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FOREWORD

So. you've had your C16 for a while and you've been using BASIC to
write programs to do simple tasks. You've slowly been exploring and
experimenting with your new computer.

Maybe you've used your computer to run some professionally written
software: word processing, accounting systems, educational software
or games.

You may have wondered what it is that makes these programs so
different to the ones you have been writing in BASIC. These professional
programs seem to be able to do many tasks at the same time, including
functions which you may have not realised that your computer can do.

Apart from the size of the programs, and the amount of time spent in
writing them, the one major difference between your programs and most
of the programs that you will buy in a store, is that most professional
programs are written wholly or partly in machine language.

Machine language is a must for the really serious programmer. Most
games, useful utilities and interface programs are written in machine
language.

This book attempts to give you an introduction to the world of machine
language, the other side of your Commodore 16.

You will be led through the microprocessor's instruction set slowly at
first, practising each instruction learned using the monitor/program.

As we work through the instruction set you will meet new concepts
and features of your computer, some of which you may not have known it
possessed.

You are encouraged throughout the book to check that the
computer’s output is what you would logically expect it to be. Keep a
pen and paper close at hand to copy on paper what the microprocessor
is doing to get its answers and to see if your answers agree.

Appendices with explanations are supplied at the back of the book
and you will often be referred to these in the text of the book. The rest are
provided to give you some information to continue on after you have
finished working your way through this book. A list of commonly used
terms is also provided if you become confused by the terms used in the
book.






Chapter 1 .
Introduction to Machine Language

One advantage of machine language (M.L.) is that it allows the
programmer to perform several functions to which BASIC is not suited.
The most remarkable advantage of machine language, however, is its
speed. On the C16 you can carry out approximately 100,000 M.L.
nstructions per second. BASIC commands are several hundred times
slower.

This is due to the fact that BASIC is written in machine language and
one single BASIC command may be a machine language program of
nundreds of instructions. This is reflected in the capabilities of each of
the languages.

Machine language instructions, as you will see as you work your way
through this book, are extremely limited in what they can do. They
perform only minute tasks and it takes many of them to achieve any
useful’ function. They perform tasks related to the actual machinery of
the computer. They tell the computer to remember some numbers and
forget others, to see if a key on the keyboard is pressed, to read and
write data to cassette tape, and to print a character on the screen.

Machine language programs can be thought of as subroutines — like
a subroutine in BASIC — a program within another program that can be
used anywhere in the program and returns to where it was called from
when it is finished. You use the commands GOSUB and RETURN to
execute and then return from a subroutine.

10 GOSUB 1000

10000 RETURN



This wouldn't be a very useful subroutine because it doesn't do anything
but it does show how a subroutine works.

Using a machine language program

To call a machine language subroutine from a BASIC program you use
the command “Sys address”. Just as with the GOSUB command you
must tell the computer where your subroutine starts. “GOSUB 1000"
calls the subroutine at line number 100Q. Similarly “Sys 1000" calls the
machine language subroutine at memory address 1000.

NOTE here that memory address 1000 is very different to line number
1000. A memory address is not a program line number, it is the
‘address’ of an actual piece of memory in the computer.

Memory addressing

You have heard that the C16 has 16K of memory. 16K represents the
number of individual pieces of memory in the computer. Each piece of
memory can be thought of as a box which can contain one character,
one piece of information.

With over 16,000 separate boxes the computer must have a filing
system to keep track of them, so that it can find each separate piece of
information when it needs it. The filing system it uses gives each box an
‘address’, which is like the address of your house. You use addresses to
find the one particular house you are looking for anywhere within a busy
city. You use this address to visit a house, to send it mail or to pick up a
parcel from it. The computer, like us, sends information and moves from
one place (subroutine) to another using its system of addresses.

The computer's system of addressing is simpler than ours — for it
anyway — as it starts at one end of memory and calls it address zero. It
then counts through the memory ‘boxes’, giving each of them a number
as it goes — from zero at one end to 65535 right at the other end of the
memory. For us this would be very difficult to remember but for the
computer it is the logical way to do things. These numbered boxes can
be thought of as post office boxes. If you put something in the box at
address number one, it will stay there until you put something else in
there in its place.

Each box can hold only one thing at a time. When you put something
else in a box, what was originally there will be lost forever.

The command “Sys 1000" tells BASIC to execute a machine
language subroutine whose first instruction is stored in the box at
address 1000.

Using memory directly from BASIC

There are two other basic commands you will find extremely useful in
this work.



They enable us to put things in and collect things from the boxes in
memory. These commands are “"PEEK" and “POKE". Print PEEK (5000)
Dicks up the contents of the box at memory address 500 and prints it.
This can be used like any other function within a BASIC program, e.g.
Let A = PEEK (387) or LET C = 7*PEEK (1078) + 14.

POKE 1100,27 puts the number after the comma, in this case 27, into
the box at memory address 1100, e.g. POKE 2179,B or POKE C,X. Try
this:

PRINT PEEK (5000)
POKE 5000, 209
PRINT PEEK (5000)

We will be using these BASIC commands a lot while experimenting with
machine language instructions so that we can find out the results of the
programs we write and use. BASIC will be a tool by which we will write,
run, and observe our machine language programs.

Machine language as a subroutine

You have read our machine language programs will be used like a
subroutine in BASIC. In place of the “GOSUB" we use the “SYS”
command.

In BASIC, as you know, a subroutine must end with the command
RETURN.

GOSUB 1000

1000 ...

1020 RETURN

So too our machine language routines must end with a command to
RETURN to the main program but it will not be a BASIC command, it will
be a machine language instruction.

The machine language instruction for RETURN is ---- 96 ----. That's it,
just 96. 96 is what the microprocessor understands as a command to
RETURN from a subroutine. It would of course be impossible for us to
remember that 96 is RETURN as well as a list of hundreds of other
instructions, so we have names for each instruction. These names are
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meaningless to the computer but, hopefully, make some sense tous, the
programmers. These names are short, simple and to the point and are
called Mnemonics.

The mnemonic for 96 is RTS. RTS stands for RETURN from
Subroutine. Where necessary throughout we will provide both the
machine code numbers and the mnemonics of an instruction, as this
makes it readable to you while at the same time providing the
information the computer needs.

To demonstrate how this works we will create a very short machine
language program. Type in the following BASIC line:

POKE 8192,96

This puts 96 (the value of the RTS instruction) into the box at memory
address at location 8192.

Congratulations, you have just created your first machine language
program. It doesn’t do much; it is just like the empty BASIC subroutine

GOSUB 400
400 RETURN

Sitting in the box at memory address 8192 is the instruction 96 (RTS).
We will now run it just to check that it works using the command “Sys".
Type in the following BASIC line:

SYS 8192

The computer should respond with READY. It has just executed your
program.

Chapter 1 SUMMARY

1. Assembly code is fast. It allows access to computer inbuilt hardware
functions that are not convenient to use from BASIC.

2. Commands have very minor functions which they can perform.
3. Memory is "addressed” using numbers from @ to 65535.

4. A memory address can be thought of as a post office box, which can
only hold one piece of information at a time.

5. PEEK is used to examine the contents of a memory location from
BASIC.

6. POKE is used to put something into a memory location from BASIC.
7. Sysis used to.run a machine language program from BASIC.

8. The value 96 (RTS) must be placed at the end of every machine
language program to tell the computer to “RETURN from
subroutine”.




Chapter 2

Basics of Machine Language -
Programming

Using memory from machine language

So far we have discussed MEMORY, discussed how you can look at
things in memory from BASIC, and how to put things in memory from
BASIC.

This of course has to be done within our machine language programs
as well. We need to be able to pick up some information from one of the
boxes in memory, perform operations on it and then return it to the same,
or to a different, box in memory. To do this the microprocessor has
devices called registers. These can be thought of as hands which the
microprocessor uses to get things done.

The registers

There are three of these hands (registers) called A, X and Y, each of
which is suited to a particular range of tasks in the same way that a right
handed person uses his right hand to play tennis, his left hand to throw
the ball in the air to serve, and when needed both hands, e.g. to tie his
shoes.

These hands (registers) can pick up information from the memory
boxes. Like memory they can only hold one piece of information at a
time, but they are not themselves a part of the memory as they have no
address. They are an actual part of the microprocessor and there are
special machine language instructions which deal with each of them
separately.

The accumulator
The first register we will talk about is the ‘A’ register (or Accumulator). As
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you will see in the following chapters, the accumulator’s functions are
the most general of the computer’s hands. It is also the register which
handles most of the microprocessor’s mathematical functions.

In most cases the microprocessor must be holding some information
in one of its hands (registers) before it can do anything with it. To get the
microprocessor to pick up something from one of the boxes in memory,
using the accumulator, you use the instruction “LDA”. This mnemonic
stands for load accumulator. This loads the contents of one of the boxes
in memory into the microprocessor’s accumulator hand, e.g.

LDA 253

This command takes the contents of the box at memory address 253
and puts it in the microprocessor’s A hand (accumulator). The machine
code value of this command is 165 253.

NOTE here that the machine code is in two parts. Unlike the command
RTS which is in one part, —96—, the LDA 253 has one part for the
command LDA,—165—, and one part for the address of the box in
memory which contains the information being picked up, —253~—.
These two parts of the instruction are put in separate memory boxes so
the boxes containing the program|LDA 38
would look like: RTS

38

Addressing modes

Most machine language instructions have several different forms or
modes, which allow the programmer flexibility in choosing how and
where he will put his datain memory for his program to operate on. There
are eight different forms for LDA alone, called Addressing Modes.

In various different ways, these addressing modes alter the way in
which the address of the box in memory to be used is specified within
the instruction.

For example, assume you had an instruction to take a letter out of a
certain post office box. Your instructions could tell you to do this in
several different ways:

1. You could be told to look for box number 17.

2. You could be told to look for the box third from the right on the second
bottom row.

3. You could be told to look for the box owned by Mr. Smith.

4. You could be told to look for the box whose address was contained in
a different box.

5. You could simply be handed the letter.



You will find out more about addressing modes later in the book, but
for now you will be introduced to three of the eight different forms of the
LDA command.

-

Mode 1 — 165 253 LDA 253

This is a short form of the LDA. For reasons which will be explained later,
it can only access memory over a small range of possible addresses.
This short formis called zero page addressing.

Mode2 — 173554 LDA 1979

This is alonger form of the LDA command; it can access a box anywhere
in memory. NOTE here that the machine code is in three parts. The first
part — 173 — is the command for LDA in this three part form. The — 55 —
andthe — 4 — represent the address of the box 1079 which contains the
data to be put in the A hand. The reasons for this apparently strange
number which makes 1079 into 55,4 will become clear in the following
chapter. This mode is called absolute addressing.

Mode 3 — 169 71 LDA # 71

This command is different from the previous two. Instead of looking for
the information to be put in the accumulator in one of the boxes in
memory, the information you want is given to you as part of the
instruction. In this case the number 71 will be put in the accumulator. It
has nothing at all to do with the box at address number 71. This is like
example number on page 8. Note here that this different type of
addressing known as ‘immediate’ addressing is shown in the mnemonic
by a '#' symbol before the number.

We now know how to get the microprocessor to pick something up
from memory, but before we can do anything useful we have to know
how to get the microprocessor to do something with it. To get the
microprocessor to place the contents of its A hand (accumulator) in
memory, we use the instruction STA which stands for Store
Accumulator. This puts the contents of the accumulator in a specified
box in memory.

This instruction too has several addressing modes (seven in fact) but
only two of them will be discussed here.

Mode 1 — 133 41 STA 41

This instruction puts the contents of the accumulator in the box at
address 41. As in the LDA, the similar instruction in two parts (zero page
mode) canonly reach a limited number of addresses in memory boxes.
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Mode2 — 14157 ¢3 STA 825

This is like Mode 1 except that it can put the contents of the accumulator
in a box anywhere in memory (absolute addressing). The — 141 —
specifies the instruction and the — 57 — and the — 3 — contain the
address of box 825 (this is explained in Chapter 3).

QUESTION: Why is there no ‘STA” immediate mode (see LDA # 71)?
ANSWER: The ‘immediate’ mode in ‘LDA # 71’ puts the number in the
instruction —71— into the accumulator, somewhat like being handed a
letter, not just a post office box number of where to find the letter. STA
immediate mode would attempt to put the contents of the accumulator in
the STA instruction itself. This is like being told to put a letter not into a
post office box but into the instructions you have been given. Obviously
this has no practical meaning.

Simple program input routine

We will now write a few machine language programs to examine the
instructions we have learned so far. To make it easier, enter the following
basic program:

5] PRINT CHR$ (147),"....."
190  REM THIS PROGRAM WILL MAKE IT EASIER TO ENTER

MACHINE CODE PROGRAMS
20 READA

30 IFA=—1THENGOTO 70
4) POKES8192 + X, A

50 X=X+1

60 GOTO 20

70 PRINT “BEFORE . . . —LOCATION 3072 "; PEEK {3072)
8p SYS8192

90 PRINT “AFTER . . . —LOCATION 3072 ": PEEK (3072)
100 END

1000 DATA 169, 1: REM LDA#1

1010 DATA141,0,12: REM STA 3072
1020 DATA 96 : REM RTS

9999 DATA — 1

LINES 1000-9999 contain our machine language program.

LINES 20-60 puts our program from data statements into memory
boxes starting from 8192 so it can be run.

LINES 70-90 print “BEFORE" and "AFTER" tests on the memory
we are getting our machine language program to
change.

When the basic program is finished, our machine language program
will be contained in memory boxes as follows:

10



Address Data

8192 169

8193 1 )
8194 141

8195 )

8196 12

8197 96

For the programmer’s benefit this is written out in mnemonic form as
follows:

8192 LDA #1
8194 STA 3072
8197 RTS

Assembly language

A program written out in mnemonic form is called an ‘assembly languge’
program, because to transform this list of letters which can be
understood by the programmer into a list of letters which can be
understood by the microprocessor, you use a program called an

‘assembler’. Throughout the book we will give you programs in both
formats: .

address | code | mnemonics
8192 169 1 LDA#1
8194 |141 @ 12| STA3p72
8197 96 RTS

Our basic program, as well as placing our machine code in memory,
runs our program (see line 80).

You will see by our before and after analysis of memory address 3072
that it has been changed by our program as we intended. The original
value of location 3072 could have been anything. The number you see
may change each time you run the program. It is impossible to know
what will be in memory before you put something in there yourself, just
as you can't tell what might be left over in a post office box you haven’t
looked into before. The value in memory address 3072 after the program
has been run is :1. This shows that our program did what was expected
— it loaded the number 1 into the accumulator and then stored it into
memory at 3072.

Screen memory

There is one result from this program which you may not have expected.
Look at the top left hand corner of the screen. You will see it contains an
‘A’. Line 5 of the program clears the screen, and nowhere in the basic
program was the ‘A’ printed on the screen, therefore it must have been
put there by the machine language program. We know the machine
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language program puts the value 1 into location 3¢72. Could this print
an ‘A’ on the screen? Try it from BASIC and see what happens. Press the
CLR to clear the screen. Type:

POKE 3072 1

You will see that the ‘A" has reappeared on the top left corner of the
screen. This has happened because memory at 3072 has a dual
purpose. It is used to display things on the screen, as well as carrying
out the remembering functions at normal memory. The post office box
description is still valid, but now the boxes seem to have glass fronts so
that you can see on your screen what the boxes have inside them. If you
look at the table of screen display codes in appendix 14, you will see that
for the value 1 that we placed in location 3072, the character that should
be displayed is an ‘A’. (SET 1 is used by default. To change the
character set being used, press the commodore key and the shift key at
the same time.)

Let’s try to display some of the other characters in the table on the
screen. Let's try to printan ‘X' on the screen. First we need to look up the
table of screen display codes to find the value corresponding to the
letter ‘'X'. You will find that this value is 24. To put this in memory at
address 1024 we will use the program we wrote earlier:

LDA # 1

STA 3072

RTS
But this time we will change the LDA # 1 to a LDA # 24. Using the same
BASIC program to put this into memory, we must first change line 1000
which holds the data for the LDA command. This must now read:

1000 DATA 169,24 ‘REM LDA # 24

Our machine language program will now (when the basic progam is
run) read:

8192 169 24 LDA # 24
8194 141 ? 12 STA3072
8197 96 ? RTS

When this is run you will now see an ‘X' appear in the top left hand corner
of your screen.

At this stage you might ask, how do | print something somewhere else
on the screen? The answer is simple. ‘Screen Memory' (these
'glassfronted’ boxes) exists in memory from 3072 all the way through to
4071. Itis set up in 25 rows of 49 columns as you see on your screen.
Memory at 3072 appears on the top left corner, 3073 appears next to
that to the right, and 3074 next to that. Similarly 3072 + 40 (3112)
appears immediately under 1024 on the left edge at the second top row
and 3112 + 4 (3152) under that, and so on.

Using the same basic routine to enter our program, we will now try to
print on the row second from the top of the screen. The address of this
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place on the screen is given by 3072 + 40 (screen base + 1 row) =
3112.
Therefore we want our program to be:

LDA # 24 Character ‘X’
STA 3112 First column Second row
RTS

To do this we change the data for our program on line 1010 to read:
1010 DATA 141, 40,12 :REM STA 3112

The machine language program will now print an ‘X’ on the second line
from the top of the screen.

Printing a message

We will now use our BASIC program to write a bigger program which will
write a message on the screen. Type the following lines:

1000 DATA 169,8
1010 DATA 141,02
1020 DATA 169,5
1030 DATA 1411.2
1040 DATA 169,12
1050 DATA 141272
1060 DATA 141,32
1070 DATA 169,15
1080 DATA 141,42
1090 DATA 96

Now run the program. You will see that it has printed “HELLO” at the top
of the screen. The machine language program we wrote to do this was:

Address MACHINE CODE ASSEMBLY CODE

49152 169 8 LDA #8 SCREEN DISPLAY
CODE FOR 'H'

49154 141 @ 4 STA3072

49157 169 5 LDA #5 SCREEN DISPLAY
CODE FOR'E'

49159 141 1 4 STA3073

49162 169 12 LDA # 12 SCREEN DISPLAY
CODEFOR 'L’

49164 141 2 4 STA3074

49167 141 3 4 STA3075

49170 169 15 LDA #15 SCREEN DISPLAY

49172 141 4 4 STA3076 GOCEFOH O

49175 96 RTS
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Check the values used with those given in the table of screen display
codes.

It is interesting to note the way in which the two ‘L’'s were printed.
There was no need to put the value 12 back into the accumulator after it
had been stored in memory once. When you take something from
memory, or when you put something from one of the registers (hands)
into memory, a copy is taken and the original remains where it started.

We can write the same programs we have just written using different
addressing modes. It is useful to be able to write the same program in
different ways for reasons of program efficiency. Sometimes you want a
program to be as fast as possible, sometimes as short as possible, and
at other times you will want it to be understandable and easily
debugged.

We will change the program this time to give us greater flexibility in
what we print. Type in the following lines:

15 INPUT “LETTER VALUE"; B: POKE 3, B

1000 DATA 165, 252 :REM LDA 3
1090 DATA 169, 23 :REM LDA # 23
1100 DATA 141,512 :REM STA 3077
1110 DATA 96 :REM RTS

Our machine language program will now look like this:
Address MACHINE CODE ASSEMBLY CODE

49152 165 252 LDA3
49154 141 0 4 STA3072
49157 169 5 LDA #5
49159 141 1 4 STA3073
49162 169 12 LDA # 12
49164 141 2 4 STA3074
49167 141 3 4 STA3075
49170 169 15 LDA # 15
49172 141 4 4 STA1028
49175 169 23 STA 3076
49177 141 5 4 LDA # 23
49180 96 STA 3077

NOTE that this finds the value at its first letter from the box at memory
address 3 using zero page addressing instead of immediate
addressing. Line 15 of our basic program sets this box in memory to be
any number we choose. Run this program several times choosing the
values 25, 2 and 13.

We have seen in this chapter how memory can have more than one
function by the example of the memory between 3072 and 4071, which
doubles as screen memory. Similarly other parts of memory can have
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special functions. Different areas of memory are used to control screen
colours, graphics, sprites, sound, the keyboard, games controllers
(Joystick) and many other I/O (input/output) functions. These areas will
be referred to throughout the book on a purely introductory level. We
encourage you to find more detailed descriptions from more advanced
texts, e.g. '‘Commodore 16 Exposed’, C. Duffy and R. Woolcock,
published by Melbourne House.

Chapter 2 SUMMARY

1.

The microprocessor uses registers (like hands) to move things about
and to work on memory.

It has three general purpose hands (A(accumulator), X and Y).

We use the LDA command to get the microprocessor to pick
something up in the accumulator (A hand).

We use the STA command to get the microprocessor to put the
contents of the accumulator into memory.

These commands and many others have several different

addressing modes which allow us flexibility in the way we store and

use our data:

e immediate addressing holds the data within the instruction,

® absolute addressing uses data stored anywhere in memory,

® zero page addressing uses data stored within a limited area of
memory.

A program written out in mnemonic form is called an assembly
code program.

Memory is used to display information on the screen.

. Information is displayed according to a screen display code which

gives a numeric value to any printable character.

Memory is used to control other I/O (input/output) functions of the
computer.
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Chapter 3 :
Introduction to Hexadecimal

Uses of hexadecimal

So far in this book we have talked about memory in several different
ways, but we have not been specific about what it can and cannot hold.
We have used memory to hold numbers which represented characters,
numeric values, machine code instructions and memory addresses. We
have merely had to put a number we want in memory without thinking
how the computer actually stores it, in all but one case. It is the absolute
addressing mode which has shown us that the computer's numbering
system is not as simple as we might have at first thought, e.g. 141512is
the machine code for STA 3077. The 141 represents the STA, leaving the
numbers 5 and 12 signifying the address 3077. There is obviously
something going on here which we have not accounted for.

We have previously compared the microprocessor’s registers and
memory to hands. How big a number can you hold in your hand? Well
that depends on what we mean by hold. You can use your fingers to
count to five, so you can use one hand to hold a number from zero to five.
Does that mean the biggest number you can hold is five? You may be
surprised to know that the answer is NO.

Counting from @ to 5 on your fingers like this
0 | %3 L 5

is very wasteful of the ‘resources’ of your hand, just as counting like that
on a computer would be wasteful of its resources.

Binary

A computer's ‘fingers’ can either be up or down (on or off) but, as with
your fingers, it can tell which of its ‘fingers’ is on and which is off. In other

17



words, the value represented depends not only on the number of fingers
used but on the position of those fingers. Try this yourself. Give each
finger one of the following values (write it on in pen if you like).

yb 2

K,

Now try to count by adding the numbers represented by each finger in
the up (on) position:

FAIATAYRRYARY.

24125 n y +) =5

Try to represent the following numbers on your fingers: 7, 16, 10, 21,
29.

Q. What is the biggest number you can represent on your fingers?

A 14+2+4+8+16 = 31
As you can see 31 is quite a significant improvement on our original
effort of 5. The computer's ‘hands’ are different from ours in several
ways. Its fingers are electronic signals which can either be on or off, as
opposed to our fingers being up or down. For the programmer’s benefit
the condition on is given the value 1 and the condition off is given the
value Q. The other major difference is that the computer has eight
fingers’ on each ‘hand’. This may sound silly, but there is no reason forit
not to be that way. As it turns out it is a fairly easy setup to handle. The
computer's eight fingered hand is called a ‘byte’ of memory. As with our
own fingers, we give each of the computer’s ‘fingers’ one of the following
values: 1,2, 4, 8,16, 32,64, 128.

Again we count by adding together the values of all those fingers in
the ‘on’ position.

18



Eight fingered Computer’s ‘hand’ Number
hand — byte

w o[t fijololo: 32416+1 = 49
% 1[1lofojo[1]o]o 128+64+4 — 196
W ololofi [ofolo]s o+l = 17

Q. What is the biggest number that can be represented by the
computer’s ‘eight fingered hand'?

A 128+64+32+16+8+4+2+1 = 255

Without realising it, what we have done in this chapter is introduce the
binary numbering system (base two). All computers work in base 2
representing electrical on’s and off's by an endless stream of 1's and
@'s. This of course would make the programmer’s task of understanding
what is going on inside the computer even more confusing than it
already is, e.g.,

Assembly Code MACHINE CODE BINARY

LDA #8 169 8 10101001 00001000
STA 3077 149 5 12 10010101 00OOD101 0OOD1100
RTS 96 01100000

Why hexadecimal?

This of course would be impossible for a programmer to remember, and
difficultto type correctly. We could of course just use decimal as listed in
the machine code column. As it turns out, this is not the most convenient
form to use. What we do use is hexadecimal or base sixteen. This may
sound strange but it becomes very easy to use because it relates
closely to the actual binary representation stored by the computer.

To convert between binary and hexadecimal is easy. Each
hexadecimal digit can store a number between @ and 15 just as each
decimal digit must be between @ and 9. Therefore one hexadecimal digit
represents one half of a byte (eight fingered hand).

Binary Hexadecimal
LITTTTTT) = O ]
— PN X Y/
®—-15 ®-15 0-15 ®—-15
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The whole eight fingered hand can be shown by two hexadecimal digits.
You might be wondering how one digit can show a number between one
and fifteen. Well it is exactly the same as decimal but the numbers 10,
11,12, 13, 14 and 15 are represented by the letters A, B, C, D, E, F
respectively.

