,
e
e
i

g

o

o
=

T
” e
B T H e ps

PR, | potmet
Phoo s e

oA

e

1 be caught
without

o e
fEl ....n..n.h.,,,.“,&,.:e.,.".n.m,......w
5 o e Sy S L

.m.p..n...w...“.&...@..v..“:
3 = e

eyt g R =

o il




g "“ o ..,....“:.“.w"..x S
..ﬁ.mw.. PSS .nwm.n..m.n.nw.

- B T

=l e 2
koA g
g

T

o P

Sl e D .....n..".mm”uv..w o =t B
e R slendmitulnds e e D

-, e e e SRR o e i i

St d o e L wn -

i S .w.n Ho
SR el oty o R
ﬂ.,....m?%f.a TI R

e s

s

T . e et e B - 5 e
oo e T L L o

et R 4 Cs !
PR BT : : -
e ¥ i TR B 3 ¥
Ao e EER S s R £ A
. B e L e e e P R e e e
i e R T wnindi o : - B i ci e R e b Bt ARSI ol
% P SR e A Rk : LSRR R A D e e “”.w“.”....w.m. “.... R o R !
O e 3 RN o g IR A 3 B n !
- e e - - .w..
I : B e R T e }
¥ PR R T LT o SR !
o 1 T e e

;

LR o = = & = =

R E R et e e i e i e e e

o e T ol e e e 5t - :
g e oo L e R

know when you’'l

R




Please send me 6 consecutive Transachors starting with the next issue!

!m CUS.A. $15.us OForeign $21.Us DI Air Mail (Overseas only) $40.us
- N - s 5 postage per issue
A 1 Renewal (please include your Subscription Number from mailing label)
[J New Subscription New address? [

Name & Address

(please include your postal/zip code):

[] Please send me The Complete Commodore Inner Space Anthology at $12.95*

The Transactor Disk (1541/4040/MSD format)
Please send 6 consecutive disks to correspond
with my magazine subscription: $45.00.*

Please send the following disks at $§7.95* each.

[] Disk 1: All programs from Volume 4

[ ] Disk 2: Programs from Volume 5, Issue 01 to 03

[] Disk 3: Vol. 5, Issue 04 (Business & Education)

Disk 4: Vol. 5, Issue 05 (Hardware & Peripherals)

Disk 5: Current Issue, Vol. 5, Issue 06 (Aids & Utilities)

e

Transactor Back Issues: $4.50* each.

[] Volume 4, Issue 01 ] Vol. 4, Issue 02

[C] Volume 4, Issue 03

[ Volume 5, Issue 01 (Sound and Graphics)

[] Volume 5, Issue 02 (Transition to Machine Language)
[] Volume 5, Issue 03 (Protection & Piracy)

[ Volume 5, Issue 04 (Business & Education)

[ Volume 5, Issue 05 (Hardware & Peripherals)

[ Volume 5, Issue 06 (Aids & Utilities)

* Prices are in U.S. Dollars

NOTE: Prepayment required. Purchase orders will be accepted ONLY if accompanied by payment.

[0 Cheque/MO. enclosed Cheque*® Dated / / Amount

O Visa [ MasterCard Acct. # Expires /

| use the following Commodore equipment:

QOVIC 20 acC 64 [04016/32 08032/96 OSuperPET 08296 016/ +4
CDatasette Disk Unit: [01540/41 04040 8050 18250 0J9060/90

| use my equipment in the following environment: _ _

OHobby OBusiness OTechnical OPublic School OHigh School OCollege/Univ. COCBM Dealer

O Please send dealer information for The Transactor.

L______________________

Transactor

CdCanada $15.

02/85

Please send me 6 consecutive Transachors starting with the next issue!
CForeign $21.us.

CJ Air Mail {Dverseas only) $40.us.

includes $4.15 postage per issue

Canada

New Suhscriptinn

Renewal (please include your Subscription Number from mailing label)

New address? [

Name & Address

(please include your postal/zip code):

[] Please send me The Complete Commodore Inner Space Anthology at $12.95*

The Transactor Disk (1541/4040/MSD format)
[[] Please send 6 consecutive disks to correspond
with my magazine subscription: $45.00.*

Please send the following disks at $7.95* each.

L] Disk 1: All programs from Volume 4

Disk 2: Programs from Volume 5, Issue 01 to 03

Disk 3: Vol. 5, Issue 04 (Business & Education)

| Disk 4: Vol. 5, Issue 05 (Hardware & Peripherals)

Disk 5: Current Issue, Vol. 5, Issue 06 (Aids & Utilities)

Transactor Back Issues: $4.50* each

Volume 4, Issue 01 ] Vol. 4, Issue 02

] Volume 4, Issue 03

[ ] Volume 5, Issue 01 (Sound and Graphics)

] Volume 5, Issue 02 (Transition to Machine Language)
[ ] Volume 5, Issue 03 (Protection & Piracy)

[] Volume 5, Issue 04 (Business & Education)

[ ] Volume 5, Issue 05 (Hardware & Peripherals)

[] Volume 5, Issue 06 (Aids & Utilities)

* Ontario residents please add 7% provincial sales tax.

NOTE: Prepayment required. Purchase orders will be accepted ONLY if accompanied by payment.

[0 Cheque/MO. enclosed Cheque* Dated / / Amount

O Visa 0O MasterCard Acct, # Expires /

| use the following Commodore equipment:

OVIC 20 OC 64 04016/32 [08032/96 OSuperPET 08296 016/ +4
ODatasette Disk Unit: 01540/41 04040 8050 08250 9060/90

| use my equipment in the following environment: _

COHobby OBusiness OTechnical OPublic School COHigh School OCollege/Univ. OCBM Dealer

[0 Please send dealer information for The Transactor.

02/85



NO POSTAGE ,
NECESSARY 2)

IF MAILED |
IN THE |
| UNITED STATES
PRI AAFS AR Y
Bt
O O T 9
T NS L S O e
AR RS R O
| R R T
SR TR AN
BUSINESS REPLY MAIL —
FIRST CLASS PERMIT NO. 390 BUFFALO, NY
POSTAGE WILL BE PAID BY ADDRESSEE B
R ]
SR
R A R R e
Transactor —

277 Linwood Avenue
Buffalo, NY, 14209-9990

. e " — —— e PP Py S A T T A S S, S, A S e el il Sy i P P FR P S SN W T S W S S MS— S b e W Ry P E——

Business Reply Mail
No Postage Stamp Necessary
if mailed in Canada

Postage will be paid by:

Transactor

500 Steeles Avenue
Milton, Ontario, Canada
LT 929