BINARY DECIMAL  HEXADECIMAL
0000 0 0
2001 1 1
o010 2 2
o911 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F
10000 16 10

This shows that converting from binary to hexadecimal is merely
dividing into easy-to-see segments of four (fingers).

(ol |t[1]1]a] AEERRRNL ool 1111
SN, S L CENNN ) e N~ —
9 E F D 2 7

Hex and binary mathematically

Mathematically any base 10, 2, 16 or 179 follows a simple format. Each
digit takes the value Ax (BASE) Position-1
In other words in decimal 98617 is

7x10" +1x10'+6x102 +8x10? +9x 10+ = 98617
7x14+1x10+6x100 + 8x 1000 + 9 x 10000 = 98617
7+ 10 + 600 + 8000 + 90000 = 98617

In binary 0101111 is

1Xx20 4+ Qx2' +1x224+1x22+ 1x2*+Q0x2°+1x2%+ Q0x27 =93
1X1+0x2+1x4+1x8+1x16+0x32+1x64+0x128 =93
1+0+4+8+16+0+64+0 =93
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In hexadecimal A7C4E is

14 X 16"+ 4x16'+ 12 x 162+ 7 x 16 + 10 x 16* . = 687182
14 x1+4x16+ 12 x256+ 7 x 4096 + 10 x 65536 = 687182
14 + 64 + 3072 + 28672 + 655360 = 687182

Several points should be noted here. Firstly, any number which can
be stored in one memory box (a number from @ to 255) can be stored in 8
binary digits (bits), or as we have been calling them till now ‘fingers’. Any
number from @ to 255 can also fit in two hexadecimal digits (FF = 15 x
16' + 15 x 1 = 255). This, however, is where our problem with absolute
addressing occurs. If we can't put a number bigger than 255 into
memory, how do we specify an address which may be between @ and
65535 (64K)? The solution is to use two boxes, not added together but
as part of the same number. When dealing with addresses we are
dealing with 16 finger (16 bit) (2 byte) binary numbers. This is the same
as saying four digit hexadecimal numbers. The largest number we can
hold in a four digit hexadecimal number is

FFFF =15x1 + 15x16 + 15x 256 + 15 x 4096
=15 + 240 + 3840 + 61440
= 65535 = 64K

whichis large enough to address all of memory, e.g., the 2 byte (16 byte)
hex number 13A9 equals

1 3 A 9
0001 0011 1010 1001
13x16% + A9x 16"

13 x256 + A9
= 4864

For example, the 2 byte hex number 0405
4 x256 +5

1024 + 5
1029

[

Absolute addressing

If you look back to the beginning of this chapter you will see that this is
the problem associated with absolute addressing which we have been
trying to solve. One other thing to remember with absolute addressing is
that the bytes of the address are always stored backwards, e.g.,

LDA 1029
=141 5 4
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The most significant byte (high byte) — 4 is placed last, and the least
significant byte (low byte) — 5 is stored first. NOTE this is opposite to
normal, e.g., normally 17 where 1 is the most significant digit (1 x 10)
and is stored first. The 7 (7 x 1) is least significant and comes second.
For some reason the bytes of an absolute address are always stored low
byte, high byte.

This chapter also explains zero page addressing. Two byte
instructions leave only 1 byte to specify the address, e.g., LDA 38 —
165 38. We have said before that when using 1 byte we can only count
from @ to 255. Therefore zero page addressing can only address the first
256 bytes of memory. A block of 256 bytes is called a page.

To specify the fact that we are using hexadecimal this book follows the
standard practice of placing a $ sign before a hexadecimal number.

LDA 3072 isthe same as LDA $0CQ0
LDA 65535 isthe same as LDA $FFFF
LDA 0 is the same as LDA $0

From now on all machine code listings will also be shown in
hexadecimal,

Address MACHINE CODE $ ASSEMBLY CODE
49152 A9 8 LDA #$8

49154 8D 0 12 STA  $0C00
49157 A9 53 LDA  #8$53

49159 8D 1 12 STA  $0CO1
49162 60 RTS

irrespective of the format used in the assembly code, which will vary
depending on the application.

Converting hexadecimal to decimal

We have provided in appendix 3 a table for quick hexadecimal to
decimal conversions. To use this chart for single byte numbers, look up
the vertical columns for the first hexadecimal (hex) digit and the
horizonal rows for the second digit, e.g.,

$2A — 3rd row down

11th column from left
Printed there is LO HI

42 19752

Look at the number under LO (Low byte). 42 is decimal for $2A hex. For
2 byte hex numbers divide into 2 single bytes. For the left byte (or high
byte) look up under HI and add to the low byte LO, e.g.,

$7156 divideHl =$71 LO = $56
HI — 71 — 8th row down
2nd column from left
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LO HI

113 28928

LO — 56 — 6th row down

7th column from left
LO HI
86 22016

Add high and low 28928 + 86 = 29014
$7156 = 29014

NOTE: in all cases LO HI

Y = 256 * X

The high byte is 256 times the value of the same low byte.

Chapter 3 SUMMARY

1.

o ko WD

IR

s © ©®© N O

In counting on a computer's ‘fingers’, position (which fingers), as
well as the number of fingers, is important.

Each of the computer's hands and each piece of memory has 8
fingers’, and the biggest number they can hold in each is 255. -

An eight ‘fingered’ piece of memory is called a byte.

Each finger has a value which depends on its ‘position. Value =
Position-1 1,2, 4,8, 16, 32, 64, 128 Binary.

Hexadecimal (base sixteen) is the grouping together of binary. 1
Hex digit = 4 binary digits. Hex is easier to handle than binary or
decimal.

DECIMAL 0123456789101112131415161718

HEX P123456789ABCDEF1Q01112etc.

Zero page addressing can access the first 256 bits, the maximum
addressable by 1 byte.

Absolute addressing can access 65536 (64K) bytes of memory
(all), which is the maximum addressable by 2 bytes.

Absolute addresses are always stored low byte first then high byte,
e.g. 8D 9817 LDA $1798.

Hexadecimal numbers are specified by prefacing them with a $
sign.

Remember the quick conversion table for hex to decimal in
Appendix 3.
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Chapter 4 y
Introduction to Tedmon

Tedmon is a built-in machine language monitor (M.L.M.), mini
assembler, and disassembler, that remains resident as part of the C16's
ROM chip. It is used as an aid in the entry and debugging of machine
language programs, and is also useful as a tool for examining any area
of memory that the user so desires.

Like BASIC, Tedmon has a series of commands that require strict
adherence to a set of syntactical rules. Be sure that when using
Tedmon, you use the formats exactly as they are shown below. The
commands supported by Tedmon are as follows:

A Assemble a line of 6502/7501 machine code. This command
makes the entry of standard 6502/6510 mnemonics very simple.
Being merely a one line assembler, it does not support such fancy
‘extras’ as macros or labels. Use the following format to assemble
aline of source code:

A (address) (mnemonic) (operand)
For example:
A 1000 LDA #3$08

You should find that as soon as you press the <RETURN> key,
your line of source code will be expanded to include the
hexadecimal values of the mnemonic and any additional
parameter/s that may have been specified. The above example
would be expanded to give:

A 1000 A9 08 LDA #3$08

Once a line of source code has been successfully assembled, the
monitor will display the next legal address for assembly, on the
following line. If you do not wish to continue assembling, you
should simply press <RETURN> to exit from this mode. If the
monitor detects an error in the format of the line for assembly, it will
display a question mark (?), at the end of the line.

25



Compare one area of memory with another area, and report on the
differences. The compare command is used in the following
manner:

.C (start address) (end address) (with address)
Example:

.C 2000 2FFF 3000

This command will compare the contents of memory locations
$2000 to $2FFF with the contents of memory locations $3000 to
$3FFF, and will display any memory of those that do not hold
equivalent values with the ones they are being compared with. For
example, if the following memory locations held the following
values:

$0100-%$02 30200 - $02
$0101-303 30201 - $02

and the command:
Co100 0101 0201
then the number ‘9101’ would be displayed, signifying that the

location with which it was compared (i.e. $0201), contained a
different value.

Disassemble an area of memory. The ‘D’ command can be used to
disassemble any area of memory that is required. It takes the
following format:

.D (start address) (optional end address)
Here are examples of the two legal formats for this command:

.D 1000
or alternatively

.D 1000 3000

The first example will display a disassembly of 10 lines of object
code. The second example will disassemble any object code
found between memory locations $1000 and $300P. A special note
should be taken at this stage, with regard to the use of the ‘D’
command. You may find that upon disassembly of a given area of
memory, that the disassembler gives output that is garbage. An
example might be:

1000 @2 77
1001~ AF 777
1002 2002 AF JSR $AFQ2
1005 02 777

etc
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You will notice that the first two lines are not intelligible, but that the
third line shows a proper instruction, followed by another line of
garbage. In this case it must be pointed out that due to the lack of
constraints regarding memory usage wfen writing  in
machine code, areas of memory can be used for any purpose. In
the above example, we would be wise to assume that the memory
from $1000 to $1005 holds data or something of the like, but due to
the fact that the disassembler has rejected so many bytes, it does
not seem like part of a machine language program.

Fill an area of memory with the specified byte/s. This command
can be used to fill up an area of memory with any hexadecimal
value ($00-$FF). It takes the following form:

F (start address) (end address) (value)
Example:

F 1000 4000 00 will fill the area of memory from $1000 to $4000 with
the value of zero.

Begin execution of a machine language program, as specified by
the memory address, or the current contents of the stored program
counter. This command is used to ‘run’ a machine language
program, from within the monitor. It takes the form:

.G (address)
For example:
.G 2FEQ

or simply

G

The first example will jump to the machine language program
starting at memory location $2FEQ. The second example will jump
to the location, as specified by the value of the stored value of the
program counter (see the ‘Register’ command). Care should be
taken that there is in fact a machine language program at the
location specified. Jumping to a location that contains garbage
could lead to a situation whereby the only means to recover use of
your machine would be to turn it off and then on again.

Hunt through memory, for a specific byte or series of bytes,
reporting any occurences. The hunt command is one of the most
useful commands that Tedmon supports. It is used to search
through a given area of memory for a single byte or series of bytes,
as specified for the command:

H (start address) (end address) (data) (. . .)
27



Example:

H 1000 2000 08

would display the locations (if any), between $1000 and $2000,
that contain the value of 8.

H1FQQ 3000 @1 06 03

will display the location (if any) which contains the value of 1, only if
the following two bytes contain the values 6 and 3 respectively.
This command is extrememly handy when trying to locate a
particular sequence of data, or even a series of instructions. For
example, we want to locate any occurences of the following
machine code sequence between locations $2000 and $3000:

.A9 05 LDA #8305
.85 01 STA $01

Now the method for finding this sequence is as simple as:
H 2000 3000 A9 05 85 D1

The ‘Hunt command can also be used to find a string of
characters, in ASCIl representation, by placing the string of
characters after an apostrophe:

H 30EQ 4000 ‘HELLO'

will search the area of memory from $30EQ to $4000 for the word
‘HELLO'

Load a program or data, from the tape or disk drive. This command
acts in much the same way as the basic ‘LOAD' command. The
only major difference is that this command ALWAYS loads a
program into the area of memory that it was previously saved from
i.e. it acts like:

LOAD"FILENAME",8,1

or:

LOAD"FILENAME" 1,1

in the case of tape users.

The syntax for the ‘L’ command is as follows:
L"“FILENAME" (device)

A couple of examples might be:
L"CAT",08

for disk, or:

L“DOG",01

for tape users.
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Examine an area of memory, as specified by a start and end
address. This command is used to examine an area of memory for
its contents. You will find that this command will probably be the
most frequently used, alongside the ‘Disassemblé’ command:

.M (start address) (end address)
For example:

M 1000

or:

M 1000 2000

The first example will display twelve lines of data signifying the
contents of the memory locations starting with location $1009. The
second example will display the contents of memory locations
$1000 to $2000. An example of the output from the ‘Memory’
command is given below:

M 1000 1008
1000 01 0203 Q40506 Q708 . .. .. ...
1008 41 42 43 44 45 46 47 48 ABCDEFGH

You will notice that the memory locations are displayed in rows of 8
hexadecimal numbers. To the right of these numbers you will see
their equivalent ASCII representations (reversed). If it so happens
that the monitor program is unable to convert the contents of a
memory location into a displayable ASCII equivalent, (e.g. 0,
because CHR$(0) is invisible), then it simply places a reversed full
stop in that position.

Examine the contents of the 6502/7501 Registers. This command

is used to examine the current contents of the stored values of the
75Q1's various registers. Its syntax is as follows:

R
This will give the display:

PC SR AC XR YR SP
;. 0000 00 00 OO OO F8
where:
PC = The current value of the program counter.
SR = The current value of the status register.
AC = The stored value of the 7501 accumulator.
XR = The stored value of the ‘X’ register.

YR = The stored value of the ‘Y’ register.
SP = The stored value of the stack pointer.

It should be pointed out that these values are not the actual values
that are in the various registers; after all, the monitor itself is alarge
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machine language program, and is changing the values of these
registers constantly. These values are actually stored in memory,
and are loaded from there into the registers upon the execution of
a 'G'oto command. Before entering a machine language program,
these registers may be changed at will (see the " command).

Save a file or data, to the tape or disk. The ‘Save’ command is like
the BASIC save command, in that it allows the user to save a
program to tape or disk. You will find that the monitor's Save
command is far more flexible, in that it allows you to specify the
start and the end address of the block of memory that you wish to
save. The ‘S'ave command takes the following format:
S“FILENAME”, (device), (start address), (end address)

Some examples might be:

.S"PROG",01,0C00,0A0D

for tape, or:

S“HELLO",08,0C00,0A00

for a save to disk.

Transfer the contents of an area of memory, to another location.
The transfer command is very useful for copying away areas of
data, or setting up a duplicate of a program in memory. Itisusedin
the following way:

T (start address) (end address) (new start location)
An example of a transfer could be:
T 1000 1FFF 3000

The above example will copy the area of memory from $1000 to
$1FFF to the area from $3000 to $3FFF.

Verify that a program on tape or disk, is the same as that in
memory. This command acts in the same way as the BASIC ‘verify’
command. It will compare a program on tape or disk, with the area
of memory that it was saved from, reporting on any differences with
an error return. This becomes a handy aid in determining whether
a program was saved to tape or disk without error:

V"“FILENAME", (device)
You might use:
VBLOQD",01

for tape users, or:
V'BONES”,08

for disk users.

30



X  eXitfrom Tedmon, back into BASIC. Typing:
X
will simply return the user from the monitor, back into BASIC.

- Assemble a line of 6502/7501 machine code (same as A) (see the
‘A'ssemble command).

> modify memory locations, as specified by a memory address (see
the ‘M’emory command).

: modify the 6502/7501 registers. This command allows the 7501
stored registers to be updated prior to the use of the ‘G'oto
command.

To enter Tedmon, simply type:
MONITOR
You should now be greeted with the display:

PC SR AC XR YR SP
0000 00 00 00 00 F8

which denotes the 6502/7501 registers and their contents.
Underneath this display you should see the familiar flashing cursor
— the sign that Tedmon is awaiting a command.

At this stage, you are free to use any of the above commands. You
should also note that you will not have any access to the wide range of
‘BASIC' commands while you are in the monitor. To re-enable these
commands, you will have to use the ‘X' command, which will return you
to BASIC.

It is suggested that you familiarize yourself with Tedmon by trying a
few of the above examples, as well as a few of your own. This will enable
you to gain confidence in the somewhat contrasting environment of
extremely strict syntax, which prevails within Tedmon. It should soon
become clear that the Tedmon monitor will be an invaluable tool in the
devolopment of machine language programs for your C16.
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Chapter 5 -
Microprocessor Equipment

In the previous four chapters we have covered a lot of the groundwork
needed to understand the intricacies of machine code programming.
More of the basics will be introduced as we go on. We have covered
enough at this stage to move on to such things as using machine
language to do some arithmetic.

Storing numbers

We know from Chapter 3 that the largest number we can store in a single
byte (memory location) is 255. We have also seen that for addresses
bigger than 255 we could use two bytes to represent them in low
byte/high byte format so that Address = low byte + 256 x high byte.

Surely then we could use the same method to represent any sort of
number greater than 255 and less than 65536 (65535 = 255 + 256 x
255), and in fact if necessary this can be taken even further to represent
even higher numbers:

Numb = 1stbyte + 256 x 2nd byte + 65536 x 3rd byte + . . . etc.

The carry flag
Now, when we add two 1 byte numbers together it is possible that the
result is going to be bigger than 255. What then can we do with the result

of the addition? If we put the result in one byte it could be no bigger than
255, so

207 + 194 = 401 mod 255 = 145
but also
58 + 87 = 145

Surely there is something wrong here. We must somehow be able to
store the extra information lost when a result is larger than 255. There is
provision for this within the 7501 microprocessor in the form of a single
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bit (single finger) ‘flag’ called the carry flag. The carry flag is ‘set’ (turned
on) if a result is greater than 255, e.g.,

207 + 194 = 145; carry = 1
58 + 87 = 145;carry =0

NOTE: a single bitis large enough to cover all possible cases of carry.

11311199 255

+ 11111111 +255

(,1 11111110 254 + carry
carry bit

Therefore to add two 2 byte numbers together, you add the low bytes
first, store the result, and then add the high bytes including the carry bit
from the addition of the low bytes, e.g.,

3pA7 + 2CC4 = 5D6B

is done in the following manner:

low bytes
A7
+ C4
6B carry = 1
high bytes
30
+2C
+ 1 (carry bit)

5D
Answer = 5D6B

Adding numbers

To handle this, the machine language instruction to add two 1 byte
numbers together is ADC (add with carry). This adds the specified
number (or memory) to the accumulator and leaves the result in the
accumulator. The instruction automatically adds in the carry bit to its
calculation. Therefore since the carry bit could be set to anything before
you put something in it yourself (like memory — see Chapter 1), it is
necessary to set the carry to zero before an addition if that addition does
not want to add the carry of a previous calculation. To set the carry flag
to zero we use the instruction CLC (Clear Carry flag) before such ADC's.
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Type in the following program using the monitor (Tedmon):

2000 LDA #3$00
2002 STA $05
2004 LDA #3$03
2006 CLC
2007 ADC #$05
2009 STA $05
2008 BRK

RUN

From within the monitor type .G 2000. Now type .M @@@5. Location $05
should contain the value of 08.

We will now change the program to alter the sum we are performing.
Type:

2000 LDA #3$00

2002 STA $05

2004 LDA #%27

2006 CLC

2007 ADC #$F4

2009 STA $05

2008 BRK

Then type .G 2000, to execute the program.
Type .M Q@@5. The value stored in $05 will be $1B. Since $F4 + $27 is
actually $11B, and thus the carry flag would have been set.

NOTE: we cannot tell the carry has been set from our results.

We will now change the program again. This time we will deliberately
set the carry using the SEC (Set Carry Flag) command before doing our
addition. Type the following lines:

$2000 LDA #3$03
$2002 SEC
$2003 ADC #$05
$2005 STA$05
$2007 BRK

Enter and execute the program, using .G 2000. Now type .M 00Q5.
You will notice that location $05 contains the value $@9, i.e. our program
has added:

3
+ 5
+ 1

= __ 9

(carry)
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From these examples we see how the carry bit is ‘carried’ along from the
result of one addition to another.

We will now use this to do an addition of two 2 byte numbers using the
method we have described previously.

Two byte addition
Suppose we want to add the numbers 6C67 and 49B2.

6C67
+ 4982
=7

To do this we must separate the problem into two 1 byte additions:
low bytes 67 high bytes 6C

+ B2 + 49
C1 19 + 1 (carry)
carry __Be

Type the following:

2000 LDA #$67
2002 CLC

2003 ADC #$B2
2005 STA $03
2007 LDA #%$6C
2009 ADC #$49
200B STA $04
200D BRK

This will store the low byte of the result in $03 and the high byte of the
resultin $04.

ENTER and RUN the program using .G 2000.

Type .M @03 and join the high byte and low byte of the results to give the
answer:

6C67
+ 49B2
B619

Subtracting numbers

This procedure can be extended to add numbers of any length of bytes.
The microprocessor, as well as having an add command, has a

subtract command. Similar to the ADC command the SBC (Subtract

with Carry) uses the carry flag in its calculations. Because of the way in
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which the microprocessor does the subtraction, the carry bit is inverted
(1 becomes @ and @ becomes 1) in the calculation, therefore

8 8 i
-5 but -5
— — CARRY (CARRY =1)

Consequently, to do a subtraction without carry, the carry flag must be
setto 1 before the SBC command is used. Type the following:

2000 LDA #3$08
2002 CLC
2003 SBC #$05
2005 STA $05
2007 BRK

ENTER and then RUN this program, using .G 2000.
Use .M 0005 to examine the result.

You will see by the results that clearing the carry instead of setting it has
given us the wrong answer. We will correct our mistake by setting the
carry to 1 before the subtract. Change the ‘CLC’ at $2002 to ‘SEC’ and
re-run it, using .G 2000.

Examine location $05, using .M 0Q@5
You will now see that we have the correct answer.

8 8
-5 -5
— 1 (CARRY=0) — 0 (CARRY=1)
= 2 = 3

You may have wondered how the microprocessor handles subtractions
where the result is less than zero. Try for example 8 — E = —6. Change
the line 'SBC #8305’ to ‘'SBC #$QE" and rerun the program.

8 or BORROW = 108 carry cleared to zero
—E —E
6 FA

NOTE:that -6 =0 -6 = FA
FA+6=0
This clearing of the carry to signify a borrow can be used for multibyte

subtraction in the same way as it can for multibyte addition. Try towrite a
program to do the following subtraction:

E615 — 7198
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Here is an example:

2000 LDA #$15
2002 SEC
2003 SBC #$98
2005 STA $03
2007 LDA #3E6
2009 SBC #$71
200B STA $04
200D BRK

ENTER and RUN this, noting the results. Combine the high and low
bytes of the result to get the answer 747D, from memory locations $03
and $04.

These instructions ADC and SBC can be used in many addressing
modes, like most other instructions. In this chapter we have only used
immediate addressing.

NOTE: SEC and CLC have only one addressing mode — implied.
They perform a specific task on a specific register, so there are no
alternatives to its addressing. Their method of addressing is ‘implied’
within the instruction.

An exercise

Write a program to add the value $37 to the contents of memory location
$05 using ADC in the ‘absolute’ addressing mode, and put the result
back there. Use .M @05, to observe the results.
NOTE here:
LDA #$FF

CLC
ADC #$01

leaves the value $0 in A with the carry set, and

LDA #$00
SEC
SBC #$01

leaves the value $FF in A with the carry clear (borrow).

Therefore we have what is called ‘wraparound’. Counting up past 255
will start again from @, and downwards past zero will continue from 255
down.

Chapter 5 SUMMARY

1. Any size number may be represented by using more than 1 byte.
Numb = 1st byte + 2nd byte x 256 + 3rd byte x 65536 + . . . etc.
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. The 7501 microprocessor has a carry flag which is set to signify the
carry of data into the high byte of a two byte addition.

. ADC adds two bytes plus the contents of the carry flag. A CLC should
be used if the carry is irrelevant to the addition.

. ADC sets the carry flag if the result is greater than 255, and clears it if
itis not. The answer left in the accumulator is always less than 256.
(A = Result Mod 256)

. SBC subtracts memory from the accumulator and then subtracts the
inverse of the carry flag. So as not to have the carry interfere with the
calculations, an SEC should be used before the SBC.

. SBC sets the carry flag if the result does not require a borrow (A —
M 2> 0). The carry is cleared if (A — M < @) and the result left in A is
256 — (A—M).

. Two byte addition:

CLEAR CARRY
XX = ADD LOW BYTES + (CARRY = Q)
YY = ADD HIGH BYTES + (CARRY = ?)
Result = $YYXX

. Two byte subtraction:

SET CARRY
XX = SUBTRACT LOW BYTES — INVERSE (CARRY = 1)
YY = SUBTRACT HIGH BYTES — INVERSE (CARRY = ?)
Result = $YYXX
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Chapter 6
Program Control

Looping using JMP

There is an instruction for this — it is the JMP (JUMP) instruction.
Like BASIC's ‘GOTO’ you have to tell the ‘JMP’ where to jump to in
the form JMP address (JMP Low Byte High Byte) (ABSOLUTE
ADDRESSING).

We will use this command to create a program equivalent to the
following BASIC program.

INITIALISE

100 .X=X+4
110 GOTO 100

In order to give you some idea of what is actually happening while the
program is executing, we will add the value of 4 to screen memory, at
$0CO0. Type the following program in, using Tedmon:

2000 LDA #$00
2002 STA $0COD
2005 LDA $0C00
2008 CLC

2009 ADC #$04
200B STA $0C00
200E JMP $2005

Then type .G 2000 to start the program executing. You should notice
that there is a flickering square in the top left corner of your screen.
Characters are being displayed very quickly within this square.
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Infinite loops
You will also notice that the program is still going. Just like the program

100X = X + 4
110 GOTO 100

our program will go forever around the loop we have created. This is
called being stuck in an ‘infinite loop".

The RUN/STOP key will not get us out of the loop. There is a machine
code program which is part of BASIC which tests to see if the runstop
key is being pressed, but our program does not look at that keyboard.
There are only two ways of getting out of a machine code infinite loop.
One way is to press RUN/STOP and RESET keys at the same time. This
will stop the computer and return it to BASIC. The other way to stop the
program is to turn the computer off. Press RUN/STOP RESET to stop
the program. You will now be in BASIC. To continue with our
program intact type:

MONITOR, to return you to Tedmon.

There is no other way to exit a machine language routine unless it returns
by itself using an RTS. NOTE that because of the JMP, the program is
never able to exit, as in the following BASIC program:
5X=4

10 PRINT “HELLO";X

15 X=X+4

20 GOTO 10

30 END

Obviously the END statement is never reached here either because of
the GOTO at line 2.
To get this program to print HELLO 4 to HELLO 100 we would write:
5 X=4
10 PRINT "HELLO";X
15 X=X+4
20 IFX =104 GOTO 40
30 GOTO 10
40 END

Here line 20 will GOTO line 40 only if X = 104 and the program will go
through to the END statement and stop. If X is not equal to 104, the
program will go through to line 3@ and continue around the loop to line
1. To do this in machine language we need one instruction to compare
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two numbers (X and 104) and another instruction to JUMP depending on
the result of the comparison (IF . . . GOTO 40).

Comparing numbers &

We have previously (see Chapter 5) met the idea of a flag. Itis a single
bit (single finger) value held inside the microprocessor. In Chapter 5 we
met the carry flag which was set to signify the need for a carry in a
multibyte addition (or borrow in multibyte subtraction). The
microprocessor has seven flags for different purposes which it keeps in
a special purpose register called the Processor Status Code Register
(or Status Byte). These seven flags (and one blank) are each
represented by their own bit (finger) within this byte and have special
microprocessor commands dealing with them. These flags are set or
reset by most machine code commands. (More will be said about them
in Chapter 10.) For example, ADC sets or resets the carry flag
depending on the result of the addition. Similarly ‘CMP’ (Compare),
which compares the contents of the accumulator with the contents of a
memory location (depending on addressing mode), signifies its results
by setting or resetting flags in the status byte.

Branch instructions

The other instruction we said we would need to write our program, is one
which would jump to an address dependant on the values of the
processor status flags. This form of instruction is called a ‘branch’
instruction. Itis different to the JMP instruction not only in the fact that it is
conditional (dependent on the conditions of the status flags), but it is
unique in that it uses the relative addressing mode. Relative addressing
means that the address used is calculated relative to the branch
instruction. More will be said about relative addressing and the way
branch instructions work at the end of this chapter.

Zero flag
To test if the result of a CMP instruction is that the two numbers
compared were equal, and branch if they were, we use the BEQ (Branch
on Equal) command.

Try the following program, which differs from our last one in that
the program will stop if the value of memory location $0CQ®, is equal to
$80.

2000 LDA #3$00 200C CLC
2002 STA $0C00 200D ADC #%04
2005 LDA $0Co0 200F STA $0CO0D
2008 CMP #$80 2012 JMP $2005
200A BEQ $2015 2015 BRK

We have managed to find a way to use a loop that tests for a condition
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on which to jump out of the loop. We could however make this more
efficient by creating a program that looped until a certain condition is
reached. The difference is subtle but it is shown by this BASIC program
in comparison to the previous one.
5 X=4

10 PRINT "HELLO”:X

15 X=X+4

20 IFX<>104 GOTO 10

30 END

To accomplish this short program, line 20 would require the use of the
‘BNE’ (Branch if not equal to), if we were to convert this to machine
language. Type:

2000 #$04

2002 STA $0CO0
2005 LDA $0C00
2008 CLC

2009 ADC #3%04
200B STA $0C00
200E LDA $0C00
2011 CMP #$80
2013 BNE $2005
2015 BRK

As you can see, there are many ways to write a program. Which is
right and which is wrong no one can say but the better program is, on
the whole, the one which is most readable and easiest to debug. This is
the most efficient way to write the most efficient code.

There is a lot we can learn by knowing how an instruction works. The
CMP instruction for example compares two numbers by doing a
subtraction (accumulator — memory) without storing the result. Only the
status flags are set or reset. The instructions we have just used (BEQ
and BNE) do not refer their ‘equalness’ to the numbers being compared.
They in fact test the status registers ‘zero’ flag, and stand for:

BEQ — Branch on Equal to Zero
BNE — Branch on Not Equal to Zero.

It is the condition of the zero flag which is set by the result of the
subtraction done by the CMP command (accumulator — memory = 0
which sets the zero flag = 1). This flag is then tested by the BEQ or BNE
command. This may seem to be a meaningless point until you realise
that, since the CMP command is done by a subtraction, the carry flag
will also be set by the result. In other words if the subtraction performed
by the CMP needs a ‘borrow’ (A — Mem < 0, A less than memory), then
the carry will be cleared (CARRY = ). If the subtraction does notneed a
‘borrow’ (A — Mem > @, A greater than or equal to memory), then the
carry will be set (CARRY = 1).
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Therefore the CMP command tests not only A = Mem but also A <
Mem and A>Mem and therefore (if AZzMem but A # Mem) then A >
Mem. We can now write our BASIC program:

5 X=4 i
10 PRINT "HELLO";X
15 X=X+4
20 IFX <101 GOTO 10
30 END

This makes the program a little more self explanatory. It shows clearly
that values of X bigger than the cutoff 10 will not be printed. To test for
the accumulator less than memory, you use CMP followed by BCC
(Branch on Carry Clear) because a borrow will have occurred. To test for
the accumulator greater than or equal to memory, use CMP followed by
BCS (Branch on Carry Set).

Relative addressing

All branch instructions use an addressing mode called relative
addressing (JMP is not a branch instruction.) In relative addressing the
address (the destination of the branch) is calculated relative to the
branch instruction. All branch instructions are two bytes long — one
byte specifying the instruction and the other specifying the address in
some way. This works by the second byte specifying an offset to the
address of the first byte after the instruction according to the tables in
Appendix 4. From @ — 7F means an equivalent branch forward and from
80 — FF means a Branch backward of 256 — the value. Therefore:

FO @3 BEQ tohere
8D 34 03 STA $334
tohere 60 RTS

will be the same no matter where it is placed in memory.
The value 3 as part of the branch isntruction is the number of bytes
from the beginning of the next instruction (8D).

1st next byte (34)
2nd next byte (03)
3rd next byte (60)

With the following programs, check that the destination address of the
branch is in fact the address of the instruction after the branch plus the
offset value, e.g.,

2000 BEQ $2004
2002 STA $05
2004 BRK
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and

3000 BEQ $3004
3002 STA $05
3004 BRK

The machine code remains the same but the disassembled version
differs. The program will work exactly the same at either address. This is
completely opposite to the case of the JMP which uses absolute
addressing and cannot be ‘relocated’ (moved to another memory
address).

Chapter 6 SUMMARY

1. The command JMP address is equivalent to BASIC's GOTO
linenumber command. It makes the program ‘Jump’ to the address
specified.

2. To break out of an ‘infinite loop’, press RUN STOP/RESET.

3. The microprocessor's STATUS CODE Register has seven flags (and
one blank) which are set by many machine code instructions.

4. Branch instructions jump conditional on the state of the flag referred
to by the instruction, e.g.

BEQ Branch on Equal

BNE Branch on Not Equal
BCS Branch on Carry Set
BCC Branch on Carry Clear

OONN
D

5. The CMP instruction compares two bytes (by doing a subtraction
without storing the result). Only the flags are set by the outcome.

Flags CARRY ZERO Signifies
) 0 A < Mem
Value ? 1 A =Mem
1 ? A > Mem
1 1 A > Mem

6. Relative addressing mode, used only for branch instructions,
specifies an address relative to the instruction which uses it, e.g.

BNE @3 means branch 3 memory addresses forward (see table
Appendix 4).
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Chapter 7 :
Counting, Looping and Pointing

Counting to control a loop

Suppose we want to multiply two numbers together. There is no single
machine language instruction which can do this, so we would have to
write a program to do it. We could, for example, add one number to a
Total as many times as the other number is Large. e.g.,

10 A=7:B=3
20 T=T+A
30 T=T+A
40 T=T+A

5@ PRINT “7*3=".T

It would be much easier and more practical (especially for large
numbers) to do thisin a loop. e.g.,

10 A=7:B=3
20 T=T+A
30 B=B -1

40 IFB<>0GOTO 20
50 PRINT “7*3="T

NOTE: this is by no means the best way to multiply two numbers, but
we are only interested in the instructions here. A preferred method is
described in Chapter 10.

Counting using the accumulator

In this short program, unlike any other program we have dealt with
previously, there are two variables. A, which we are adding to the total,
and B, which controls the loop. In this case we couldn't stop our loop as
we have done in the past by testing the total, because we would have to
know the answer before we could write the program. Our machine
language program would look, along the lines of what we have done
previously, like this:
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LDA #3$00
STAA
LDA #$03
STAB
loop LDA A
CLC
ADC #$07
STAA
LDAB
SEC
SBC #3$01
STAB
BNE loop
BRK

Counting using memory

Most of this program consists of loading and storing between the
accumulator and memory. Since we so often seem to be adding or
subtracting the number one from a value as a counter, or for other
reasons, there are special commands to do this for us. INC (Increment
Memory) adds 1 to the contents of the address specified and puts the
result back in - memory at the same address. The same goes for DEC
(Decrement Memory), except that it subtracts 1 from memory.
NOTE: INC and DEC do not set the carry flag — they do set the zero

flag.
Type:

2000 LDA #303

2002 STA$04

2004 LDA #$00

2006 CLC

2007 ADC #3%07

2009 DEC $04

200B BNE $2006

200D STA $05

200F BRK

Program summary

$2000-2004 Initialise

$2006-200B Loop until result of DEC =

$200D-200F End
Using INC or DEC we can use any memory as a counter, leaving the
accumulator free to do other things.
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An exercise
Rewrite the previous program using INC and CMP to test for the end of
the loop.

-

The X and Y registers

There are however even easier ways of creating counters than using
INC and DEC. Looking back to Chapter 2, we mentioned that the 6510
microprocessor had three general purpose registers — A, X and Y.
Then for the last few chapters we have been talking solely of the most
general purpose register, the A register — the accumulator. So, you
may now ask, what are the other ‘hands’ of the microprocessor, the X
and Y registers, used for?

And what does ‘general purpose’ mean? Well, so far we have met one
non-general-purpose register the processor status register (there are
another two which we will meet in future chapters). The status byte can
only be used to contain status flags and nothing else, as compared to
the accumulator which can hold any number between @ and 255
representing anything. The X and Y registers can, like the accumulator,
hold any number between @ and 255, but there are many functions of the
accumulator that they cannot do, e.g. Add or Subtract. The X and Y
registers are extremely useful as counters.

They can do the following operations (compared to those we have
already discussed for the accumulator and for memory).

LDA LOAD ACCUMULATOR WITH MEMORY
LDX LOAD X WITH MEMORY
LDY LOAD Y WITHMEMORY

STA STORE ACCUMULATOR TO MEMORY
STX STORE X TO MEMORY
STY STORE Y TO MEMORY

INC INCREMENT MEMORY |
INX  INCREMENT X NMMPLIED ADDRESSING MODE

INY INCREMENT Y _

DEC DECREMENT MEMORY |
DEX DECREMENT X NMPLIED ADDRESSING MODE

DEY DECREMENTY

CMP COMPARE ACCUMULATOR WITH MEMORY
CPX COMPARE X WITH MEMORY
CPY COMPARE Y WITH MEMORY
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Using the x register as a counter

We will now rewrite our multiplication program using the X register as the
counter. Type

LDX #$03
LDA #$00
CLC

ADC #$07
DEX

BNE L30
STA $03
BRK

This routine is slightly shorter and considerably faster than the original
but otherwise not all that different. Rewrite all the commands using the X
register, replacing them with the equivalent Y register command.
Practise using the X and Y registers in place of the accumulator where
possible in the programs in previous chapters.

Moving blocks of memory

How would you write a program to move a block of memory from one
place to another? e.g. to move the memory from 2100 - 2150 to the
memory at 2200 - 2250. Obviously we could not write it as:

LDA $2100
STA $2200
LDA $2101
STA $2201

etc.
This would be ridiculous to even attempt because of the size of the

program we would have to write.
We could write the program:

LDA $2100
STA $2200

followed by some code which did a two byte increment to the address
part of the instructions. This is an extremely interesting concept to think
about. It is a program which changes itself as it goes. It is called ‘self
modifying code’. But, because it changes itself, it is very dangerous to
use. Itis considered very poor programming practice to use it because
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it is prone to errors of catastrophic proportions (writing over the wrong
parts of the program and then trying to execute it will probably cause
you to have to turn your computer off and on again before you can
continue). Self modifying code is also extremely difficult to debug. Itis
an interesting concept but do not use it within a serious program. Self
modifying code is therefore obviously not the answer to our problem.

The answer in fact, lies in addressing modes. Originally we called
addressing modes ways of accessing data and memory in different
ways and formats. We have so far seen:

Implied addressing
The data is specified as part of the instruction, e.g. SEC, DEY.

Relative addressing
Addressing relative to the instruction — use only in branches.

Absolute addressing

The data is specified by its two byte address in low byte, high byte
format.

Zero page addressing

The data is specified by a 1 byte address and hence must be within the
first 255 bytes of memory.

Indexed addressing

Our new method of addressing is called ‘indexed addressing’. It finds
the data to be used in the instruction by adding a one byte 'index’ to the
absolute address specified in the instruction. The indexing byte is taken
fromthe X or Y register (depending on the instruction used). The X and Y
registers are called 'Index’ registers.

To use our post office box analogy, it is like being given two pieces of
paper, one with a two byte address on it, and the other with a one byte
index (@ — 255). To find the correct box you must add the two
numbers together to obtain the correct result. The number on the
indexing paper may have been changed, the next time you are asked to
do this.
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Using the X register as an index

With this addressing mode, our program to move a block of data
becomes quite simple. Type the following:

2000 LDX #300
2002 LDA $24C8,X
2005 STA $24F0,X
2008 INX

2009 CPX #%28
20pB BNE $2002
200D BRK

NOTE here that the mnemonic form of indexed addressing has its
address field made up by the absolute address, a comma and the
register used as the index, even though the following is true:

LDA $24C8,X
LDA $24C8Y

It is the instruction, not the address field, which changes in the actual
machine code. RUN the program. As you can see, we have used screen
memory again to show that we have in fact duplicated a block of
memory. One line on the screen will be copied onto the line below (the
6th line onto the 7th line). Be sure to have text on the 6th line to see the
effect!

Non-symmetry of commands

If, as was suggested when we introduced the X and the Y registers, you
have substituted the X or Y for the accumulator in some of the early
programs, you may be wondering if we could do that here. The answer is
no. Not all the commands can use all of the addressing modes. Neither
Y nor X (obviously not X) can use the index, X addressing mode being
used here with the store (STA). (It is possible to do a LDY ADDR, X but
not a STY ADDR,X). For a list of all addressing modes possible for each
instruction, don't forget Appendix 1.

Searching through memory

We can use the knowledge we have gained up to this point to achieve
some interesting tasks quite simply. For example, if asked to find the
fourth occurrence of a certain number, e.g. A9 within 255 bytes of a
given address, how do we do it?

The best way is to start simply and work your way up. To find the first
occurrence of A9 from FQ@P onwards we could write:
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LDY #$00
LDA #$A9
loop CMP $F000,Y
BEQ found
INY
BNE loop
BRK (NOT HAVING FOUND A9 from FOQQ
- FOFF)
found BRK (HAVING FOUND an A9)

We would put a counter program around this routine:

LDX #$00
COUNTLOOP FIND ‘A9’

INX

CPX #$04

BNE COUNTLOOP

We can combine these into a single program thus:

LDX #$00
LDY #3$00
LDA #$A9
L40 CMP $FO0Q,Y
BEQ L90Q
L6O INY
BNE L40
STX $03
RTS
L9Q INX
CPX #%04
BNE L60Q
STX $03
BRK
In this program—when finished, if X = 4, then the fourth occurrence of
A9 was at $FQPQ + Y (through RTS line 120),
—if X<4, there were not four occurrences of A9 from
SFOOQ to $FOFF
—line 11Q continues the find routine from the ‘INY'. If
it started from the ‘CMP" it would still be looking at
the ‘A9’ it found before.

ENTER and RUN this program. The results will tell you whether four
‘A9's’ were found. Change the program to tell you where the fourth ‘A9’
was found (STY $03). ENTER and RUN it again to see the results.
Verify this using the memory DUMP command of Tedmon (.M
command).
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Using more than one index

We will now write a program using both index registers to index different
data at the same time. Our program will create a list of all the numbers
lower than $38 from $F@PQ to $FOFF, storing them from $3000 onwards.

LDX #$00
LDY #$FF
L30 INY
LDA $F000,Y
CMP #%$38
BCS L90
STA $3000,X
INX
L9Q CPY #3$FF
BNE L30
STX $03
BRK

X here is used as a pointer (index) to where we are storing our results. Y
is used as a pointer to where we are reading our data from. NOTE here
that Y starts at $FF, is incremented and so at the first $A9 the Y register
contains zero.

To test for numbers less than $38 we have used CMP and BCS (A2
Mem see Chapter 6) to skip the store and increment storage pointer
instructions. ENTER and RUN this program. Use the memory DUMP
fseature (.M command) to check that the numbers stored are less than

38.

Zero page indexed addressing

All the indexing instructions we have used so far have been indexed
from an absolute address (absolute indexed addressing). It is also
possible to index from a zero page address (see Chapter 2, zero page
indexed addressing). To rewrite the previous program to look through
the first 255 bytes of memory (0—255), all we need to do is change line
40to LDA $00,Y. But, if you check with the list of instructions in Appendix
1, there is no ‘LDA zero page, Y' — only 'LDA zero page, X." We have two
choices of what to do here. In practice we would probably continue
using the absolute indexed instruction.

BD 0000 LDA $0000,Y
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For the purposes of this exercise, however, we will swap all the

usages of the X and the Y, and use LDA zero page, X. Type:

LDY #$00 -
LDX #$FF

INX

LDA $00,X

STA $2200,Y

INY

CPX #$FF

STY $03

BRK

ENTER and RUN the program.

This shows that you must be careful with your choice of registers.
Although they can do many of the same things, there are some
commands which cannot be done by some registers in some
addressing modes. It is wise to constantly refer to the list of instructions
in Appendix 1 while writing programs.

Chapter 7 SUMMARY

1.
2.

3.
4.

INC — adds one to the contents of memory at the address specified.
DEC — subtracts one from the contents of memory at the address
specified.

The zero flag (but not the carry) is set by these instructions.

These are used mostly as loop counters to keep the accumulator free
for other things.

X and Y, the microprocessor’s other two general purpose registers
(the first being the accumulator), can be used as counters or as
index registers.

Indexed addressing adds the value of the register specified to the
absolute (or zero page) address used to calculate the final address
of the data to be used.

Many of the instructions are similar if used on A, X or Y, but there are
certain instructions and addressing modes which are not available
for each register. When writing programs, make sure the instructions
you are trying to use exist in the format you wish to use them in!
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Chapter 8 -
Using Information Stored in Tables

One of the major uses of index registers is the looking up of tables.
Tables may be used for many reasons — to hold data, to hold addresses
of various subroutines, or perhaps to aid in complex conversions of data
from one form to another.

Displaying characters as graphics

One such conversion, for which there is no formula that can be used, is
the conversion from screen code to the shape of the character
displayed on the screen. Normally this is done by the computer's
hardware and we do not have to worry about it. When we are in graphics
mode, however, this part of the computer's hardware is turned off. In
normal character screen mode, our post office boxes within screen
memory display through their ‘glass’ fronts the character which
corresponds to the number stored in that box. That is, we are seeing
what is in the box through some sort of ‘filter’ which converts each
number into a different shape to display on the screen. In graphics
mode, this filter’ is taken away and what we see is each bit (finger) of
each number stored throughout screen memory. For each bit in each
byte which is turned on, there is a dot (pixel) on the screen. For each bit
which is turned off there is a black dot on the screen.

In other words the byte $11 which looks like[@[@[ @] 1] @] @] 0] 1]would
be displayed on the screen as eight dots, three black dots followed by
one white dot, followed by three black dots, followed by one white
dot. Depending on your television, you may be able to see the dots
making up the characters on your screen. Each character is made up by
a grid eight dots wide and eight dots high. Since we have just
determined that we can display eight dots on the screen using one byte,
it follows that to display one character eight dots wide by eight dots high,
we would need to use eight bytes displayed one on top of the next.
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For example, the character A would look like:

8 x 8 pixel grid binary byte hexadecimal byte
equivalent equivalent
P1234567
? 00011000 18
1 20100100 24
2 01000010 42
3 01111110 7E
4 01000010 42
5 01000010 42
6 21000010 42
7 20000000 ]

This string of eight bytes — 18, 24,42, 7E, 42, 42,42, 0 — is exactly what
we find in the ‘character generator’ memory.

Graphics memory

Like the conventional text screen the high resolution graphics screen is
just a section of memory. Information is put on the high res screen by
writing to a particular section of memory. The graphic screen starts at
8192 and is 8000 bytes or 64000 dots in length. It's arranged as forty
columns by twenty five lines of characters and each characteris divided
into eight rows of eight dots. Every dot can be switched on and off.

. COLUMN®@ COLUMN{ COLUMN?2 COLUMN 39
Graa;;h?cs - 8192 8200
Memory 8193 8201
8194 8202
8195 8203
ROW 0 8196 8204
8197 8205
8198 8206
8199 8207
16184
16185
16186
o 16187
ROW 24 ‘ 16188
- 16189
‘ 16190
161914

. .
End of Graphics Memory
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Indirect indexed addressing

There will be some cases where you may be unsure as to which table
you want to find your data in. In other words, imagine a program which
lets you decide whether you wanted to print the message in upper or
lower case letters after the program had run. You will want to use one of
the two tables decided on midway through the program. This could be
done by having two nearly identical programs, each accessing a
different table in memory and having the beginning of the program
decide which of the two to use. Of course, this is wasteful of memory. To
access data by this method, there is an addressing mode called indirect
indexed addressing, which allows you even greater flexibility as to
where you must place your data. Indirect indexed addressing is just like
absolute indexed addressing, except that the absolute address is not
part of the instruction but is held in two successive zero page locations
as pointed to by the indirect indexed instruction. In other words, the
contents of the zero page address pointed to by the indirect indexed
instruction, is the low byte of a low byte/high byte pair which contains an
address which is then indexed by the index register Y to obtain the final
address. (Indirect indexed addressing is always indexed using the Y
register.)

Imagine the following situation, using our post office box analogy. You
are handed an instruction to look in a box (zero page). The number you
find in that box and the box next to it, go together to make an absolute
address (low byte/high byte format). You are then told to add an index
(Y) to this address to find the address you are looking for.

The mnemonic for this addressing mode is QQQ (ZP),Y
where QQQ is an instruction, e.g. LDA

ZP is aone byte zero page address
and the Y is outside the brackets to signify that the indirection is taken
first, and the index added later. Try:

LDA #$00
STA $03
LDA #$30
STA $04
LDY #$00
LOOP LDA ($03),Y
STA $2600,Y
INY
CPY #$FF
BNE LOOP
BRK

Here a reference is made to location $3000, through the zero page
locations at $03 and $04.
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Register transfer instructions

Back in line 32 of our program, we snuck in an instruction which you
hadn’t previously met — TAY (Transfer A into Y). This is only one of a
group of quite simple instructions used to copy the contents of one
register into another.

The available instructions are:

TAX (Transfer Ainto X)
TAY (Transfer Ainto)
TXA (Transfer Xinto A)
TYA (TransferYinto A)

These instructions are used mainly when the operations performed on a
counter or index require mathematical manipulations that must be done
in the accumulator and then returned to the index register.

NOTE: there is no instruction to transfer between X and Y. If
necessary this must be done through A.

There are two addressing modes we have not yet covered which we
will briefly touch on here. The firstis called Indexed Indirect Addressing.
No, it is not the one we have just covered, that was Indirect Indexed
Addressing. The order of the words explains the order of the operations.
Previously we saw indirect indexed in the form QQQ (ZP),Y, where the
indirection was performed first followed by the indexing. In indexed
indirect, QQQ (ZP,X), the indexing is done first to calculate the zero
page address which contains the first byte of a two byte address (low
byte/high byte format), which is the eventual destination of the
instruction.

Imagine that you had a table of addresses in zero page. These
addresses point to data or separate tables in memory. To find the first
byte of these tables, you would use this instruction to index through the
zero page table and use the correct address to find the data from the
table you were looking for. In terms of post office boxes, we are saying
here is the number of a post office box (zero page). Add to that address
the value of the indexing byte (X register). From that calculated address,
and from the box next to it (low byte/high byte), we create the address
which we will use to find the data we want to work on.

Indirect addressing

The last addressing mode we will cover is called Indirect Addressing.
There is only one instruction which uses indirect addressing and that is
the JMP command.

The JMP command using absolute addressing ‘Jumps’ the program
to the address specified in the instruction (like GOTO in BASIC).

60



In indirect addressing, 'JMP (Addr)’, the two byte (absolute) address
within the brackets is used to point to an address anywhere within
memory which holds the low byte of a two byte address which is the
destination of the instruction. In other words, the instruction points to an
address that, with the next address in memory, specifies the destination
of the jump. In post office box terms, this means that you are handed the
number of a box. You look in that box and the box next to it to piece
together (low byte/high byte format) the address which the JMP
instruction will use. The major use of this instruction is in what is known
as vectored input or output. For example, if you write a program which
jumps directly to the ROM output character address to print a character,
and you then want the output to be sent to the disk instead, you would
have to change the JMP instruction. Using the vectored output, the
program does a JMP indirect on a RAM memory location. If the disk
operating system is told to take control of output, it sets up the vector
locations so a JMP indirect will go to its programs. If output is directed to
the screen, those memory locations will hold the address of the ROM
printing routines, and your program will output through there. Here is a
list of different addressing modes available on the 6510:

Implied QQQ

Absolute QQQ addr

Zero page QQQ zP

Immediate QQQ # byte

Relative BQQ Byte — (L # from ALPA)

Absolute X QQQ addr,X
hbsolute, Y QQQ addr.Y
?Zero page, X QQQ ZP,X

Zero page,Y QQQ ZP)Y

Indexed

Indirect indexed QQQ (ZP),Y
Indexed indirect QQQ (ZP,X)
Indirect JMP (addr)

also

Accumulator QQQA

(An operation performed on the accumulator, see Chapter 10.)

Chapter 8 SUMMARY
1. In graphics mode you can ‘see’ the contents of screen memory. 1
bit means 1 pixel (dot on screen).
2. Characters are defined within 8 pixel by 8 pixel blocks.
3. Screen memory in graphics mode runs in character blocks, then
across the screen line by line.
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4. Character sets are stored in ROM.

5. Index registers are used to look up tables (among other things),

10.

11.

using several indexed addressing modes.

In normal indexed addressing, the index register is added to an
absolute (or zero page) address to calculate the eventual address.

In indirect indexed addressing, the eventual address is calculated
by adding the Y register to the 2 byte address stored in the zero
page locations pointed to by the 1 byte address in the instruction.

In indexed indirect addressing, the eventual address is calculated
by adding the X register to the zero page address which forms part
of the instruction. The contents of these two zero page locations
specify the address.

. The computer cannot tell the difference between meaningful and

meaningless data.

TAX, TAY, TXA and TYA are used to transfer data between the index
registers and the accumulator.

Indirect addressing (for JMP only) uses the contents of two bytes
(next to each other), anywhere in memory, as the destination
address for the jump.
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Chapter 9
Processor Status Codes

/e mentioned in Chapters 5 and 6 the concepts of flags within the
microprocessor. We talked about the carry flag and the zero flag, and
we discussed the branch instructions and other instructions associated
~iththem, e.g. SEC, CLC, BCS, BCC, BEQ and BCC. We said that these
“ags, along with several others, were stored in a special purpose
register within the microprocessor called the processor status code
register or, simply, the status register. This register is set out, like any
other register or byte in memory, in eight bits (fingers). Each bit
represents a flag for a different purpose:

7 65 4 3 2 1 0
INT VI -T BIDJ[IJTzT <l

{ { ¥ 1 %
OVERFLOW| BREAK| INTERRUPT CARRY

v
NEGATIVE BLANK DECIMAL ZERO
(UNUSED)

A list of which instructions set which flags can be seen in the table in
Appendix 1.

1. The carry (C) flag, as we have already seen, is set or cleared to
indicate a ‘carry’ or ‘borrow’ from the eight bit of the byte into the
‘ninth’ bit. Since there is no ninth bit, it goes into the carry to be
included in future calculations or to be ignored. The carry can be set
and cleared using SEC or CLC respectively. A program can test for
carry set or cleared using BCS or BCC respectively.

2. The zero (Z) flag, as we have already seen, is set or cleared
depending on the result of an operation, comparison or transfer of
data (Load or Store). A program can test for zero set or cleared by
using BEQ or BNE respectively.

3. Setting the break (B) flag using the BRK command causes what is
known as an interrupt. More will be said about interrupts in Chapter
11. Using a BRK command will cause your machine language
program to stop and the computer to jump indirect on the contents of
$FFFE and $FFFF. These ROM addresses hold the address of a
break routine which will return you to BASIC. Using the BRK
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command is a very effective way of debugging a program. By
inserting this command into your program at specific points, you will
be able to trace (by whether the program stops or hangs) how far a
program is getting before it is doing the wrong thing. This instruction
gives you a chance to stop a program and test its variables in
memory to see if they are what you would expect at this point in the
program. Use the BRK command within one of the programs from
Chapter 7 to practise using it as a debugging tool.

4. The interrupt (I) flag may be set or cleared using SEl and CLI
respectively. When set, the interrupt flag will disable certain types of
interrupts from occurring (see Chapter 11).

5. The decimal (D) flag may be set or cleared using the SED and CLD
commands respectively. When the decimal flag is set, the
microprocessor goes into decimal or BCD mode. BCD stands for
Binary Coded Decimal and is a method of representing decimal
numbers within the computer’'s memory. In the BCD representation,
hexadecimal digits @ — 9 are read as their decimal equivalents and
the digits A — F have no meaning. In other words,

BCD REPRESENTATION
Binary Hex Decimal value of BCD
P0000000 00 )
20000001 01 1
P000001 02 2
P0000011 03 3
P0000100 04 4
P0000101 5 5
o0000110 06 6
o0000111 o7 7
00001000 08 8
20001001 09 9
00010000 10 10
00010001 11 11
o0100010 22 22
01000011 43 43
10011000 98 98

This shows that there are six possible codes between the values of 9
and 1@ which are wasted.

In decimal mode the microprocessor automatically adds and
subtracts BCD numbers, e.g.

Decimal Flag = 9 Decimal Flag = 1
17 17
+26 +26
3D 43
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The problems with decimal mode are that it is wasteful of memory and
itis very slow to use mathematically (apart from adds and subtracts). On
the whole it is easier to use hex and convert for output, and so decimal
mode is rarely used. Convert some of the programs in €Chapter 5 to work
in decimal mode and compare their output to normal calculations.

6. The negative flag. So far we have said that the only numbers that
could be held within a single byte were those between @ and 255. We
have talked about having to deal with numbers bigger than 255 by
using two bytes, but we have not mentioned anything about numbers
less than zero. We have used them briefly without realising it back in
Chapter 6. We have seen from our use of numbers from @ — 255 to
represent anything from numbers to addresses, from characters to
BCD numbers, that the microprocessor will behave the same no
matter how we use these numbers. The memory might be a
character or an address or an instruction, but if we add one to it the
microprocessor will not care what it is we are representing. It will just
doit blindly. In Chapter 6 we took our number between @ and 255 and
chose to use it as the value of a relative branch; we chose $0@ to $7F
as a forward (positive) and $80 to $FF as a backward (negative)
branch. This numbering system is purely arbitrary but, as it turns out,
it is mathematically sound to use it for representing positive and
negative numbers. The system we use is called Two's Complement
Arithmetic. We can use the table in Appendix 00 to convert between
normal numbers and two's complement numbers, looking for the
number in decimal in the centre and finding the correct twe's
complement hex value on the outside. Mathematically, we take the
complement of the binary number (all 1's become @'s and all @'s
become 1’s) and thenadd 1, e.g.

COMPLEMENT
3=00000011 — [[1[1[1]1]1]el0]

+1
= [1[1]1]1]1]e[1]=FD=-3
Using this representation, you will see that any byte whose value is
greater than 127 (with its high bit, bit 7, turned on) represents a negative
number, and any value less than 128 (high bit turned off) represents a
positive number.

1T X XXX XXX — NEGATIVE
P XX XXXXX — POSITIVE

The negative flag in the status register is automatically set (like the
zero flag) if any number used as a result of an operation, a comparison
or atransfer, is negative. Since the microprocessor cannot tell if a value
it is dealing with represents a number or a character or anything else, it
always sets the negative flag, if the high bit of the byte being used is set.
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In other words, the negative flag is always a copy of bit 7 (the high bit) of
the result of an operation.

Since the high bit of the byte is a sign bit (representing the sign of the
number) we are left with only seven bits to store the actual number. With
seven bits you can represent any number between @ and 127 but, since
® = —0, on the negative side we add one. So two's complement
numbers can represent any number from —128to +127 using one byte.

Let's try some mathematics using our new numbering system.

Two's Complement Binary Decimal value

Positive + Positive (no different no normal)

P0000111 + 7
+00001001 ++ 9

00010000 16 C=0V=0N=20
Positive + Negative (negative result) -

0000111 + 7
+11110100 +-12

11111011 — 5 C=QV=0N=1

Positive + Negative (positive result)

Q0000111 4 7
+11111101 _ 3
(1)00000100 44 C=1V=0N=0
Positive + Positive (answer greater than 127)
01110011 115
+00110001 + 49

10100100 98 Ce=pYe=1N=1

NOTE: this answer is wrong!

Two's complement numbering seems to handle positive and negative
numbers well, except in our last example. We said previously that two's
complement could only hold numbers from —128 to +127. The answer
to our question should have been 164. As in Chapter 3, to hold a number
bigger than 255 we needed two bytes, here also we must use two bytes.
In normal birary a carry from bit 7 (the high bit) into the high byte was
done through the carry. Intwo’s complement we have seven bits and a
sign bit so the high bit is bit 6. The microprocessor, not knowing we are
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using two's complement arithmetic, has as usual ‘carried’ bit 6 into bit 7.
To enable us to correct this, it has set the overflow flag to tell us that this
has happened.

/7. The overflow flag. This flag is set by a carry from bit 6 to bit 7.
7654321090

eg. [@[1[A[A[+[1]1[1] + [e[o[elefe[e[o[1] = [*]e[elo[e]o[0]0]
127 4 1 = 128

The major use of the overflow flag is in signalling the accidental
changing of sign caused by an ‘overflow’ using two's complement
arithmetic. To correct for this accidental change of signs, the sign bit (bit
7) must be complemented (inverted) and a one carried on to a high byte
if necessary.

This would make our previously wrong result of —92 (10100100)
become 1 x 128 (high byte) + 36 (00100100). 128 + 36 = 164 which is
the correct answer.

A program can test for the negative flag being set or cleared using
BMI (Branch on Minus) or BPL (Branch on Plus) respectively.

A program can test for the overflow flag being set or cleared using
BVS (Branch on Overflow Set) or BVC (Branch on Overflow Clear)
respectively. The overflow flag can be cleared using the CLV command.

Chapter9 SUMMARY

1. The microprocessor contains a special purpose register, the
processor status code register.

76543210
[n[v]-]B[p]i]z]c]

T D I
OVERFLCiW BREAK INIERRUPT\C\ARRY
NEGATIVE ~ BLANK  DECIMAL “ZERO

(UNUSED)

2. CARRY — SEC, CLC
BCS, BCC
Set if carry condition occurs.

3. ZERO — BEQ, BNE
Set if aresult or transfer = Q.

4. BRK is an instruction which sets the break flag and halts the
microprocessor (useful for debugging purposes).
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. INTERRUPT — SEI, CLI
See Chapters 11, 12.
. DECIMAL — SED, CLD

Sets decimal mode. Addition and subtraction are done using BCD
(Binary Coded Decimal).

. Two's complement numbering represents numbers from —128 to
127.

negative X = (complement (X)) + 1
. NEGATIVE — flag set if bit 7 of result is turned on (=1)
BMI, BPL

. OVERFLOW — set on two’'s complement carry
CLv
BVS, BVC
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Chapter 10
Logical Operators and Bit Manipulators

Changing bits within memory

In this chapter we will be looking at a group of instructions unlike any
others we have looked at previously, yet they are absolutely
fundamental to the workings of a computer. They are the ‘logical’ or
‘Boolean’ operations. They are the commands AND (Logical AND), ORA
(Logical OR), and EOR (Logical Exclusive OR). These functions can be
built up using fairly simple circuitry, and almost all functions of the
computer are built up by series of these circuits. The logical operations
of these circuits are available to us through these instructions and it is
this, and not the hardware, with which we will concern ourselves in this
chapter.

We know that bytes of memory and the registers are made up of
groups of eight bits:

To explain the functions of these instructions, we look at their
operation on one bit and then assume that this operation is done on all
eight bits at once. A logical operator is like a mathematical function in
that it takes in two pieces of data and puts out its result as one, e.g.

4+5=9
In this case however the data coming in is going to be single bit

values, either 1's or @'s. To define a logical function we draw up a ‘truth’
table showing all possible inputs and the associated output.
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INPUT 1
0 1
INPUT 2
OUTPUT | OUTPUT
0 FOR FOR
0,0 0,1
OUTPUT | OUTPUT
1 FOR FOR
1,0 1,1

The logical AND

The first instruction we will deal with is the AND instruction. This
performs a logical AND of the accumulator and the specified memory,
leaving the result in A. The result of a logical AND is 1 ifinputisa 1 and
input 2 is a 1. The truth table for this function looks like:

AND

MEMORY
) 1
ACCUMULATOR
) ) )
1 ? 1

When extended to an eight bit byte this means that:
(ol [[o[1[o[T[1]
anp - [Hfei[1[1]0]] 0|
= [ofefto]1]o]*]0]
The zero flag is set if the result = 0, i.e. if there are no coincident ones in
the bits of the two bytes used.
The AND instruction is useful in creating a ‘mask’ to turn off certain bits
within a byte. Suppose, within a byte of any value, we wish to turn off the

3rd, 5th and 6th bits. We would create a ‘mask’ with only the 3rd, 5th and
6th bits turned off and AND this with the byte in question.

76543210
Mask = [1[@Jo[A[e [1[1[1] =997
AND #$97

would turn off the 3rd, 5th and 6th bits of whatever was in the
accumulator.
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The logical OR

The second instruction we will look at is the ORA instruction. This does a
logical OR of the accumulator with the specified memory leaving the
result in the accumulator.

The OR function outputs a 1 ifinput 1 isa 1 orinput 2is a 1. The truth
table for this function looks like:

OR MEMORY [ 1
ACCUMULATOR —_|

0 0 1

1 1 1

When extended to an eight bit byte this means that:
ol1[o[1]o]o]1]0]
ORA [Q|0[1]|1|1]|0(1|®
= [o[1[1[1]1]0[1]e

The zero flag is set if both bytes are used and hence the result is zero.
The ORA instruction is useful for turning on certain bits within a byte
using the masking technique.
Suppose we want to turn on the 2nd, 3rd and 7th bits within a byte. We
would use a mask with only the 2nd, 3rd and 7th bits turned on.

76543210
Mask = [1]e]e[e[1[1]e]o] = ssC
ORA #$8C

would turn on the 2nd, 3rd and 7th bits of whatever was in the
accumulator.

The logical exclusive OR

The last of the logical operators is the EOR. This does a logical exclusive
— OR of the accumulator and memory leaving the result in A. The
exclusive — OR function outputs a 1 ifinputis a 1 orinput 2 is a 1 but not
if both are a 1. The truth table for this function looks like:

MEMORY
FOR 0 1
ACCUMULATOR
0 0 1
1 1 0
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When extended to an eight bit byte the exclusive — OR produces:
[1]o[1[1]1]efo]1]
eor [ 1]e[1]efo]1]0]1]
=[o[ofo[1[1]1]o]o]

The exclusive — OR is used to complement (invert) certain bits within
a byte using masking.

To invert the 1st, 2nd and 4th bits of a byte we would use a mask with
those bits turned on.

765432190
Mask = [ 0[ofe[1]e[1]1]0] = $16
EOR #$16

would invert those bits of the accumulator.
Type the following program in, to test these instructions:

LDA #$CA
AND #8$9F
STA $03
LDA #$A2
ORA #$84
EOR $03
STA $03
BRK

Program summary

Line1

Line 2 AND $9F

Line 3 STORE
Line 4

Line 5 ORA $84

Line 6 EOR $03

$CA 11001010
$8A 10001010
$03 10001010
$A2 10100010
#A6 10100110
$2C 20101100

>>>r>> >

ENTER and RUN this program
and verify the results with those we have reached.

The bit instruction

There is a useful instruction in the 7501 instruction set which does an
interesting set of tests and comparisons. We discussed in Chapter 6
how the CMP command did a subtraction setting the status flags but not
storing the result. Similarly BIT (compare memory bits with the
accumulator) does a logical AND of A and memory, setting only the Z
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flag as a result. The bit instruction also copies bit 7 into the negative flag
and bit 6 into the overflow flag.

Rotating bits within a byte

We will now discuss four other bit manipulation instructions and some of
their consequences. The first instruction we will look at is ASL
(Arithmetic Shift Left). This instruction shifts all the bits in the specified
byte left by one bit, introducing a zero at the low end and moving the
high bit off into the carry flag.

CARRY 765432190

R CEEEEER R

hence

C=7 lo[1]o]1]o[1]o[+]
becomes

C=0 [1[e[1]o[1]0]1]0]
and

C=7 [1e[1]1 e[ 1]1]e]
becomes

C=1 lo[1]1]e1]1]0]0]

Back in Chapter 3 when we explained hex and binary we mentioned
that each bit had the value of 2 position —1

ie. [128]64][32]16]8]4]2]1]

You will notice that the value of each box is two times the value of the box
to the right of it, hence:

20000001 x 2 = POPPPP1D  and
00001000 x 2 = POO1 000D

and furthermore
20111001 x2 = Q1110010

The operation required to multiply any byte by two is the operation
performed by the ASL instruction.
To use our examples from before:

C=? 01010101 ($55)x2—>C =0 10101010 ($AA)
and

C=7 10110110 ($B6)x2—>C =1 01101100 ($6C + CARRY)
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Type in the following program:

LDA #3$0A
ASL A
STA $03
BRK

Use the .M command to examine location $03.

NOTE: this is different to implied addressing because ASL may be
used on data from memory.

We can use this instruction to multiply a number by any power of 2 (1,
2,4,8...). Touse the previous program to multiply by eight instead of
two, insert the following two lines:

ASL A
ASL A
after the first line.

Rotation with carry

As with our addition routines, we may find we want to multiply numbers
greater than 255 (two or more byte numbers). To do this there is a shift
command which uses the carry on the input end of the shift as well as the
output end:

7654321

CARRY
I~ 1
3 7
The instruction to do this is ROL (Rotate One bit Left). To do a two byte
multiply by four, type the following lines:

LDA #8317
STA $03
ROL $03
ROL $03
BRK

We are multiplying the two byte number $170A by four.

NOTE: 1. To avoid swapping registers we have used ROL absolute
which stores its result back in memory.
2. We have rotated both bytes once and then rotated both
again. Rotating the low byte twice and then the high byte twice
would not work, because the high bit from the low byte would be
lost when the carry was used in the second ASL.

ENTER and RUN the program.

Put together the high and low bytes of the answer and check that it
equals four times our original number.
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Rotating to the right

LSR and ROR are the equivalent instructions to ASL and ROL, except
that they shift the bits in the opposite direction.

LSR 76543210 CARRY
e EEBERERL [ ]
7654321

gty

Just as their opposites can be thought of as multiplications by two, so
these can be thought of as division by two, and can be similarly
extended to multi-byte arithmetic. After division, the number left in the
byte is the integer part of the result and the bits which have been shifted
out represent the remainder, e.g.

$1ID-%08 = 3 remainder 5

00011101 = 29 remainder
LSR =2

00001110 = 14 — 1=1
LSR =4

00000111 = 7 — 01 =1
LSR =8

00000011 = B —- 101 =5

NOTE: Just because the shift and rotate instructions can be used for
arithmetic, do not forget their use for shifting bits, e.g. shifting into carry
for testing.

Clever multiplication

We have said that by shifting bits we can multiply by any power of 2 (1, 2,
4,8...,128). These are the same values that represent each bit within a
byte. We have shown in Chapter 3 that by adding these values we can
produce any number between @ and 255.

If we then multiply by each of these values and add the results, this
process is equivalent to multiplying by any value from @ to 255, e.g.

$16x$59 = 00010110 x $59
= 00010000 x $59
+ 00000100 x $59
+ Q00P0P10 x $59
=16x$59 + 4 x $59 + 2 x $59
which we know how to work out from our previous multiplication.

75



This is the algorithm we will use in our generalised multiplication
routine. We will rotate (multiply by two) one number, and add it to the
total, for each bit turned on in the other byte, e.g.

10110 x $59

rotate  $59 101 1[0
rotate  $59 addtototal 1 Q@1 {0
rotate  $59 addtototal 1 @1 0
rotate  $59 10110
rotate  $59 addtototal @@ 1 1 0

For simplicity’s sake, our generalised multiplication routine will only
handle results less than 255.
To multiply $1B by $09 type:

L70

L120

LDA #$1B
STA $03
LDA #$09
STA $03
LDA #$00
ROR $04
ROL $04
LSR $03
BCC L120
CLC

ADC $04
BNEL70
STA $05
BRK

Program summary

lines1-6

line 7

lines 8-9

lines 10 - 11

line 12

initialise values to be multiplied and the total to @. The
ROR followed by ROL has no effect the first time
through but only the ROL is within the loop.

except for the first time through, this multiplies one of
the numbers (2) by two each time around the loop.
rotates the other number (1) bit by bit into the carry, and
then tests the carry to see if the other number (2) should
be added this time around the loop. If the carry is clear,
the possibility that the number (1) has been shifted
completely through (= @ — Multiplication is completed)
is tested — line 12.

add to the total (in A) the number (2) which is being
multiplied by two each time around the loop.

if the branch on line 9 was taken, this will test for the end
of multiplication (number (1) = @ shifted completely
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through). If the branch on line 9 was not taken, this
branch on not equal will always be true because we are
adding a number (2) greater than zero to a total which
will not be greater than 255. =

lines13-14 END.

NOTE: this multiplication routine is much more efficient than the one
given in Chapter 7. By that method we would have had to loop at least
nine times, whereas with this, had we swapped and used 9 as number
(1) and $1B as number (2), we would have only looped four times
(number of bits needed to make 9 — 1001).

Type:

WATCH (address 7 336)
ENTER
RUN

and verify the results.
Now change the numbers used to perform a different calculation
(make sure the answer <256), e.g.
10 A906 LDA #$06
30 A925 LDA #$25
ENTER and RUN

with these values and again verify the results for yourself.

Chapter 10  SUMMARY

1. AND Q1

0,010

1101 | mostoften used to mask off bits.
2. ORA 01

QD1

11111 most often used to mask on bits.

3. EOR (exclusive or)

Q1
Q0|1
11 1[@| mostoften used to mask invert bits.

4. BIT performs AND without storing the result.

Z is set or cleared
N becomes bit 7
V becomes bit 6
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. ASL 7 6 54 321290 Arithmetic Shift Left

IS EEEECEDE

CARRY
most often used to multiply by 2.
. ROL 7654 3210 Rotate One Bit Left
r “ — 1 € (—J — < <
. i = |
7 7
CARRY
. LSR Logical Shift Right

76 543210

o FFEPEFER-(]

CARRY
. ROR 765 4 3210 Rotate One Bit Right
FREEERRRI
S S|
D
CARRY
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Chapter 11 -
Details of Program Control

The program counter

We have talked a lot about the different operations that the
microprocessor can perform, but we have said very little about how it
goes about those tasks. This is perfectly alright, because in most cases
we don't need to know. In one case, however, knowing how the
microprocessor is operating leads us into a whole new list of commands
and a powerful area of the microprocessor’s capabilities.

The microprocessor contains a special purpose, two byte register
called the Program Counter (PC), whose sole job is to keep track of
where the next instruction is coming from in memory. In other words, the
program counter contains the address of the next byte to be loaded into
the microprocessor and used as a command.

If we think of our post office boxes again, each holding either an
instruction (opcode) or the data/address it acts upon (operand), this is
what our program looks like, e.g.

e LDA #$57
57

8D

05| b STA$3005
30

0} BRK

To 'run’ our post office box program, we would go through each box in
turn and act on the data within each box. Now imagine there was a large
clock type counter showing a box address which we looked at to know
which box to find. Normally this counter would go up one by one, taking
the next byte in order. However, if it wanted us to move to a new area of
the boxes, it would just flash up the address of the next instruction it
wanted us to find. This is exactly how the JMP command operates.

Storing into the program counter

The instruction JMP $address only loads the two byte $address into the
program counter, the next instruction is then loaded from memory at that
address, and a JMP has been executed.

NOTE: the branch instructions add or subtract from the program
counter in a similar way, thereby creating a ‘relative’ jump.

79



The program counter and subroutines

If it were possible to store the program counter just before doing a JMP
and changing it to a new address, we would later be abletoreturntothe
same place in memory by reloading that stored piece of memory back
into the program counter. In other words, if we had noticed that the post
office box counter was about to change, and we noted down the
address it showed (our current address) before it changed, we would at
some future stage place that back on the counter and return to where we
had left off.
This, of course, is a subroutine structure, e.g.

19 PRINT “HELLO WORLD"
20 GOSUB 100

30 PRINT “I'M FINE"

40 END

109 PRINT “HOW ARE YOU?"
110 RETURN

would print:

HELLO WORLD
HOW ARE YOU?
I'M FINE

We said at the beginning of the book that a machine language program
can be thought of as a subroutine called from BASIC using the SYS
command.

You can also create subroutines from within a machine language
program. They are called using the JSR (Jump to Subroutine)
command. As when called from BASIC, to return from a machine
language subroutine you use the RTS (Return From Subroutine)
command.

2000 LDX #$00 ]
2002 JSR $2009

2005 INX -
2006 BNE $2002

2008 BRK =
2009 LDY #$03 ]
200B STY $0C00
200E DEY = subroutine
200F BNE $200B

2011 RTS o
Remember that this program will go extremely fast.

controlling portion
of program
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It is good programming style to use subroutines for two major
reasons. Firstly, it is easy to locate and fix errors within subroutines. They
can be tested and fixed independently of the rest of the program.
Secondly, by using subroutines it is possible to build up a ‘library’ of
useful subroutines, e.g. sprite movers, screen clearers, byte finders etc.
which may be added as a subroutine to any program.

We have said that the return address of the subroutine is stored away
but we have not said anything about how it is stored. We want some sort
of filing system to store this address which will give us a number of
necessary features.

The stack control structure

Firstly, it must be flexible and easy to use. Secondly, we would like to be
able to provide for the possibility that a subroutine will be called from
within a subroutine (called from within a subroutine, called from within
.. ). Inthis case we have to use a system which will not only remember a
return address for each of the subroutines called, but will have to
remember which is the correct return address for each subroutine. The
system which we use to store the addresses on a data structure is called
a 'stack’. A stack is a LIFO structure (Last In First Out). When an RTS is
reached, we want the last address put on the stack to be used as a
return address for the subroutine.

Imagine the stack to be one of those spikes that people sometimes
keep messages on.

Every time you see a JSR instruction, you copied down the return
address onto a scrap of paper from the post office box counter. As soon
as you had done this, you spiked the piece of paper on the stack. If you
came across another JSR you merely repeated the process. Now when
you come across an RTS, the only piece of paper you can take off the
spike (stack) is the top one. The others are all blocked by those on top of
them. This top piece of paper will always contain the correct return
address for the subroutine you are returning from (that which was most
recently called).

Subroutines and the stack

The JSR and RTS commands do this automatically using the system
stack. The stack sits in memory from $100 to $1FF (Page 1) and grows
downwards. (Imagine the spike turned upside down). This makes no
difference to its operation. The top of the stack (or actually the bottom) is
marked by a special purpose register within the microprocessor called
the Stack Pointer (SP). When a JSR is done, the two byte program
counter is put on the stack and the stack pointer (SP) is decremented by
two (a two byte address is put on).
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BEFORE

Program Counter $AB $CD
STACK
Address
SP=XX $JK $100+XX
AFTER (JSR $PQMN)
Program Counter | $PQ | $MN

?TACK

Address
$JK $100+XX
$AB $100+XX—-1
SP=xX-2| $CD $100+XX-2

An RTS takes the top two bytes off the stack and returns them to the
program counter. The stack pointer is incremented by two.

BEFORE

Program Counter

STACK

£

1 Address
$JK $100+YY+2
$AB $100+YY +1
SP=YY $CD $100+YY

Program Counter

STACK

AFTER (RTS)

Address
SP=YY+2| $JK $100+YY+2

DUMP memory from $100 to $200 to have alook atthe stack memory.

One major advantage of the stack is that it can also be used to store
data by using the instructions PHA (Push Accumulator onto the Stack)
and PLA (Pull Accumulator off the Stack) respectively to put the
contents of the accumulator on and off the stack.

WARNING: make sure you put things on and off the stack in the
correct order.

If you use the RTS while there is extra data on the top of the stack, the
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RTS will return to an address made up of the two top bytes of the stack
whatever they are.
Let us use these instructions to test the operation of the stack. Type:

JSR L40
INC $D020
RTS
L40 PLA
TAX
PLA
STX $03
STA $04
PHA
TXA
PHA
BRK

Program summary

Line 1 JSR — return address (address of next instruction is
placed on the stack). (Actually it points to the byte
before the next instruction because the PC is
incremented each time before a byte is ‘fetched’ from
memory.)

Line2 increments screen border colour (see Appendix 6) just
to show that the program has returned satisfactorily.
satisfactorily.

Line 3 END

Lines4-6 take the top two bytes of the stack $03, $04.
Lines7-8 store them low byte/high byte.

Lines9-11 return bytes to stack IN CORRECT ORDER
Line 12 END of Subroutine.

ENTER and RUN this program. Examine the location $04. Put the results
together and compare them against the expected address.

The two instructions TSX (Transfer SP into X) and TXS (Transfer X into
SP) are available to do direct manipulations on the SP. Write a program
with a subroutine within a subroutine, both of which save the SP in
memory (via X) to see the change in SP when a subroutine is called and
when an RTS is executed.

Interrupts

Although it is felt that a full explanation of interrupts is unwarranted in a
book of this nature, you should at least be aware of what they are, and
the role that they play in the operating system. An interrupt, in general, is
sent to the computer's microprocessor by an external hardware device.
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Interrupts are used primarily to alert the computer to the fact that
something is going on in the outside world, which might require its
attention. For example, every sixtieth of a second an interrupt is sent, to
remind the computer to carry out the update of the ‘jiffy’ clock and to
read the keyboard.

When an interrupt is generated, the computer stops what itis currently
doing and rushes off to a separate routine, which is designed to handle
the interrupt. When the computer has finished the interrupt routine, it
automatically returns to where it was interrupted from. There are several
types of interrupt that may occur, and so there are several of these
‘interrupt routines’ that the computer may be sent to. The absolute
addresses of these routines can be found from the following two byte
vectors.

$fffe-$ffff This vector points to the routine which handles what are
knows an |.R.Q. (interrupt request) interrupts. This form of interrupt is
generated by such sources as the clock which generates an interrupt
every sixtieth of a second. BRK interrupts (software) also pass through
to the program pointed to by this vector. Interrupts that pass through this
vector may be prevented with the use of the SEl (set interrupt disable)
instruction, and re-enabled using the CLI (clear interrupt disable)
instruction. For this reason, interrupts that use this vector are often
known as ‘maskable’ interrupts.

$fffa-$fffo  This vector points to the routine that handles N.M.I.s
(non-maskable interrupts). These forms of interrupts cannot be
disabled. The C16 does not make use of non-maskable interrupts.

NOTE: It is posssible to trap the computer before it goes to its I.R.Q.
interrupt routine, sending it instead to a routine that you may have
written yourself. This is made possible due to the fact that the computer
uses another vector, which is situated in R.A.M., at locations $0314 and
$0315, to getto its interrupt routine. This address may be changedtothe
start of your own interrupt handling routine. At this stage, however, it is
recommended that you do NOT change the vector at these locations
before consulting other material which covers interrupts more
extensively. In the event that this vector is changed incorrectly the
computer may ‘hang’, requiring the turning off of your computer, or the
depression of the reset switch.

Chapter 11 SUMMARY

1. Program Counter (PC) points to the next byte in memory to be used
as an instruction.
2. JMP stores address in PC.

3. Branches add or subtract from PC.
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11.
12.

. JSR stores PC on stack and stores new address in PC (subroutine).
. RTS takes the top two bytes off stack stores in PC (return address).
. The stack can only have things put on at one end. They can only be

taken off from the same end in the same order they were put on.

. The stack pointer keeps track of the ‘top’ of the stack.

RTS = SP=SP+2
JSR = SP=SP-2

. PHA, PLA store and retrieve the accumulator from the stack. Be

sure to take things off the stack in the same order they went on.
TXS, TSX transfer contents between the stack pointer and X.

. BRK PC —Stack (2 bytes)

Status byte —Stack
Contents of
(FFFE,FFFF) —PC
PHP, PLP push and pull a processor status word onto the stack.

Interrupts come from chips external to the microprocessor
PC —Stack (2 bytes)
Status byte —Stack
(FFFE,FFFF) —PC

They are handled by ROM handling routines.
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Chapter 12
Commodore 16 Kernal

Concepts of Kernal and Operating System

A microprocessor, no matter how large its instruction set is and no
matter how fast it can run, will get nowhere without a well-knit piece of
software that supervises it. This supervisory program is known as an
OPERATING SYSTEM. The operating system accepts what you type on
the keyboard; echoes it on the monitor: prints an error message if it does
not understand what you typed; executes your command if it makes
sense; loads a program from disk drive if necessary; prints something
on the printer if required ... In other words, the operating system
co-ordinates and manages all resources of the computer to be at your
service.

The operating system has a large collection of routines that perform
system initializations, memory management and all kinds of input/
output. These routines are usually highly hardware dependent which
means different routines have to be written for different devices. From a
user point of view, you want to be able to use these routines without
worrying about what hardware you are dealing with. Most
microcomputer manufacturers prepare a list of callable system routines
with their addresses and methods of calling. The problem arises when a
later version of the operating system is released: all these entry points
will be different. Old software which made use of these routines is no
longer compatible.

Commodore 16 has solved this problem by storing all the entry points of
the supported system routines in a Jump Table called KERNAL. This
jump table is located on the last page of memory, in the KERNAL ROM.
The entries of this table are well documented and will remain
unchanged in future ROM releases. Any individual system routine can
be modified and relocated inside the ROM. However, such a change will
be ‘transparent’ to the user program as long as the jump pointer in the
KERNAL has been updated.
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Example:

—

JMP(3031C)| SFFC6

$FFC6 | JMP($031C)
JSRSFFC6T
$ED18
¥ RIS~ ™
Application
Program
ROM 3.5

RTS
ROM X.X

# PXXXX

The application program will run just as well on both ROM versions.

Some useful Kernal routines

.X=end SAVE pointer
address (low)
.Y=end SAVE pointer

address (high)

Regis-
Preparatory Communications tegrs
Routine Address Function Routines Registers Affected
User Interface
1. CHRIN $FFCF | Input 1 Character — .A=input character XY
(from keyboard)
2., CHROUT $FFD2 Output 1 Character — .A=output character —
(to Screen)
3. GETIN $FFE4 Get 1 Character from — .A=character removed| .X,.Y
Keyboard Queue =0if none
4. PLOT $FFFO Read/Set Cursor Position — C flag=1read A
=0 set
X=row(0-24)
.Y =column(0-39)
storage 1/0
3. SETLFS $FFBA | Set Up Logical File No. — .A=logical file no. —
First Address (Device No.) .X=device no.
and Second Address .Y=command
(Command) of Device =$FF if no command
6. SETNAM $FFBD | Set Up File Name — .A=length of filename | —
X=filename address
(low)
.Y=filename address
(high)
7. LOAD $FFD5 Load/Verify Memory SETLFS |.A=0load X,.Y
from Device SETNAM |=1 verify
8. SAVE $FFD8 Save Memory to Device | SETLFS | A=page-zero address
SETNAM |of start SAVE pointer
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Using Kernal routines

For you to use the KERNAL routines, you must:
— find out the right one to use and its entry point address
— call preparatory routine, if necessary
— pass parameters in communication registers
— call the routine
— handle any return error (indicated by Carry Flag set)
— save and restore registers affected by the routine, if necessary.

1. CHRIN — INPUT 1 CHARACTER (FROM KEYBOARD)

When this routine is initially called, the cursor will blink and input a line of
characters terminated with a carriage return. The routine will return with
the first character in .A. Subsequent calls will retrieve the characters
already input one by one. Detection of a carriage return means the
whole input line has been retrieved. A subsequent call will initiate the
cursor blinking and line input again.

2. CHROUT — OUTPUT 1 CHARACTER (TO SCREEN)

A character whose ASCI| value is in the A is printed on the screen and
the cursor advances.

3. GETIN — GET 1 CHARACTER FROM KEYBOARD QUEUE

Any key pressed on the keyboard is detected by the system IRQ
interrupt handler. Its ASCII code will be stored in a keyboard buffer
queue which can hold up to 10 characters. When called, this routine will
remove the first character from the queue. If there is no character in the
queue, a byte zero will be returned in the .A.

4. PLOT — READ/SET CURSOR POSITION

This routine can read/set the current cursor position when called with
the Carry Flag set/clear accordingly. .X stores the row number (0-24)
and .Y stores the column number (@-39).

5. SETLFS — SET LOGICAL FILE NUMBER, FIRST AND SECOND
ADDRESS OF DEVICE

This routine assigns a logical file number to a physical device (device
number 0-31). The secondary address or command of the device is also

declared here. There are a number of reserved device numbers for the
Commodore 16:
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Device number  Device

? Keyboard

Cassette

RS-232 Device
Screen

Serial Bus Printer
Serial Bus Disk Drive

O~ wWN =

Alis used to pass the logical file number .X the device numberand .Y the
command. If no command is required, put $FF in Y.

6. SETNAM — SET UP FILE NAME

This routine sets up a file name for the LOAD or SAVE routine. .A is used
to pass the length of the file name and .X and .Y contain the address of
the file name (X = low order, .Y = high order address). If no file name is
necessary, .A stores a zero showing a file name of null length.

7. LOAD — LOAD/VERIFY MEMORY FROM DEVICE

When called with a zero in .A, this routine loads a file from device into
memory. When called with a one in .A, this routine verifies a file from
device against the corresponding contents in the memory.

8. SAVE — SAVE MEMORY TO DEVICE

This routine saves a contiguous portion of memory onto a device file.
The start address of the memory to be saved is stored in a page-zero
pointer. The A is used to pass the page-zero address of this start
pointer. The .X and .Y are used to pass the end address (in low, high
order).

Chapter 12 SUMMARY

1. The KERNAL in ROM handles the computer's contact with the
outside world.

2. KERNAL routines will be upwardly compatible with later ROM
releases.
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APPENDICES

Introduction to the Appendices

We have provided you with charts and tables of useful information
necessary for machine code programming on the Commodore 16. The
information presented will stand as a useful reference long after you
have left ‘beginner’ status but until then these tables can be used by
the beginner. We have provided explanations and occasionally
examples of the most useful parts of the tables. Those that have no
accompanying explanation are really beyond the scope of this book
and are included for interest's sake, as well as to give you a handy
reference and a start towards more complex and intricate programming
in the future.

91



92



Appendix 1

7501 Instruction Codes

These tables should be a constant reference while writing machine
code or assembly code programs. There is a list of every instruction with
a description, available addressing modes, instruction format, number
of bytes used, the hex code for the instruction, and a list of the status
flags changed as a result of the instruction.
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7501 Microprocessor Instructions
in alphabetical order

ADC

AND
ASL

BCC
BCS
BEQ
BIT

BMI
BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLl
CLv
CMP

CPX
CPY
DEC
DEX
DEY
EOR

INC
INX
INY
JMP
JSR

Add Memory to Accumulator with
Carry

“AND" Memory with Accumulator
Shift Left One Bit (Memory or
Accumulator)

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with
Accumulator

Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus

Force Break

Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit
Clear Overflow flag

Compare Memory and
Accumulator

Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One
“Exclusive-Or"” Memory with
Accumulator

Increment Memory by One
Increment Index X by One
Increment Index Y by One
Jump to New Location

Jump to New Location Saving
Return Address
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LDA

LDX
LDY
LSR

NOP
ORA
PHA
PHP
PLA

PLP

ROL

ROR

RTI
RTS
SBC

SEC
SED
SEl

STA
STX
STY
TAX
TAY
TSX
TXA
TXS
TYA

Load Accumulator with

Memory

Load Index X with Memory

Load Index Y with Memory

Shift Right one Bit (Memory or
Accumulator)

No Operation

“OR" Memory with Accumulator
Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack

Pull Processor Status from Stack
Rotate One Bit Left (Memory or
Accumulator)

Rotate One Bit Right (Memory or
Accumulator)

Return from Interrupt

Return from Subroutine

Subtract Memory from
Accumulator with Borrow

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status
Store Accumulator in Memory
Store Index X in Memory

Store Index Y in Memory
Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator



7501 Instruction Codes

Assembly HEX
Name Addressing Language No oP Status
Description Mode Form Bytes | Code Register
ADC NV-BDI ZC
Add memory to Immediate ADC #Oper 2 69 |ee L
accumulator with carry Zero Page ADC Oper 2 65
Zero Page X ADC Oper.X 2 75
Absolute ADC Oper 3 6D
Absolute X ADC Oper.X 3 70
Absolute.Y ADC Oper.Y 3 79
(Indirect.X) AND (Oper.X) 2 61
(Indirect).Y ADC (Oper).Y 2 71
AND NV -BDIZC
“AND" memory with Immediate AND #Oper 2 29 | e °
accumulator Zero Page AND Oper 2 25
Zero Page X AND Oper X 2 35
Absolute AND Oper 3 2D
Absolute. X AND Oper.X 3 3D
Absolute.Y AND Oper. Y 3 39
(Indirect.X) AND (Oper.X) 2 31
(Indirect).Y AND (Oper.)Y 2 31
ASL NV -BDI ZC
Shift left one bit Accumulator ASLA 1 OA | e ° e
(Memory or Accumulator) Zero Page ASL Oper 2 06
Zero Page X ASL Oper.X 2 16
(7[6]514]3]2[1]0J 0] Absolute ASL Oper 3 OE
Absolute X ASL Oper.X 3 1E
BCC NV-BDI ZC
Branch on carry clear Relative BCC Oper 2 90
BCS NV-BDI ZC
Branch on carry set Relative BCS Oper 2 BO
BEQ NV-BDIZC
Branch on result zero Relative BEQ Oper 2 FO
BIT NV-BDI ZC
Test bits in memory Zero Page BIT Oper 1 24 M7M .
with accumulator Absolute BIT Oper 3 2C &
BMI NV -BDI ZC
Branch on result minus Relative BMI Oper 2 30
BNE NV-BDIZC
Branch on result not zero Relative BNE Oper 2 DO
BPL NV-BDI ZC
Branch on result plus Relative BPL oper 2 10
BRK NV-BDI ZC
Force Break Implied BRK 1 00 101
BVC NV-BDIZC
Branch on overflow clear Relative BVC Oper 2 50
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7501 Instruction Codes

by one

Assembly HEX

Name Addressing Language No oP Status
Description Mode Form Bytes | Code Register
BVS NV -BDIZC
Branch on overflow set Relative BVS Oper 2 70
CLC NV -BDIZC
Clear carry flag Implied CLC 1 18 0
CLD NV -BDIZC
Clear decimal mode Implied CLD 1 D8 0
CLI NV -BDIZC
Clear interrupt flag Implied Cul 1 58 0
CLV NV-BDIZC
Clear overflow flag Implied CLv 1 B8 0
CMP NV-BDIZC
Compare memory and Immediate CMP #Oper 2 C9 |e oo
accumulator Zero Page CMP Oper 2 C5

Zero Page. X CMP Oper X 2 D5

Absolute CMP Oper 3 CD

Absolute. X CMP Oper.X 3 DD

Absolute Y CMP Oper.Y 3 D9

(Indirect.X) CMP (Oper.X) 2 €

(Indirect).Y CMP (Oper).Y 2 D1
CPX NV-BDI ZC
Compare memory and Immediate CPX #Oper 2 EO |e oo
index X Zero Page CPX Oper 2 E4

Absolute CPX Oper 3 EC
CPY NV-BDI ZC
Compare memory and Immediate CPY #0Oper 2 Co |e oo
index Y Zero Page CPY Oper 2 C4

Absolute CPY Oper 3 cc
DEC NV -BDIZC
Decrement memory Zero Page DEC Oper 2 Cé |e °
by one Zero Page X DEC Oper.X 2 D6

Absolute DEC Oper 3 CE

Absolute X DEC Oper.X 3 DE
DEX V-BDIZC
Decrement index X Implied DEX 1 DA |e °
by one
DEY NV -BDI ZC
Decrement index Y Implied DEY 1 88 |e .
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7501 Instruction Codes

Assembly HEX

Name Addressing Language No oP Status
Description Mode Form Bytes | Code Register
EOR NV-BDIZC
“Exclusive Or" memory Immediate EOR #Oper 2 49 | e °
with accumulator Zero Page EOR Oper 2 45

Zero Page X EOR Oper X 2 55

Absolute EOR Oper 3 4D

Absolute X EOR Oper.X 3 5D

Absolute Y EOR Oper.Y 3 59

(Indirect.X) EOR (Oper.X) 2 41

(Indirect).Y EOR (Oper).Y 2 51
INC NV -BDIZC
Increment memory Zero Page INC. Oper 2, E6 | e °
by one Zero Page X INC Oper.X 2 F6

Absolute INC Oper 3 EE

Absolute X INC Oper.X 3 FE
INX NV-BDI ZC
Increment index X by one Implied INX 1 E8 | e °
INY NV-BDI ZC
Increment index Y by one Implied INY 1 C8 | e °
JMP NV-BDIZC
Jump to new location Absolute JMP Oper 3 4C 2

Indirect JMP (Oper) 3 6C
JSR NV-BDIZC
Jump to new location Absolute JSR Oper 3 20
saving return address
LDA NV -BD I ZC
Load accumulator Immediate LDA #Oper 2 A9 | e °
with memory Zero Page LDA Oper 2 A5

Zero Page.X LDA Oper.X 2 B5

Absolute LDA Oper 3 AD

Absolute. X LDA Oper.X 3 BD

Absolute.Y LDA OperY 3 B9

(Indirect.X) LDA (Oper.X) 2 Al

(Indirect).Y LDA (Oper).Y 2 B1
LDX NV -BDI ZC
Load index X Immediate LDX #Oper 2 A2 | e e
with memory Zero Page LDX Oper 2 A6

ZeroPage Y LDX Oper.Y 2 B6

Absolute LDX Oper 3 AE

Absolute Y LDX Oper.Y 3 BE
LDY NV-BDIZC
Load index Y Immediate LDY #Oper 2 AD | e °
with memory Zero Page LDY Oper 2 A4

Zero Page.X LDY Oper X 2 B4

Absolute LDY Oper ) AC

Absolute X LDY Oper.X 3 BC
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7501 Instruction Codes

Assembly HEX
Name Addressing Language No OoP Status
Description Mode Form Bytes | Code Register
LSR NV-BDIZC
Shift right one bit Accumulator LSRA 1 4A |0 L)
(memory or accumulator) Zero Page LSR Oper 2 46
Zero Page. X LSR Oper.X 2 56
@ mﬂm Absolute LSR Oper 3 4E
Absolute. X LSR Oper.X 3 5
NOP NV-BDI ZC
No operation Implied NOP 1 EA
ORA NV-BDIZC
“OR’ memory with Immediate ORA #Oper 2 09 |e °
accumulator Zero Page ORA Oper 2 05
Zero Page . X ORA Oper.X 2 15
Absolute ORA Oper 3 oD
Absolute.X ORA Oper.X 3 1D
Absolute.Y ORA Oper.Y 3 19
(Indirect.X) ORA (Oper.X) 2 01
(Indirect).Y ORA (Oper).Y 2 1
PHA NV -BDIZC
Push accumulator Implied PHA 1 48
on stack
PHP NV -BDIZC
Push processor status Implied PHP | 08
on stack
PLA NV-BDIZC
Pull accumulator Implied PLA 1 68 |e .
from stack
PLP NV -BDI ZC
Pull processor status Implied PLP 1 28 |(eeveeece
from stack
ROL NV-BDIZC
Rotate one bit left Accumulator ROL A 1 2A e L)
(memory or accumulator) Zero Page ROL Oper 2 26
Zero Page. X ROL Oper X 2 36
Absolute ROL Oper 3 2E
Absolute. X ROL Oper.X 3 3E
ROR NV-BDIZC
Rotate one bit right Accumulator ROR A 1 6A |e oo
(memory or accumulator) Zero Page ROR Oper 2 66
Zero Page X ROR Oper.X 2 76
Absolute ROR Oper 3 6E
Absolute. X ROR Oper.X 3 IE
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7501 Instruction Codes

Assembly 1 HEX

Name Addressing Language No oP Status
Description Mode Form Bytes | Code Register
RTI NV-BDIZC
Return from interrupt Implied RTI 1 40 |eseeeovoo
RTS NV -BDIZC
Return from subroutine Implied RTS 1 60
SBC NV -BDIZC
Subtract memory from Immediate SBC #Oper 2 ES |ee °e
accumulator with borrow Zero Page SBC Oper 2 E5

Zero Page X SBC Oper.X 2 F5

Absolute SBC Oper 3 ED

Absolute. X SBC Oper.X 3 FD

Absolute.Y SBC Oper.Y 3 F9

(Indirect.X) SBC (Oper.X) 2 E1

(Indirect).Y SBC (Oper).Y 2 F1
SEC NV-BDI ZC
Set carry flag Implied SEC 1 38 1
SED NV-BDIZC
Set decimal mode Implied SED 1 F8 1
SEI NV-BDIzZC
Set interrupt disable Implied SEI 1 78 1
status
STA NV-BDIZC
Store accumulator Zero Page STA Oper 2 85
in memory Zero Page X STA Oper.X 2 95

Absolute STA Oper 3 8D

Absolute. X STA Oper.X 3 9D

Absolute Y STA Oper.Y 3 99

(Indirect.X) STA (Oper.X) 2 81

(Indirect).Y STA (Oper).Y 2 91
STX NV-BDIZC
Store index X in memory Zero Page STX Oper 2 86

ZeroPage.Y STX Oper.Y 2 96

Absolute STX Oper 3 8E
STY NV -BDI ZC
Store index Y in memory Zero Page STY Oper 2 84

Zero Page.X STY Oper.X 2 94

Absolute STY Oper 3 8C
TAX NV -BDI ZC
Transfer accumulator Implied TAX 1 AA | e .
toindex X
TAY NV-BDIZC
Transfer accumulator Implied TAY 1 A8 | e °
to index Y
TSX NV-BDIZC
Transfer stack pointer Implied TSX 1 BA | °
to index X
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7501 Instruction Codes

Assembly HEX
Name Addressing Language No oP Status
Description Mode Form Bytes | Code Register
TXA NV-BDI ZC
Transfer index X Implied TXA 1 BA | e .
to accumulator
XS NV-BDIZC
Transfer index X to Implied TXS 1 9A
stack pointer
TYA NV-BDIZC
Transferindex Y Implied TYA 1 98 | e °

to accumulator
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75@1 Microprocessor Operation Codes

in numerical value order

00 — BRK

01 — ORA — (Indirect.X)
02— 7?7?

03— 77?

04 — ?27?

05— ORA — Zero Page
06 — ASL — Zero Page
07 — ?7?

08 — PHP

09 — ORA — Immediate
0A — ASL — Accumulator
0B — 777

0C—17?7?

0D — ORA — Absolute
OE — ASL — Absolute
OF — 72?27

10— BPL

11— ORA — (Indirect).Y
12272

13— 777

14— 272

15— ORA — Zero Page X
16 — ASL — Zero Page.X
17—772

18— CLC

19 — ORA — Absolute Y
1A—297

1B — 777

1C— 77?7

1D — ORA — Absolute. X
1E— ASL — Absolute X
1F— 272

20— JSR

21 — AND — (Indirect.X)
29999

23— 7?77

24 — BIT — Zero Page
25— AND — Zero Page
26 — ROL — Zero Page
27— 777

28 — PLP

29 — AND — Immediate
2A — ROL — Accumulator
2B—77?

2C — BIT — Absolute
2D — AND — Absolute
2E — ROL — Absolute

2F — 777

30 — BMI

31 — AND — (Indirect).Y
30—

kot ]

34— 272

35 — AND — Zero Page X
36 — ROL —Zero Page X
37 —97?

38— SEC

39 — AND — Absolute.Y
3A— 77?7

3B— 7?77

G P99

3D — AND — Absolute X
3E — ROL — Absolute.X
3F — NOP

40 — RTI

41 — EOR — (Indirect.X)
4227

43— 927?

44 — 977

45 — EOR — Zero Page
46 — LSR — Zero Page
47 — 7

48 — PHA

49 — EOR — Immediate
4A — LSR — Accumulator
4B 977

4C — JMP — Absolute
4D — EOR — Absolute
4E — LSR — Absolute

4F — 777

50— BVC

51 — EOR (Indirect).Y

52 — 277

53777

54— 772

55 — EOR — Zero Page . X
56 — LSR — Zero Page. X
57 272

58 — CLI

59 — EOR — Absolute. Y
5A — 777

58 — 777

5C—?77?

5D — EOR — Absolute. X

101

5E — LSR — Sbsolute X
5F_ 777

60— RTS

61 — ADC — (Indirect.X)
62 — 777

63— 777

64— 777

65— ACD — Zero Page
66 — ROR — Zero Page
67 — 777

68 — PLA

69 — ADC — Immediate
6A — ROR — Accumulator
6B — 777

6C — JMP — Indirect

6D — ADC — Absolute
6E — ROR — Absolute
B6F — 777

70— BVS

71— ADC — (Indirect).Y
72 — 2777

7899

74— 77?7

75 — ADC — Zero Page.X
76 — ROR — Zero Page.X
PP

78 — SEI

79 — ADC — Absolute Y
7A— 77?

7B 777

7C— 77?

70 — ADC — Absolute X
7E — ROR — Absolute.X
TF— 277

80— 777

81 — STA — (Indirect.X)
82— 777

83 — 77?7

84 — STY — Zero Page
85— STA — Zero Page
86 — STX — Zero Page
87— 777

88 — DEY

89 777

8A — TXA

88 — 777

8C — STY — Absolute



8D — STA — Absolute
8E — STX — Absolute
8F 777

90— BCC

91 — STA — (Indirect).Y
92 — ?7?

93 —?7?

94 — STY — Zero Page.X
95 — STA — Zero Page X
96 — STX — Zero Page.Y
97— ?7?

98 — TYA
99 — STA — Absolute.Y
9A — TXS
9B — ?7?
9C — 7?7?
9D — STA — Absolute. X
9E — 77?
9F — ?77?

AO — LDY — Immediate
A1 — LDA — (Indirect.X)
A2 — LDX — Immediate
A3 — 772

A4 — LDY — Zero Page
A5 — LDA — Zero Page
A6 — LDX — Zero Page
AT —299

A8 —TAY
A9 — LDA — Immediate
AA — TAX
AB — 277

AC — LDY — Absolute
AD — LDA — Absolute
AE — LDX — Absolute
AF — 272

BO— BCS

B1 — LDA — (Indirect).Y
B2 — 777

B3 — 777

B4 — LDY — Zero Page X
B5 — LDA — Zero Page.X
B6 — LDX — Zero Page. Y
B7 — 777

B8 — CLV

B9 — LDA — Absolute Y
BA — TSX

BB — 777

BC — LDY — Absolute. X
BD — LDA — Absolute X
BE — LDX — Absolute.Y
BF — 7277

CO — CPY — Immediate
C1 — CMP — (Indirect.X)
G2 — 979

G3.— 777

C4 — CPY — Zero Page
C5 — CMP — Zero Page
C6 — DEC — Zero Page
O 139

C8 — INY

C9 — CMP — Immediate
CA — DEX

CB— ?7?

CC — CPY — Absolute
CD — CMP — Absolute
CE — DEC — Absolute
CF—77?

DO — BNE
C1— CMP — (Indirect).Y
D2—"272
D3 ?7?
D4 — 7?

D5 — CMP — Zero Page X
D6 — DEC — Zero Page X
D7 — ??7?

D8 — CLD

D9 — CMP — Absolute.Y
DA — ?7?

???Undefined Operation

102

DB — ?7?

DC — ?7??

DD - CMP — Absolute X
DE — DEC — Absolute. X
DF —

EO0 — CPX — Immediate
E1 — SBC — (Indirect.X)
E2 999

E3— 777

E4 — CPX — Zero Page
E5 — SBC — Zero Page
E6 — INC — Zero Page
E7 —27?

E8 — INX

E9 — SBC — Immediate
EA — NOP

EB_— ?7?

EC — CPX — Absolute
ED — SBC — Absolute
EE — INC — Absolute
EF— 722

FO — BEQ

F1 — SBC — (Indirect).Y
F2_ 77?

F3— 797

F4_ 777

F5 — SBC — Zero Page X
F6 — INC — Zero Page X
Fr—77

F8 — SED

F9 — SBC — Absolute. Y
FA— 777

FB— 772

FCi— 779

FD — SBC — Absolute X
FE — INC — Absolute X
FF_— 772



Appendix 2

75@1 Microprocessor Registers

ACCUMULATOR

INDEX REGISTER Y

7 0
S ]
7 0
[ ]
7 0
[ X ] INDEXREGISTER X
7 0
[ al
0
]

| PCH PCL PROGRAM COUNTER
7
[o1] S STACK POINTER
7 0
[NTVvI-TB[oliTZ][c] PROCESSOR STATUS REGISTER, "P"
CARRY
ZERO

INTERRUPT DISABLE
DECIMAL MODE
——————— BREAK COMMAND
OVERFLOW
NEGATIVE
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YOl

Most Significant Digi

Hexadecimal to Decimal Conversion Table

Least Significant Digit

HEX I 0 1 2 ] 3 4 5 6 7 8 9 A B c D E ‘[ E
{ - . . B (I | S e )
Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High
Byts Byte | Byt Byte | Byt Byte ’ By Byte | Byww Byte | Byts By | By Byts | Byw Byt | Byte Byw | Byl By Byte By | Byte Byt Byte Byte Byte Byt Byts Byts Byte Byt
0 0 0 1256 PP - 4 1024 1280 6 1536 7 792 8 2048 o 28| 10 20 | 1 26 12 3072 13 3328 14 3584 153840
1 16 4096 17 4352 | 18 4608 19 4864 20 5120 2 s 22 5632 23 5888 2 1aa | 25 6400| 26 665 27 ez | % 7ee | 29 rae | 30 7680 31 793
2 2 8192 33 Basg 34 8704 35 8960 P 8 9728 39 9984 40 10240 | a1 10496 | 42 10752 a3 nooe @ e | a5 v | 46 11776 47 12032
3 48 12288 49 12544 50 12800 9113056 52 13312 53 13568 54 13824 55 14080 56 14336 57 14592 3 5’57;;;87 77;7%”)4” 60 15360 7*6‘756‘5 62 15872 | 63 16128 1
— AN -
4 64 16384 65 16640 66 16896 67 17152 68 17408 69 17664 70 17920 71 18176 72 18a32 | 73 18688 | 74 18944 75 19200 76 19456 7 en2 s s | 79 20228
5 B0 20480 81 20736 82 20092 83 21248 84 21504 8 21760 86 22016 87 22272 88 22528 | 89 22784 | 90 91 23296 @ 252 | 93 om08 | 94 24064 95 24320
3 96 24576 97 24832 98 25088 99 25344 | 100 25600 | 10V 25856 | 102 26112 | 103 26368 100 ceo2a | 105 26880 | 106 [Pr— 108 27648 oo 2e0s | 110 28160 11 28416
— - St | =
7 112 28672 | 113 28928 | 114 29184 | 115 20440 | 116 29696 | 117 29952 | 118 30208 | 119 30464 | 120 30720 121 30976 i 122 31232 123 3488 | 124 317aa 125 32000 126 32256
8 128 32768 | 129 33024 | 130 33280 | 131 33536 | 132 33792 | 133 34048 | 134 saz0e | 13 asseo | 136 asere |13 w072 | 138 35 139 35584 140 35640 p— 2 2
9 144 36864 145 37120 146 37376 147 37632 148 37888 143 38144 150 38400 151 38656 152 38912 |153 39168 | 154 39424 155 39680 wsewaga i 157 40192 158 40448 159 40704
A 160 40960 161 41216 162 41472 163 41728 164 41984 165 42240 166 42496 167 42752 168 43008 | 169 43264 | 170 43520 —m 43776 | 172 Aaugzii 7”4 445;1 gi"b ‘45:0;‘<
B 16 43056 | 177 asavz | 1o asses | 178 4ssze | 1a0 ao@0 | 1@ deade | e aesaz | ey aeess | ea anos | 185 47360 | 186 47616 w arerz | ves sz | 189 48384 | 10 dme0 | o aees |
€ 12 o152 | 193 43408 | 194 4o66s | 195 49920 | 196 51076 | 197 0432 | 198 50688 | 199 s0944 | 200 51200 |07 1456 | 202 1712 203 51968 204 52224 205 52840 206 52736 207 52992
5} 208 53248 | 209 5350¢ | 210 53760 | 210 54016 | 212 54272 | 213 54528 | 214 sarss | 215 sso0 | 216 ss2me | 217 sses2 | 218 sseos 219 56068 20 se20 | 22 seste 222 56832 223 57088
3 224 57344 | 225 57600 | 226 57856 | 227 58112 | 228 58368 | 229 58624 | 230 58880 | 231 59136 | 232 59392 |233 59648 | 234 59904 235 60160 2% e | 2 eoer2 23 60928 239 61184
£ 240 brado | 241 otese | 292 ovase | 243 ooeon | oas eaees | 245 o220 | as easrs | 247 ews | 248 s |29 63744 | 250 64000 251 a6 252 64512 253 64768 254 65024 255 65280




Appendix 3

Hexadecimal to Decimal Conversion Table

This table can be used to convert up to four digit hex numbers to
decimal.
How to use the table:

1. Divide the number into groups of two digits,
e.g. $F17B—-F1 7B
$2A —2A

2. Take the low byte of the number (from above 7B or 2A) and look it up
in the chart. Find the most significant digit (7) in the column on the
left, find the least significant digit (8) in the row along the top, and find
the box in which the row (7) and the column (B) cross. In that box you
will find 2 numbers, . These are the values of 7B in the
low byte and the high byte. Since we are looking up the low byte, take
the value 123. Now find the location of the high byte of our number
(F1) on the chart. The box here contains . Since we
are now dealing with the high byte, take the value 61696 from that
box and add it to the value we found earlier for the low byte 123.

61696
+ 123

61819 which is the decimal value of $F17B

NOTE: to find the decimal value of a two digit number, e.g. 2A, look it
up in the chart taking the low byte value (42). For a one digit number, e.g.
E, create a two digit number by adding a leading zero (QE), and similarly
make three digit numbers four digits with a leading zero.
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Appendix 4

Relative Branch and Two’s Complement Numbering Tables

1.

To calculate relative branches, locate the address immediately after
the location of the branch instruction. Count the number of bytes from
there to where you want the branch to end up. If the destination is
before the first byte, use the backward branch table and if not, use
the forward branch table. Look up the displacement (the number you
counted) in the body of the appropriate chart and read off the high
and low digits of the branch from the sides. This can also be used in
reverse, by looking up a branch on the sides to find the displacement
taken in the body of the chart.

To convert from a signed decimal number between —128 and 127 to
a hex two’s complement number, find your decimal number in the
body of the appropriate chart (positives and negatives) and read off
the hex two’'s complement number from the sides (high digit, low
digit). The reverse process (two’s complement hex to signed
decimal) is simply a matter of finding the high digit on the column on
the left, the low digit on the top row, reading off the number where the
row and column meet, and if in the negative chart make the number
negative.
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Relative Branch Tables and
Two’s Complement Numbering tables

FORWARD RELATIVE BRANCH POSITIVE NUMBERS
loWN_hi 0 1 2 3 4 5 6 7 8 g | A B|C | D E F
0 0 1 2 3 4 5 6 7 8 9 |10 | 11 |12 |13 | 14 15
1 16 | 17 |18 [ 19 | 20 | 21 | 22 | 23 |24 |25 |26 | 27 |28 |29 |30 31
2 32| 33 |34 | 35| 36| 37 | 38 | 39 |40 |41 |42 | 43 |44 |45 |46 | 47
3 48 | 49 |50 | 51 | 52 | 53 |54 | 55 |56 |57 [ 58|59 |60 |61 |62 | 63
4 64 | 65 |66 | 67 | 68 | 69 | 70 | 71 | 72 |73 | 74 | 75 |76 |77 |78 | 79
5 80 | 81 |82 | 83| 84 | 8 |8 |87 (8 [8 |9 |91 |92 [93 |94 | 95
6 96 | 97 |98 | 99 |[100 |101 [102 |103 [104 [105 [106 [107 [|108 [109 [110 | 111
7 112 [ 113|114 |15 [116 [117 |118 |119 [120 [121 |122 [123 |124 [125 |126 | 127
BACKWARD RELATIVE BRANCH NEGATIVE NUMBERS
\oN 0 1 g 3 4 5 6 7 8 9 A B c D E F
8 128 (127 [126 |125 | 124 [123 [122 [121 [120 |119 [118 |117 [116 [115 [114 | 113
9 112 | 111|110 |109 | 108 | 107 |106 |105 [104 |103 [102 |101 [100 | 99 | 98 | 97
A 96 | 95 [94 | 93 | 92 | 91 | 90 | 89 |88 |87 | 86 | 85 |84 |83 |82 | 81
B 80 | 79 |78 | 77| 76| 75 | 74 | 73 | 72 | 71 | 70 | 69 |68 |67 |66 | 65
c 64 | 63 [62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 |52 | 51 |50 | 49
D 48 | 47 |46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 [ 38 | 37 |36 |35 |34 | 33
E 32| 31 |30 | 29| 28| 27 | 26 | 25 |24 |23 [ 22| 21 |20 |19 |18 | 17
F 16| 15 |14 [ 13| 12| 11 | 10 9 8 7 6 5 4 3 2 1
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601}

Label

FDIR

FORT

SRCHTE
LFVEC]
IFVECZ
CHARAC
ENDCHR
TRMFOS
VERCH

COUNT
DIMFLG
VALTYF
INTFLG
DORES
SUBFLG
INFFLG
TANSGN
CHANNL
L INNUM
TEMFPFT
LASTFT
TEMFRST
INDEX 1
INDEX2
RESHO

RESMOH
RESMO

Address
Hes
Ednlnlnln]
Q01
FQ002
FOOOIT-0004
FOODE-D2RQ6
QBT
2208
2009
F000A
FOOQB
F020C
FQOAD
FQ00E
FOOOF
0010
(0011
0012
¥0Q1Z
FO014-0015
FO0B16
$¥0017-0018
(¥Q019-2021
FOOR2-0027Z
¥0024-0025
FOV26
0027
0028

Decimal

Description

7581 on-chip data direction register
73@1 on-chip 3-bit Input/Qutput reqirster
Token value of search (run—time stack)
Temp {renumber

Temp (remnumber)

Search character

Flag: scan for quote at end of string
Screen column from last TAR

Flag: B = Load, 1 = Yeri+tv

Input Buffer pointers No. of subscripts
Flaag: Default array DIMernsion

Data tvpe: #FF = Strinag, #00 = Numeric
Data type: #80 = integer, $00 = Floatinag
Flaa: DATA scan/LIST quote/garbage coll.
Flag: Subscript ref/user function call
Flag: ¥@00 = Ipput., %40 = BET, ¥98 = READ
Flag: TAN sian/ comparison result

Flag: Input prompt

Temp: Inteqger value

Fointer: temporary strina stack

Last tempstring address

Stack for temporarv strinags

Utility Fointer area

Utility Fointer area

91-D 3y3 jo deyy Aiowsyy papejeq

G xipuaddy



Okt

TXTTAE
VARTAR
ARYTAR
STREND
FRETOF

FRESFC *

MEMSI1Z
CURL.IN
TXTFTR
FMDFNT
DATLIN
DATFTR
INFFTR
VARNAM
VARFNT
FORFNT
OFFTR

OFMASH
DEFFNT
DSCFNT

HELFER
JMFER
SLIE
DOV
TEMPFL
HIGHDS
HIGHTR

.OWDS

$O029
*002A

£QO2E-002C
$002D-OR2E
FAQ2F-00Z0
£0071 0052

FROID-VOIE
(QQIF-2040
Q041 -0042
(204Z-0044
FQ045-0046
*0047-2048
$QQ49-2@4A
FOQ4R-0Q04C
Q040
£Q0A4E-DQ4F
¥0Q50-00351
FOOE2
FOQS
Q0S4
(0055
QD56
FOBE7
F¥0R58-BOS9
FURSA-BASE
FOO5C
FOQED-0Q5E

51-b632
5T—64
65—b6
67 -68
69-70
71-72
FE-74
7576
77
78-79
80-31
g2
87
B4
85
86
87
88-8%9
50-91
hel
9I-94

Start of BASIC Text

Start o+ BASIC Variables
Start of BASIC Arravs
Fointer: End of BASIC Arravs (+1)
Fointer: Rottom of string storage
Utility string Fointer

Fointer: Highest address used by BASIC
Current BASIC line number

Frevious HBASIC lirme number

Fointer:
Fointer:
Fointer:

Current DATA line number

Fointer: Current DATA 1tem address
Vector: INFUT routine

Current BASIC VYariable Mame

Fointer: Current BASIC Yariable data
fainter: Index variable for FORNEXT



FEL

LOWTR
EXFSGEN
FARCEXF
FACHO
FACMOH
FACMO
FARCLO
FACEEN
SGNFLEG
BITES
ARGEXF
ARGHO
ARGMOH
ARGMO
ARGLO
ARGSGN
ARISGEN
FACOV
FBUFFT
AUT INC
MVDFLG
FEYNUM
HEYSIZ
SYNTMF
DSEDESC
THE
TMFTON
VOICND
RUNMOT
FOINT
GRAFHM
COLSEL

FOQEF
FR2R6Q
FQ061
FQQHE
FOOST
FQDS64
FRAVLE
FOD6E
FOBL7
FOOLB
F¥00&8Y
FOWOHS
FOO6H
FOO&CO
F¥O06D
FOOSHE
FDO6F
0070
¥0071-0072
FOO7I-007 4
FOO7E
¥0076
0077
007 &
F¥OQ79-007E
F¥007C-007D
FQO7E-BOTF
F208@
FOae!
FOOR
FQQBZ
FQDE4

F&
97
28
i
10
i@l
182
1@
104
1@5
106
1@7
108
10°
11@
114,
112
113-114
11 5=l 16
117
118
119
120

I120~123

#$1:
H1:

Floating-point accumul ator
Floating-point accumul ator

exponent
mantissa

Floatirmg—-point accumulator
Fointer: series evaluation
Floating—-point accumulator
Floating-point accumulator
Floatino-point accumulator

#1: sign
constant
#1: Over+flow
#Z: Evponent
#Z: Mantissa

Floating—point accumulator #2:
Sign comparison result: accum.
Floating accum. #1: low-order
Fointer: Cassette Buffer
Lime increment value for auto (0 =
Flag i+ 10K hi-res allocated

sian
#1 ve #2
(rounded)

of+)

Used as temp for indirect loads
Descriptor for ds#
Top of run—-time stack

Temps used bv music (tone & volume)

agranhic mode
color selected

Current
Current



Skl

MC1 FOOBED
FGO (0084
SEXMAF FAQE7
SCYMAY D008
LTFLAG  Fo0es
RTFLAG *#BA8H

Multicoldr one
Forearound color
Maximum ¥ of columns
Mecoimum # of rows
Faint-left Flag
Faimnt-right Flaog

topt o bt bn

STORMNE |, *003E =9 Ston paint i4 neot Backaround color
GRAFNT $0080-0081 14@-141

VTEMRL 008E 14%

YTEMFLZ  ¥008F 347

STATUS F0090 144 Ferrnal 170 status word: 87

STHEEY QR 1 145 Flag: STOF kev / RVS key

SFVERR #0092 146 Temp

VERFCE FADIE 147 Flag: @ = load, 1 = verifvy

CIF@ Q074 14 Flag: serial bus - output char buffered
BFOUR ¥DQI5 149 Euffered character +or serial bus

XsAaN FOOYE 150 Temp for basin

LDTND ERlv s # of open files / index to +ile table
DFLTH (009 1832 Default imput device (@)

DFIL.TCO FOOF 18E Default output (CMD) device (I

MESGFLE #0094 154 Flag: %802 = direct mode. 00 = proaram
ShAL. FOO9E ] Tape pass 1| error loa

SaH FAOC 156 Tape pass 2 error log

EAlL EQRID 157

EAH ¥QRIE 158

T3 FOQ9F -20AD 159-160 Temp data area

T2 F00A1-00A2 161—-1462 Temp data area

TIME FOQAZ-DVAS 167%-165 Real-time jiffy clock (approx) 1/6@ sec
RZ2D2 F00A6 166 Serial bus usage

TFBEYTE *00A7 167 Bvte to be written/read on/off tape
BSOUR1 F00A8 163 Temp wsed by serial routine

FPVERR  $#00A% 169



Ll

DCOUNT
FNLEN
LA

5A

Fa
FILDR
ERRSUM
STAL
STAH
MEMUSS
TAFERS
TMFZ2
WREASE
IMPARM
FETPTR
SEDSAL
RVS
INDX
LSXF
LS P
SFDX
CRSW
FNT
FNTR
ATSW
SEDTL
TRLX
DATAX
INSRT

FROAA
FODAR
*¥QAAC
FQAAD
FOAE
(FODAF-DORO
FOOR1
DR
FAORI
FOOB4-DOEBS
FOOR6-DORB7
FOOEB-00RY
FQOOEBA—-DOEBE
FOORC-VORBD
$0OBE-Q@QBF
$QVCO-20C1
¥00C2
¥0QCT
F¥Q0C4
FOACS
FOQCSH
FOQC7T
FO0C8-20CY
F¥AACAH
$0CE
¥QQCC
$¥00CD
¥00CE
¥0OCF
F$0ODO-¥00D7
FQO0B8-0OES
FOOER

170
171

b o)
,

177

174
75176

177

178

179

180-181

182-183

184~185

186187

188-189

190-191

192-193

194

195

196

197

198

199

200-201

202

207

204

209

206

=07

208-215

ey

216—-238

length of current filename
Current logical file number
Current secondarv address
Current device number
Fointer: Current file mame

I/0 start address: low bvte
I/0 start address: high bvte
Load RAM base

Base pointer to cassette bhase

Fointer to data for tape writes
Fointer to immediate string for primms
Fointer to be fetched in bark fetch
Temp for scrolling

RVS field flag on

X position at start

Flag: shift mode for print

Flag: INPUT or GET from keyboard
Fointer: Current screen line address
Cursor column on current line

Flag: Editor in quote mode, 00 = no
Editor temp in use

Current cursor phvsical lirme rnumber
Temp data area

Flag: Insert mode., » @ = # INST's
Area for use by speech software

Area for use by application software
Screen line link table/editor temps
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USER
FEYTAR
TMFEEY
ND X
STFFLB
TO
CHRFTR
BUFEND
CHESUM
LENGTH
FASS
TYPE
USEKDY
XSTOR
CURENE
XON
XOFF
SEDTZ2
LOFRUF
FRUFFR
SAVEA
SAVEX
SAVEY
EOLKEEY
SYSSTH
BUF
OLDLIN
QLDTXT

*QQEA-DOER
FOREC-DOED
£QOEE
$QREF
FQOF D
£OOF 1 -QQF 2
EQOF T
£Q0F 4
FQOFS
£QOF &
FQOF 7
F0OF 3
$00F9
FQOFA
FQOF K
$QOFC
£00FD
£QOFE
FOOFF
*0100-010F
0110
£0111
#0112
¥Q117-0122
£Q124-B1FF
F0ZOD-0258
FQ2E5-0T56
FOISE-Q25C

$OZED-0ZAC

D41 =2A4F
247
244
245
244
247
248
249
250
21
252
257
254
255

N TV

272
274

275-289
291-511
512-600
601-602
607604

LHAE-684

Screen editor color IF
ey scan table indirect

Index to kevboard
Fause flag
Monitor zero—-page

queue

storage

Temp for chechksum calculation
Which pass we are doing

Type of block

Bit 7=1 for Write;
Save xreq for quick
Current bank confiquration
Char to send for a x-on
Char to send for a x—off
Editor temporary use

Temp locations for:

Save

Restore

Color/luminance table in RAM
System Stack

BASIC / Monitor buffer
BASIC storaae
BASIC storaae

BASIC/DOS interface area

Bit 6=1 for Read
stopkev test



SHi

XCNT

FNEUFR
DOSF1L
DOSDE1
DOSF 1A
DOSF2L
DOSDS2
DOSF2ZA
DOSLA
DOSFA
DOSSA
DOSDID
DIDCHE
DOSSTR
DOSSFC

XFOs
YFROS
XDEST
YDEST
XARS
YARS
XSGEN
YSGN
EET 1.
FCT2
ERRVAL
L ESSEFR
GREATR
ANGSGN

¥Q25D
FQLEE-QZ6D
FOL6E
FAL6F
FO270-0271
¥Q272
¥Q273
FOZ74-BE75
¥Q276
¥O277
0278
FOR79-027A
¥O27H
¥027C
F¥O27D-B2AC

Area

FOZ2AD-02AE
FO2AF-Q2ZR0O
F¥Q2E1-Q2BZ
FAZEI-B2R4
FOZRE-Q2RE
FOLER7-Q2RE
FOZEF-02RA
F¥DZRBE-QZRC
FQALZBL-Q2RE
FOZBF-02CO
¥2:zC1-02C=2
FO2CE

F02C4

*02CE

605
bD6—-621
622
62T
LH24-625
&26
627
628-629
630
671

o oiar)

b6II—-6T4
6I8
&EI6
67684

used by

6B8H-686
687686
689-4690
EF1=692
69T-694
EQT-6FE
6EQ7-698
&99-700
701-70%
70zZ-704
705706
7@7

728

709

DOS

String storaaqge

DOS
Dog
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DAs
DOS

loop counter

for flename
filename 1 lenagth

disk drive 1

tilename 1 address
filename Z lenagth

disk drive 2
filename 2 address
logical address
physical address
secondary address
disk identifier

DID flaa

output string buffer

Area used to build DOS strina

Graphics Routines

Current x
Current v

position
position

X coordinate destination
Y coordinate destination

Sign

of angle
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SINVAL
COSVAL
ANGCNT

ENRK
ENF
DOLFK
FILABG
SWE
USGN
UEXF
Vi
CHEN
VE

MNF
FOSF
FESH
ETOF
CFORM
SNO
BLFD
BREGFD
LFOR
ENDFD

XCENTR
YCENTR

FO2CH~D2CT
£02CB-0ZCS
F02CA-02CE

Start of mult

£Q2CC
£QZCD
FO2CE
$OZCF
£Q2D0
£02D1
$@2DE
$Q2DT
FQ2D4
FO2DS
£Q2D6
$02D7
$02D8
£02D9
£Q2DA
$02DE
FO2DC
£Q2DD
£Q2DE
$Q2DF
FO2ED

Start of mult

¥Q2CC-Q2CD
FRAZCE-D2CF

71@-711 Sine of val
712-71% Cosine of v

ue ot anale
alue of anale

714-71%5 Temp storage for angle/distance

iply defined area #I

routines

716 Flaceholder

717 Fointer to begin no.

718 Fointer to end no.

71s Dollar flaa

72@ Comma +1aaq

721 Counter

722 Sian exponent

723 Fointer to exponent

T4 ¥ of digite betore decimal point
T2 Justify flag

TR& # of sig figs before decimal point
727 # of sig figs after decimal point
728 +/= flag (field)

72 Exponent flag (field

Switch

Char counte
Sian number
Blank/star

Fointer to

Length of ¥
Fointer to

iply defined area #2

716=717
73818

r (field)

field
beginning of
ormat
end of field

tield
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ADIST1
YDISTI
ADISTZ
YDISTZ

COLCNT
ROWCNT
STRCNT

XCORD1
YCORD1
BOXANG
XCOUNT
YCOUNT
BXLENG
XCORDZ
YCORDZ2
XCIRCL
YCIRCL
XRADUS
YRADUS
ROTANG
ANGRES
ANGEND
XRCOS

YRSIN

XRSIN

YRCOS

*02DO-D2D1
FOEDE-D2DE
£Q2D4-02DS
$Q2D6-02D7
¥Q2D8-02D9

$02DA
$@2DE
$02DC

Start of multiply defi

¥Q2CC-02CD
FQ2CE-QZCF
FQ2DD-22D1
FQ2D2-02D3
¥02D4-02DS
¥Q2D6-B2D7
¥0=D8-02D?
¥Q2DA-DZDR
$¥02CC~-02CD
¥Q2CE-Q2CF
¥@Q2D0-2:2D1
FO2D2-02DT
*QZD4-02DS
¥Q208-02D9%
¥02DA-DLZDE
*Q2DC-@EDD
¥Q2DE-QZDF
FO2EQ-QREL
FOREZ-BZEZ

Foid

/eDval

TY6=717
718=71%9
720-721
22-7323
TE~T 25
TRE~T27
728-729
730-731
7Lhe=17
74i8=719
12D=721

YRGS whaily

724-725

FEG-T 28

Flaceholder

Character c
Character r

ned areéa #3

Rotation an
Length of a

Circle cent
Circle cent
X radius

Y radius
Rotation an
Arc angle
Afroc angle e
X radius *
Y radius *
X radius *
Y radius #

olumn counter
ow counter

gle

side

e .,
er .

gle

start

nd

cos (rotation
sin (rotation
sin (rotation
cos {(rotation

X coordinate
Y coordinate

angle)
arngle)
anale)
angle)
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KEYLEN
KEYNXT
STRSZ

GETTYF
STRETR

OLDEYT

NEWRYT

XGI1ZE
YSTZE
XS5AVE
STRADR
BITIDX
SAVSIZ
CHRFAG

BITCNT
STALEM
WIDTH
FILFLG
BITMSHE
MUMCNT
TRCFILG
T

T4

VTEMPZ
YTEMF 4
YTEMPS
ADRAY 1
ADRAYZ

Start of multiply defined area #4

$Q2CC
£Q2CD
$02CE
$Q2CF
$02D0
£02D1
£02D2
Q2D
£02D4
£02D5-02D6
£02D7-02D8
$@2DF-02DA
£Q2DE~-D2DC
£02DD
$@2DE-@ZE1
£Q2ES

FORES
FOZES
FQRET
FOZEB
FORED
FOZ2EA
FOZER
$QREC
¥QA2ED-QREE
$Q2EF
FAZFQ
FOZF 1
F¥Q2F2-02F3
¥Q2F4-Q2FS

Zhe
17
718
719

o )
/s

721
T2
723
724
725-726
727-728
729730
7I1-732
S

Flaceholder

Strinag lenath

Replace string mode

String position counter

0ld bit map byte

New string or bit map byte
Flaceholder

Shape column lenath

Shape row length

Temp for column length

Save shape string descriptor
Bit index into bvte
Temporary working storage
High bvte address of character
for character definmitions.
Temp for GSHAFE

Scale mode flag

Double width +flag

Box fill +laaq

Temp for bit mask

Flags trace mode

Graphics temp storage

ROM

Vector: convert floating to integer
Yector: convert integer to floatinag
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ENKVEC
IERROR
IMAIN
ICRNCH
IQFLOP
IGONE
IEVAL
IESCLE
1ESCFR
IESCEX
ITIME
CINY

CEINV
TOFEN
IELOSE
ICHKIN
ICEOUT
TCLRCH
IBASIN
IBES0UT
ISTOF
IGETIN
ICLALL
USRCMD
ILOAD
ISAVE

TAFBLUF
WRLEN
RDCNT

FO2F6-DZFD
FOZFE-DEZFF
FQI00-0T01
(0Z02-0203
¥0304-0Z0S
¥OIR6-0Z07
¥Q308-3309
¥QI0A-QZ0R
¥Q30C-0Z0D
FQIOE-DIOF
¥0IT10-0311
$0I12-0Z13
¥Q214-0315

¥QT16-@217
*QZ18-A071°9
¥0T1A-DT1R
¥QI1C-®Z1D
¥QI1E-OT1F

FOIFI
FDIFS-QIF 6

758-765
TEE—TET
768-769
770-771
FTE~TT3
774775
776=777
F7B=STTI
78@0-731
782-78%
784-78S
786-787
788789

790-771
79R-797
794-795
796-797
798-799
200-801
802-3807
204-305
BD6-B07
308-809
810-811
812-817
814-815
8l16-817
a18
B19-1010

1011-1@12
101Z-1014

Vector for function cartridge users
Indirect Error (output error in X)
Indirect Main (svstem direct loop)
Indirect Crunch (tokenisation routine)
Indirect List (Character list)
Indirect Gone (Character dispatch)
Indirect Eval (symbol evaluation)
Escape token crunch

IRQ RAM Vector
BRE instruction RAM Vector

Indirect VYectors for code

Save stack pointer

Cassette tape buffer
Length of data to be
l.ength of data to be

written to tape
read from tape



INFCUE #$QIF7-0476 1012-1078 input queue
ESTAKL  $0477-0454 1079-1108
ESTAKH $#@0455-0472 1109-~1138
CHRGET *¥@Q473-0478 1139-1144
CHRGOT $0479-0484 1145-1156
ANUM ¥0485-0497 1137-1171

0oclt

INDSUE $0494-04A1 1172-1185 Shared ROM fetch subroutine
ZERO , ¥04AZ-24A4  1186-1188 Numeric constant for BASIC
INDTXT #Q4A5S-04AF 1189-1199 Text pointer

INDIN1 *¥Q4BO-04BA 1200-1210 Index % Index 1

INDINZ #@4BE-04C5 1211-1221 Index 2

INDST1 #@4C6-014DQ : String 1

INDLOW *@4D1-@4DE
INDFMO *®Q4DC-B4ES6  1244-1254

FUFILL  *#@4E7 1255 Frimt using 111 symbol
FUCOMA  £Q4ES8 1256 Frint using comma symbol
FUDOT FO4ED 1257 Frint using period symbol
FUMONY  ¥B4EA 1258 Frint usina dollar sian
TMFDES #$Q4ERB-Q4EE 1259-1262 Temp forinstr

ERRNUM  FA4EF 12653 Last =rror number

ERRLIN f04FR-24F1 1254-1265 Line number of last error
TRAFND  FB4F2-Q4F7 1266-1267 Line to go to on error

TMFTRF  £Q4F4 1268 Temp: hold trap rnumber

ERRTXT *Q4F5-Q4FS 1269-1270

OLDSTE  *Q4F7 1271

TMPTXT #$@4F3-04F9 127212773

TMFLIN  #04FA-Q4FB  1274-1275

MTIMLO $Q4FC-Q4FD 1276—-1277 Table of pending jiffies in
MTIMHI #¥@Q4FE-Q4FF 1273-1279

LUSRFOE. ¥@500-0502 1280-1282

RNDX ¥QS0I-05@7 1287-1287

DEJAVU $0508 1288 ‘warm’ start status



XA

LAT
FAT
SAT
KEYD
MEMSTR
MS1Z
TIMOUT
FILEND
CTALLY
CEUFVA
TETR
FLTYPE
COLOR
FLASH

HIEBASE
XMZX
RETFLB
EOUNT
DELAY
SHFLAG
LSTSHF
KEYLOG
MODE
RAUTODN
LINTMP
ROLFLG
FORMAT

WRAF
TMFC
DIFF

FOSQ9-0512
$0513-051C
$¥@51D-2526
FOS27 052
QST @qTQ
FASTIT-05
£@5:F
k37 e
FQS5T7
Q5=
QST
REZTA
¥QSTR
¥ASZC
FASTID
¥OSTE
FRSIF
2540
¥Q541
FOS42
FOS4Z
0544
F¥Q545-0S46
¥0547
FO548
EQT4A9
FRO4H
FO541B
F¥OS4C--054E
$®54F

QS50
3@ 1

1289~

1298

1299-1308
1318

17209~

-1250

Logical file numbers

Frimary device numbers

Secondary address

IRA Keyboard buffer

Start of memory

Top of memory

IEEE timout flag

File end flag; 1 = reached., @ = otherwise
Number of chars left in buffer (R/W)
Number of total valid chars in buffer (R)
Fointer: mnext char in buffer (R/W)
Contains current type of cassette file
Active attribute bvyte

Character flash flaaqg

FREE ! ! !

Base location of screen top

Feyv repeat+laq
Shitt flaagbvte
Last shift pattern

Indirect for kevboard table setup

Auto =croll down flag @ = on, @ = off

Monitor non zero—-page storage
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PCH QS5

FEL F¥0553

FILGS (0554

Acc FRE55

xR ¥@356

YR FQ557

SP 0558

INVL ¢ ¥Q959

INVH FASEA

CMFRFLG *0QSSE Used bv various monitor routines
BAD EQSSC

FEYIDX #@5ED TS Used for programmable kevs
FEYIDX FQSSE LZ74

FEYBUF $0SSF-0S66 12Z75-1282 Table for FP.F. lenagths
FEYBUF  ¥QS567-05E6 128EZ-1510 F.F. kev storage area

FEDATA FQSE7 1511 Temp for data write to kennedy

FDYCMD  $QSES8 1912 Select for kennedv read or write
FDYNUM  ®@Q5SEZ 1915 Fennedy 's device number

KDYFRS FASEA 1914 Flag: #FF = Kennedy present, 00 = not
EDYTYF  f@SER 1515 Temp for type of open for Eennedy

SAVRAM FOSEC-D6ER 1516=1771 One whole page used by banking routines

FAT FSASEC-QTEF 1916—-15919 Fhysical address table
LNGIMF  *¥QSF0-Q5SF1 1520-13521 Long jump address
FETARG #*@SF2 1822 Long Jjump accumulator
FETXRG $@SFZ YE2E l.ong jump X register
FETSRG #$@SF4 1524 Long Jjump status register

AREAS (QSF5-065SD 13525-1629 RAM areas for bankinag
ASFECH $Q6SE-Q6EER 1620-1771 RAM area for speech

STKTOP $Q&6EC-@7AF 1772-19467 BASIC run—-time stack

WROUT *¥A7B0 1968 Bvte to be written on tape
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FARITY
!
fii !

RDEITS
ERRSHF
FFERRS
DSAMF 1
DSAMF2
ZCELL
SRECOV
DRECOV
TRSAVE
RDSTMF
LDRSCM
CDERRM
VSAVE
TLFIFE
ENEXT

uouT@

UOUTFG
SouUTR

SOUNFG
INQFPT
INGRFT
INGCNT
ASTAT

ATNTMF
ALSTOF
ARSTOF

$07B1 1969
¥Q7B2 1970
$Q7B3 1971
¥Q7RB4 1972
¥@7RBS 197°=
¥Q7RE 1974
*Q7RB7 1978

¥Q7EB8-Q7R?  1976-1977
¥Q7BA-B7BE  1978-1979
F¥Q7EC-Q7BD 1980-1981

¥07EBE 1982
¥O7BF 198=
F¥Q7C0-07CE  1984-1987
¥Q7C4 19886
¥@7CS 158%
¥Q7CH 1990
¥@7C7 1991
¥Q7C8-07CR  1992-1999
¥@7CC 1996

R5-232 Section

¥@7CD 1997
*Q7CE 1998
¥@7CF 1999
¥Q7D0 2000
¥@7D1 2001
¥@7D2 2002
¥Q7D= 200
¥@704 2004
*@7DS 2005
*¥@7D6 2006
*@7D7 2007

Temp for parityv calculations
Temp for write header
Temp for write header

Local index for READEYTE routine
Fointer into the error stack
Number of first pass errors

Time constant

Time constant

Time constant

Stack marker {for stopkey recover
Stack marker for dropkey recover
Farameters passed to RDEBLOK

Temp status save for RDEBLOE

¥ consecutive shorts to find 1n leader
# errors fatal 1n RD countdown
Temp for verifvy command

Fipe temp for T1

Read error propagate

User character to send
Flag: @ = buffer empty, 1
System character to send
Flag:s @ = buffer emptv., 1 = full
Fointer: front of input gqueue
Fointer: rear of input gueue

Number of characters in input gueue
Temp status for ACIA

Temp for input routine

Flag for local pause

Flag for remote pause

full

it
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AFRES ¥Q7D8 2008 Flag: @ = no ACIA, 1 = ACIA
KLUDES (Q7D?-07E4 2009-2020 Indirect routine downloaded
SCROT ¥@7ES 2021

SCTOR ¥Q7ESL 2022
SELF FQ7ET 20273
SCRT ¥Q7E8 2024
SCRDIS #@Q7E9 2025
INSFLG, *@Q7EA 2026
LSTCHR *@7EB 2027
LOGSCR #Q@7EC 2028
TCOLOR  #$@7ED 2029

BEITABL $Q7EE-Q7F1 20I0-:203Z

Temp Storage for Reqisters during 5YS command:

SAREG ¥Q7F2 2074 Accumul ator

SXREG ¥O7F3 2035 X index register

SYREG $Q7F4 2036 Y index reqgister

SFREG FQ7FS 2037 Frogram Counter

LSTX F07F6 20=8 Key scan index

STFDSE #Q7F7 2039 Flag to disable CONTROL-S pause
RAMROM  $Q@7F3 2040 MSE for monitor fetches from @=R0OM,1=RAM
COLSW FOTFQ 2041 MSE for color/lum table: O=RAM,1=R0OM
FFRMSK  $@Q7FA 2042 ROM mask for split screen

VMEMSE.  $07FR 2047 VM base mask for split screen

LSEM FQ7FC 2044 Motor lock semaphore for cassette
FALCNT  *Q@7FD 2045 FAL

F¥Q7FE-Q7FF  2046-2047
TEDATR FOBOO-OBFF "048-7071 Scresen color attribute bytes
TEDSCN #QCOR0-0FFF  Z072-4095 Screen charachter pointers
BASEGN #1000- 4096 Start of BASIC text area
GREBASE $2000- 9192~ Start of BASIC when Hi-res on
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EMLUM F¥1800-1BFF 46144-7167 Luminance table for bit—-map screen
BMCOLLOR #1CQ@Q—-1FFF 7168-8191 Color table for bit—-map screen

CHREBAS *DOVO-D7FF 5I248- Beqginnimg of 2K character ROM
¥D800-FCFF FERNAL ROM

Bankina Jump Table

$¥FCF1 L4755 JMF to Cartridge IRE routine
¥FCF4 54756 JMF to FPHOENIX routine

¥FCF7 54759 JMF to LONG FETCH routine
BFCFA 64762 JMF to LONG JUMP routine
fFCFD H4765 JMF to LONG IRG routine

Unofficial Jump table

FFF49 &ETEZ IJMF to define function key routine

£FFAC L5356 JMF to FRINT routine

(FF4F &HBE59 JMP to PRIMM routine

FFF32 LSE62 JMFP to ENTRY routine

FFFB0 65408 Release rmumber of KERNAL (msb @=NT5C: i1=FPAL)

FERNAL JUMF TABLE

CINT ¥FFB81 55409 Initialise screen editor

I0INIT *¥FF84 L5412 Initialise 1/0 devices

RAMTAS $FF87 55415 RAM test

RESTOR $FFB8BA 655418 Restore vectors to initial values
VECTOR *®FF38D 655421 Change vectors for user

SETMSG $FF20 55424 Control operating svystem messages
SECND $FES3 65427 Send SA atter LISTEN

TESA ¥FF96 55470 Send SA after TALK
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MEMTOF
MEMEOT
SCNEEY
SETTMO
~ACPTR
CI0ouT
LUNTLE
UNLSN
LISTN
TALK
READSS
BETLFS
SETNAM
OFEN
CLOSE
CHEIN
CHOUT
CLREH
BASIN
BSOUT
LOADSF
SAVESF
SETTIM
RDTIM
STOF
GETIN
CLALL
UDTIM
SCRORG
FLOT
IOBRASE

$FF99
SFFIC
SFFOF
SFFA2
SFFAS
SFFAB
$FFAR
SFFAE
$FFB1
$FFB4
$FFB7
£FFBA
$FFBD
SFFCO
$FFCT
FFFCS
$FFCO
$FFCC
$FFCF
$FFD2
$FFDS
FFFD8
$FFDE
$FFDE
$FFEL
SFFE4
$FFE7
FFFEA
£FFED
SFFFD
$FFF3

HS54733
53476
&H5439
554472
65445
65448
55451
&5454
65457
65460
65463
655466
65469
65472
655475
55478
655481
65484
55487
65490
55493
655496
655499
655502
55505
55508
65511
63514
85817

s

65523

Set/Read top of memoryv

Set/Read bottom of memory

Scan kevboard

Set timepout 1n DMA disk

Handshake serial bus or DMA disk byte in
Handshake serial bus orDMA disk bvte out
Send UNTALK out serial bus or DMA disk
Send UNLISTEN out serial bus or DMA disk
Send LISTEN oput serial bus or DMA disk
Send TALKE out serial bus or DMA disk
Return'I/0 STATUS bvte

Set logical file parameters; LA, FA, SA
Set filename length and FN address

Open logical file

Close logical +file

Open channel in

Open channel out

Close 1/0 channels

Input from channel

Qutputto channel

Load from file

Save to +i1lea

Set internal clock

Fead i1nternal clock

Scan STOF kev

Get character from gueue

Close all files

Increment clock

Screen organistailon

Read/Set X.Y coordinates of cursor
Return location of start of I1/0



Hex Reaq DE7 DE& DES DR4 DEZ DR2 DBl DE@
e — B e e B A —— F——————— e e ——— e ————— A — — +
'¥FFQ@ ! @ !Timer 1!'Timer 1!Timer 1!Timer 1!Timer !'Timer 1'Timer |'Timer 1!
) ! ! BiE 7 Y Bit & ! Bk 5 ! Bit & | Biw Hit Bit 4 | Bix @ !
e ) b —— B e — B e B e B e —— Fm—————— +
'EFFO1 P L 'Timer 1!'Timer l!Timer 1!Timer 1!Timer 1!Timer 1!Timer 1'Timer 1
! ! PBAt A4S Bt 140 Bit 13! Bit 12! Bit 11t Rit 4@' Bit 9 ! Bit 8 !
A e e B e ———— e R e e +
VEFFQZ ! 2 !'Timer 2! Timer 2!'Timer 2!'Timer 2!Timer 2'Timer 2'!'Timer 2!'Timer 2!
i ! Bit 7 % Bat & | Bit § | Bit 4 Bit PRt £ L Bit 4 ! Bik @ ¥

———————— B L S e T S Y B

2!'Timer 2!'Timer 2!'Timer Z!'Timer 2'Timer Z'Timer 2!

VBt 180 Bit 14! Bit 1S 12 Bit 11! Bi€ 1@! Bit ¥ | BiE 8 1

o e e o o —————— e ————— e ————— e e e ———— +

'EFFQ4 4 'Timer I!'Timer Z!Timer Z!Timer Z!'Timer Z'Timer Z'Timer Z'Timer 3!
| ! ! Bit ! Bit 6 L Bit B Bit 4 ! Bit T ! Bit 2 ! Bit 1 ! Bit @ !
B e e ————— A ————— B + ————— i + +
'¥FFRS ! S !Timer Z!Timer Z'Timer Z!Timer IZ'Timer Z!Timer Z!Timer I'Timer 3!
! ! ! Bit 18! Bit 14! Bit 13! Bit 12! Bit 11! Bit 1@! Bit 9 ! Bit 8 !
o ———— Bt S A ——— pm—————— e e B - ————h— + +
'¥FFQ6 ! A4 ! test 'Extend !Bit mam!blank ! 24725 ! Vert. ! Vert. ! Vert. !
! ! 1 ! color ! mode g { row !Serell2!Secrolll!iScroll@d!
Fm—————— e ——— o —— F—————— B e ———— f—————— m—————— o ——— -
'¥FFQ7 ! 7 !'Reverse! FAL/ !'freeze ! Multi ! Z9/40 ! Horz. ! Horz. ! Horz. !
b ! 4 ot f ! NTSC ! ! eolor ! col 'Seroll2!Scroll | Seroll @
o ———— Fmm o —— Fm—————— e ———— e ———— o ————— e t——————— +
'¥FF@8 ! 8 ! K EY BOARD LATCH !
m————— e ——— e ———— F———— o ——— +—— ——r——— + - +
'$FFQ9 ! 9 'Request!TimerZ ! N/C !'Timer2 !'Timerl 'Lt.pen 'Raster ! N/C !
1 A 'Intrupt ! Intrupt! 'Intrupt! Intrupt! Intrupt! Intrupt! !
F———— o e Fm—————— + + e - + ——tm—————— -
'¥FFDA 10 ! N/C 'Enable ! N/C 'Emable 'Enable 'Enable !Enable !Raster !
L ! ! T Int ! 'T2.Int ! T1l.Int !'LF.Int !'Raster !Comp.8 !
e ——— e — e ———— ——————— m————— o i i e A ——— e ————— ——————— +
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THE TED CHIP REGISTER DESCRIPTION

Registers #@ to #5: Internal Timers

The TED chip has three 16-bit interval timers on board. Each timer is
physically divided into two 8-bit registers, occupying two successive
memory locations. The timers decrement at a fixed frequency, 884 KHz
for PAL systems and 894 KHz for NTSC systems, and will generate an
interrupt upon decrementing to zero.

The timers should be initialised using the following procedure:

(a) Disable all Interrupts

(b) Write low byte of Timer
(c) Write high byte of Timer
(d) Enable desired Interrupts.

Note: It is essential that there be no more than 125 microseconds delay
between writing the low byte and then the high byte, otherwise timing
count errors will occur.

Timer #1 is a sequence interval timer comprising register @, low byte,
and register 1, high byte. Register @ and 1, when written to, initiate the
reload value of the timer. When Timer #1 decrements to zero, an
interrupt is issued, then the Timer is reset to the reload value and the
cycle begins again.

Timers #2 & #3 are free running counters. Upon decrementing to the
zero, the timers roll over to $FFFF and continue counting. Writing to timer
2 or 3 registers will load directly into the active count. Reading these
registers yields the current count.

Register #6: Screen Format

Bits 0-2 of this register determine the vertical scroll position. Bit 3 is the
24/25 row select bit. Setting bit 3 high will yield 25 rows, while clearing
this bit will yield 24 rows. To perform a vertical scroll, bit 3 should be
cleared, and bits @-2 should be either incremented or decremented,
depending on whether a downwards or upwards scroll is desired. If
vertical scrolling is not required, then bits @-2 should set to equal 3, and
bit 3 should be set.

Bit 4 is the screen blanking bit. If set high, then the normal screen is
displayed. If cleared, then the screen is blanked and all TED fetches are
disabled, permitting the processor to run at almost twice the speed
(1.788MHz for NTSC and 1.768MHz for PAL).

Bit 5 enables bit map mode when set high.
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Bit 6 enables extended colour mode when set high.
Bit 7 is used for chip testing and must remain cleared.

Register #7: Screen Format -

Bits 0-2 of this register determine the horizontal scroll position. Bit 3 is
the 39/4Q column select bit, that when set high provides for 40 character
columns. In this case, bits @-2 should be set to equal zero. When bit 3 is
cleared, 38 column mode is selected, allowing horizontal scrolling to
occur. If Bits @-2 are incremented, then the screen scrolls to the right. If
they are decremented, then the screen will scroll to the left.

Bit 4 enables the multicolour mode when set high.

Bit 5 is 'freeze’ bit which, when set high, inhibits TED from incrementing
the horizontal and vertical position, and the timers.

Bit 6 selects either the PAL video standard when cleared, or the NTSC
standard when cleared when set.

Bit 7 is the reverse video off bit. Normally bit 7 is cleared, and there are
128 character patterns available. Characters can be reversed by
setting the MSB of the video matrix pointer high, i.e. add 128 to the
screen code values. This enables TED to invert character data, and
hence display reversed characters. If an alternate character set of 256
characters is required, then Bit 7 can be set high, disabling the reverse
video feature and allowing the MSB of the video matrix to define the
additional characters.

Register #8: Keyboard Latch

This register is the keyboard latch. Writing to this register causes the
keyboard matrix to be scanned and latches the appropriate data. When
this register is read, data that had been previously latched can be
obtained.

Register #9: Interrupt Status

Register 9 is the interrupt source register. Any TED interrupts are
recorded by the appropriate bit being cleared. Possible interrupt
sources are:

Bit 1 — Raster Interrupt

Bit 2 — Light Pen (for later expansion)
Bit 3 — Timer 1 Interrupt

Bit 4 — Timer 2 Interrupt

Bit 6 — Timer 3 Interrupt

Bit 7 — Interrupt Request

Individual interrupt bits can be reset by setting them high.
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Register 1: Interrupt Mask

This register is the mask for the Interrupt status register. Setting a bit
high in the Interrupt Mask Register enables the corresponding bit in the
Interrupt Register to flag a future interrupt.

Bit @ is the MSB of the Raster Compare Register and is not part of the
mask (see register 11 for description).

Register #11: Raster Compare

In an NTSC television system, 262 raster lines are generated (0 to 261),
while for a PAL system, 312 lines (0 to 311) per screen. To account for all
raster lines, a 9 bit register is required. Register 11 contains the low
order 8 bits, while the 9th bit is the least significant bit of the Interrupt
Mask Register (bit @ of register 10). The Raster Compare Register is an
interrupt source. When the Raster Line count equals the value of the
Raster Compare Register, an interrupt is generated. This technique can
be used to perform split screen operations. Since there may be an
appreciable delay in processing this interrupt, it is generated 8 cycles
before the character window, thus minimising screen flicker. For a 25
row display, visible raster lines are from 4 to 203.

Register #12: Cursor Position (MSB)

This register contains the two most significant bits of the cursor position
register. Bit 1 of this register contains bit 9 and bit @ contains bit 8 of the
cursor position.

Register #13: Cursor Position (LSB)

The 8 low order bits of the cursor position are contained in register 13.
The Cursor Position Register comprises 10 bits, giving 1024 distinct
cursor locations.

Register #14: Voice #1 Frequency (LSBs)

This register contains the low byte of the frequency base for voice 1. This
voice can have only a square wave oscillator as its source.

Register #15: Voice #2 Frequency (LSBs)

This register contains the low order 8 bits of the frequency base for voice
2. This voice may have either a white noise or a square wave oscillator,
selectable by a bit in register #17.
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Register #16: Voice 2 Frequency (MSBs)

The two MSBs of the voice 2 frequency register are contained in bits 1 &
@ of this register.

Register #17: Sound Control

Bits 0-3 of this register are assigned as master volume control, @ being
off to 8 or greater being the loudest volume setting.

Bit 4 enables voice 1 when set high.

Bit 5 enables voice 2 with a square oscillator when set high.

Bit 6 enables voice 2 with a white noise oscillator when set high.

Note: Bit 5, if set, will override bit 6 thus producing a square wave output.
Bit 7 is a test bit.

Register #18: Bit Map Base

Another multi function register, Bits ® and 1 are the MSBs of voice 2
frequency register.

Bit 2 is used to indicate where the TED chip will fetch its character and
dot data from. If set high, ROM is selected, otherwise, if cleared, then
RAM is chosen.

Bits 3-5 are used to determine where the bit map base resides. During
TED dot fetches, the 3 MSBs of the address lines, A15-A13, are written
into bits 5 to bit 3.

Register #19: Character Base

Bit @ of this register is aread only status bit describing the state of the two
phantom registers 62 and 63. If it is high, then TED is operating from
ROM memory. Ifitis cleared, then TED registers are not accessible.

Bit 1 when set high forces single clock mode, inhibiting double clock
speed during horizontal blanking.

Bits 2 to 7 comprise the character data base. The six bits give 64
separate areas for character data, in 1K increments. To change
character sets, the character base register should be set to the
appropriate value, depending on where the new character resides, and
then the ROM/RAM bank select bit (bit 2 of register #18) should be
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cleared. TED will now refer to that part of RAM for its character
information.

Register #2f: Video Matrix Base

The top five bits of this register are what make up the Video Matrix Base
Register. This register determines which 2K block of memory will serve
as the Video Matrix pointers and Attribute data (screen and colour
memory). By careful use of the Raster Compare Register, a split screen
could be set up having two different sets of screen and colour data
coming from different areas of memory.

Register #21: Background Colour

This register comprises a 4 bit colour code and a 3 bit luminence code.
This yields eight separate luminences for all 16 colours.

Bits 0-3 define the background colour.
Bits 4-6 determine the luminence of the background colour.

Register #22: Character Colour
Bits 0-3 define the character colour.
Bits 4-6 define the luminence of the character colour.

Register #23: Multicolour 1

Bits 0-3 define the colour of multicolour 1, useable only in extended
colour mode.

Bits 4-6 define the luminence for this colour.

Register #24: Multicolour 2

Bits @-3 define the colour of multicolour 2, also only available in
extended colour mode.

Bits 4-6 define the luminence information for this colour.

Note: Whenever this register is changed, all pixels in multicolour 2 also
change to the new colour.

Register #25: Border Colour

Bits 0-3 define the border colour.
Bits 4-6 define the luminence.
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Register #26: Character Position Reload (MSBs)

Bits 1 and @ comprise the MSB of the Character Position Reload
Register. This register is used by TED to count the row on which it will
display characters. Each time a row, comprising 8 raster lines, has been
displayed on the screen, the register will be incremented by 40.

Register #27: Character Position Reload (LSBs)

This register comprises the low order 8 bits of the Character Position
Reload register.

Register #28: Vertical Raster Count (MSBs)

Bit @ is the MSB of the 9 bit Vertical Line Register. This register is used by
the TED chip to count the current raster line being displayed, and
ranges from @ to 261 for the NTSC standard, or @ to 311 for the PAL
standard.

Register #29: Vertical Raster Count (LSBs)
The low order 8 bits of the Vertical Raster Count Register.

Register #3@: Horizontal Position

This register comprises the upper 8 bits of the 9 bit Horizontal Position
Register. The LSB of the register is not available as it changes too fastto
be of any use. This register increments from @ to 455 but because only
the top 8 bits are available, the actual value of the register ranges from®
to 288. Since this register clocks over at a fast rate, it could be
successfully used to generate random numbers.

Register #31: Blink

Bits @-3 comprise the Blink rate register which contains the current count
of the Blink Rate Timer. This register is incremented once per screen.

When this register overflows, a 2Hz signal is generated to initialise the
cursor reverse video and any flashing characters.

Bits 4-6 comprise the Vertical Subaddress register which counts the
eight raster lines per character row.

Registers 62 and 63

These registers aren't really on the TED chip but instead are used to
control the TED system memory map. A write to register 62 causes ROM

135



to be selected in the $8000 to $FFFF range, excluding memory mapped
I/O and TED from $FDQQ to $FF3F. When register 63 is written to, RAM is
instead selected over that range, thus BASIC may be switched out.

Note: All TED registers are read/write, so care should be taken when
writing to registers 26 through to 31, as they are internal control
registers. Writing to them can result in the screen flickering.
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Appendix 7

The Makings Of A Good Assembler

The time will come when you will probably decide on the switch to using
a full assembler, with features far superior to those found in Tedmon.
You will quickly learn that using Tedmon to assemble programs of
medium to large size is, to say the least, very tedious and messy. For

example, you may have relative instructions that branch forward several
locations:

2000 BEQ $2008

To obtain the address of this branch, you would have had to count the
number of instructions between the original instruction and its
destination, adding this to the original address. This example is only one
illustration of the limitation of using a simple assembler.

Take the following program, which displays the characters from ‘A’ to
‘Z’ (screen codes 1 to 26) on the top line of the screen:

2000 LDA #$01
2002 STA $03
2004 LDY #$00
2006 LDA  $03
2008 STA $0C00,Y
200B INC $03
200D INY

200E CPY  #3$1A
2010 BNE  $2006
2012 BRK

While this program is extremely short, it is still fairly difficult to follow
without some form of commentary. The same program written with a full
assembler might look something like:

10 ORG $2000 . START PROGRAM AT $2000

15 SCREEN = $0C00 - DEFINE BASE ADDRESS FOR SCREEN

20 CHAR = $03 - DEFINE CHARACTER STORAGE LOCATION
25 ;

30 : YREGISTER USED AS AN iNDEX TO THE SCREEN,
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35 ; AND AS THE COUNTER TO 26 (26 CHARS)

40 ;

45 LDA #3001 . LOAD THE VALUE FOR CHARACTER ‘A’
50 STA CHAR : STORE THIS IN ‘CHAR' LOCATION

55 LDY #%00 - INITIALISE OUR COUNTER

60 REPEAT LDA CHAR . LOAD THE CURRENT CHARACTER VALUE
65 STA SCREEN,Y : STORE THIS TO THE SCREEN

70 INC CHAR - UPDATE CHARACTER VALUE

75 INY - UPDATE COUNTER AND SCREEN POS.
80 CPY #$1A . HAVE 26 CHARS BEEN DISPLAYED?

85 BNE REPEAT - NO, SO GO BACK, DISPLAY NEXT

90 BRK . EXIT FROM PROGRAM

As you will have noticed, a full assembler is oriented towards making
life easier for the programmer, not the computer. The example given
above may have seemed a trifle ‘over-documented’, but it illustrates the
kind of documentation that can be implemented in programs.

With a full assembler, labels may be used in place of absolute
addresses, so that the programmer does not have to perform any
calculations for relative addresses or offsets, as is the case for Tedmon.
Line numbers, or some other method of organization, is used primarily
for editing and debugging purposes.

The strange looking ‘ORG’ statement found on line 1 is known as a
‘pseudo-op’ or ‘assembler directive’. Assemblers need additional
information about such things as ‘where’ to assemble the source code,
or whether to print it out. Line 10 of the above program is simply letting
the assembler know that it should start the assembly with the first
instruction at location $2000.

With most assemblers, you can store your source code (i.e.
unassembled code) onto tape or disk; you can print it out, and you can
insert and delete lines at will. Below is a list of some of the features that
you should consider. When deciding on an assembler for your own use,
you may decide that all, or only some, of these features are needed.

Labels

Almost all assembers support both the use of standard labels and of
standard addresses, for use as parameters in instructions. This feature
should be high on your priority list, as it alleviates the need to calculate
resulting addresses thus greatly decreasing your code generation
times.

There are basically two types of labels that are incurred when working
with assembly language:

INTERNAL LABELS: These are references to locations within the
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program that is being assembled. For example:

5 ORG $2000
10 JMP OUT )
30 OUT RTS

In this case the label ‘OUT is called an internal label, because the
location ‘OUT' resides within the program.

EXTERNAL LABELS: These are references to locations outside the
program that is being assembled. For example:

9 ORG $2000
10 SET = $FFD2

30 JSR SET

In this case the label ‘SET' is called an external label, because itis a
reference to a location outside the program.

Error Returns

Here is another area that should not be overlooked. There is nothing
more infuriating than an assembler that returns with ‘'ERROR’, without an
explanation as to what has actually happened. Fortunately, these
assemblers seem to have become extinct, and you should find that
nearly all of the assemblers on the market will display a full error
message, or at least an error number, with a corresponding message
section in the assembler’'s manual. You should bear this in mind when
purchasing an assembler, remembering that debugging usually takes
up a fair amount of time in the development of any program.

Assembler Directives

This section illustrates a series of instructions that may or may not be
important in the assembly of your programs. Assembler directives are
additional commands to aid in formatting your listings, reserve and
manipulate memory, and generally keep the assembler running
smoothly. Though the names for these commands might vary from
assembler to assembiler, a description of a few are given below.

e Assembly Start Location: All assemblers will have some method of
allocating a start address for assembly of the source code. It can be
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taken for granted that this feature will be implemented, in one form or
another, in whatever assembler that you buy.

e Reserve Memory: This command is used to reserve memory that
can be used by your program. It enables you to create blank areas for
storing data such as a list of names and addresses. You should find that
most assemblers will support this feature in one form or another.

e Allocate Values to Memory: This is used to store constant values in
memory. An example might be the storage of the text that makes up a
title screen for one of your programs. This feature should incorporate the
following:

— the ability to store values in the form of numbers.
— the ability to store strings (e.g. “hello”) in ASCII format.

e Format A Printout: This command will generally display an
assembly printout in a tabulated form. A graphic example paints the
picture as to how this command can make life easier:

UNFORMATTED FORMATTED

LDA  #$01 LDA #3$01

LOOP STA $03 LOOP STA $03

INX INX

BNE LOOP BNE LOOP

;REPEAT TASK ;REPEAT TASK
INY INY

BNE LOOP BNE LOOP

By aligning the fields into Label, Mnemonic, Operand/s, Comments
order, the listing becomes a lot easier to read. This feature is not entirely
necessary but is very handy in producing ‘pretty printouts’.

® Number Systems: A good assembler will accept numbers in the
following bases:

Decimal — baseten
Hexadecimal :— base sixteen
Binary — base two
Octal — base eight

However, with the use of octal now declining, an assembler
supporting the former bases will definitely suffice. You will find that
Decimal is handy as a human interface (we use this base in everyday
life), and that hexadecimal is useful when dealing with addresses.
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Binary is useful when dealing with individual bits (as in masking). As a
general rule, the assembler should use the following nomenclature:

Decimals have no prefix (e.g. 10,34)

Hexadecimals have a dollar sign as a prefix (e. g $12 $8065)
Binary numbers have a percentage sign as a prefix (e.g. %100
11101,%1110)

Octals have the ‘commercial at’ sign as a prefix (e.g. @76,@34)

Creating Large Programs

When using an assembler, the source code is usually much larger than
the object code that is generated. For example:

LDA #3$08
STA $200A

generates five bytes of object code, whereas the source code is
probably stored as twenty to thirty bytes. The C-16 has 16 kilobytes of
useable memory, so that approximately 16 kilobytes of object code
could be stored in memory. To generate this amount of object code
would require between sixty and a hundred kilobytes of source code,
depending on the method that the assembler uses to store this code.
The C-16 could not possibly cope with this volume of source code at one
time. The method used to solve this problem is to link one source file to
another, with each file being assembled separately, the result being one
large program. If you are only planning on writing small programs then
this feature may be unnecessary.

At this point it may be worth mentioning that there are several ways
that an assembler can generate the resultant object code for your
program:

e |t could store the object code directly into memory. This technique
could pose a serious problem, due to the fact that with the C-16's
memory limitations you would only have enough room for fairly small
programs. You must not forget that an assembler with many of the
features that we are now discussing would probably need at least 10
kilobytes of memory to operate.

e Another method that an assembler can use is to store the object
code onto tape or disk. Using this method, the full 16 kilobytes can be
used, with no conflict between the program and the assembler.

There are other variations on these two themes, each with its
advantages and disadvantages. The method used to store object code
should be treated as a crucial point when buying an assembler for any
machine with memory limitations.
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Macros

More and more assemblers are beginning to support a feature called
‘macros’. A macro is a predefined series of instructions, which are
named using a label. After a macro has been defined, subsequent
referencestoits ‘'name’ will insert the associated code from its definition.
Parameters can also be sent to a macro. An example might be:

10 MACRO INCBYTE INC

15 BNE 73
20 INC 72
25 73 NOP

30 MACRO-END.
At this stage, the macro has been defined. Now, if line 5@ had:
50 INCBYTE $05,$06

then the following code would be inserted:

INC $05

BNE L1

INC $06

LO1 NOP
which corresponds to the code, as defined in the macro, with the
parameters (71,72,73) being filled in.
Macros are extremely handy when a piece of code is used over and

over again, but with different parameters.

Mathematical Functions

Most assemblers will support the use of simple mathematical functions,
typically addition, subtraction, multiplication and division. These
functions aid in alleviating the programmer from calculations. A simple
example might be:

10 BASE = $03
15 BASE2 = $04
20 BASE3 = $06
25 INC BASE
30 INC BASE
35 INC BASE3

Now with an assembler utilising mathematical functions, this could
have been entered as:

10 BASE = $03

15 INC BASE
20 . INC BASE+1
25 INC BASE*2

This feature should not really be treated as an absolute necessity, but
merely as a very handy ‘extra’.
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The Library Option

Some assemblers allow you to store sections of source codes onto tape
or disk, which can be called in and used as a part of any other program.
If, say, you had written a routine that could handle input from a joystick,
then you could store this routine as a library routine, and use it in any
other program that requires a joystick routine such as this one.

Text Handling Functions

Assemblers are now starting to incorporate features that have
traditionally belonged to word processors. With some assemblers, you
are now able to move blocks of source code from one place to another,
search and replace within the source code, as well as a host of other
functions which make programming much easier. This is another
feature that can be considered as an ‘extra’, although assemblers
implementing it will enable faster generation of source code, through
ease of use in editing.

Offset option

This option allows you to assemble the source code, as if you were to
locate it at one address, but the assembler will store it at another
address. This makes it possible to load code at one address, and then
have it transferred to its proper operating address when it is required. It
also aids in the programming of programmable chips, known as
EPROMS (erasable, programmable ROM chips).

In this section, we have covered a few of the most common ‘features’
that may be incorporated into an assembler. If you take some time to
examine a few assemblers on the market, you will find that there are a
number of features that have not been covered in this section. | have
outlined what | consider to be the most important areas of an
assembler’s design. It should now be left to individual preference as to
what assembler you purchase.
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Appendix 8

ASCII and CHRS$ Codes

This table shows you what characters will appear if you PRINT CHR$(X),
for all possible values of X. It will also show the values obtained by typing
PRINT ASC("X”), where X is any character you can type. This is useful in
evaluating the character received in a GET statement, converting
upper/lower case, and printing character based commands (like switch
to upper/lower case) that could not be enclosed in quotes.

1) CHR% Value Codes

CHR% CHR$
Character Code Character Code
0
1 21
> 22
STOP X 23
4 24
WHITE 5 25
s 24
7 27
DISABLES SHIFT KEY 8 gggesa 28
EMABLES SHIFT KEY 9 29
10 GREEN 30
11 BL UE 31
12 space 32
RETURN 13 b 33
Lower case switch 14 34
15 # 35
16 % 36
CRSR ¥ 17 A 37
RVS ON 18 & 38
CLR/HOME 19 i 39
INST/DEL 20 ( 40
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Character
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CHR$ |Character

Code
41
42
43
44
45
46
47
48
49
o0
51
o2
593
54
85
26
57
o8
a9
&0
61
&2
&3
&4
&5
&4
&7
&8
&9
70
71
72
73
74
73
76
77
78
79
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ml 2

il \l

T

RE&€¢BIINALEEEA S

CHR$
Code
80
81
82
83
84
85
86
87
88
89
0
91
92
3
94
95
6
7
98
99
100
101
102
103
104

105
106
107

108
109

110
111
112
113
114
115
116
117
118



Character CHR% |Character CHR$

Code Code
(e 119 | PURPLE 156
& 120| CRSR « - 157
iy 121 | YELLOW 158
* 122 | cyaN 159
= 123 | space 160
3] 124 | H: 161
Y b 125| i 162
v 126 3 163
(| 127 &3 164

128 | I} 165

129 | 9 166
FLASH OH 130 | i1 167
SHIFT RUN/STOP. 131 | =2 168
FLASH OFF 132 ¢, 169
f1 133 i1 170
£3 134 | H 171
5 135 | [d 172
£7 136 | @ 173
£2 137 | A 174
£4 138 | L
£6 139 | [@ 176
8 1490| B 177
SHIFT RETURN 141 | B2 178
Upper case switch142| HI 179

143 | I 180
BLACK 144 | L: 181
CRSR 145 iB® 182
RVS OFF 146 T3 183
CLR/HOME 147 ™ 184
INST/DEL 148 i 185

149 ) 186
X 150 @] 187
@) 151 ™ 188
152| m 189
ED 153| m 190
0 154 mg 191
EE 155

Codes 192-223 are the same as 96—127
Codes 224-254 are the same as 160-190
Code 255 is the same as code 126

147



148



Appendix 9

Screen Display Codes

The screen codes listed below correspond to the values that should be

stored in the appropriate location in screen memory to display the
desired character.

Two sets are available, but not at the same time. To select the other set,

the Commodore logo key should be depressed, followed by the shift
key.

Character Character bcreen
Set 1 Set 2 Code

N NOCUPRUN=O

CC-HUIRDITOZINMXRU=IpTMMoOUODDO
CEMUMYDDODIB XL =T og-DOoanNnouw
[y
.
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Character
Set 1

4‘_)1_,th-<><£

~ Nan -0

+ % g 4
[

n

B

A - «Qm\J&UIhNN'-*O\'

w

X
Y
F4

Character
Set 2

150

Screen
Code

23
24
25
26
27
28
29
30
31
32
=3
34
35
36
37
38
39
30
41
42
43
44
45
a6
47
48
49
50
51
52
53
54
55
56
57
s8
59
60



Character Character Screen
Set 1 Set 2 Cade

61
&2
63
&4
&3
b6
&7
68
&9
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

ok AL

.....

o gy
oL

BOORRCEER

89
90
91
92
93
A 74
95
96
@7
98

N<SXECCHUIRTIODZIrXW=~IOTMMEOOED

migilcmBes D BRS€T
Vi
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Character Character Screen

Set 1 Set 2 Code
o 99
- 100
[ 101
i 102
<1 103
b 104
= 7 105
e 106
B 107
[ 108
s 109
=y 110
— 111
[d 112
= 113
= 114
H 115
[ 116
L 117
1 118
ok 119
m 120
s 121
J 122
k] 123
(e 124
= 125
= 125
°| 127

Codes 128-255 produce reversed images of
codes 0-127
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GLOSSARY

ASSEMBLER

This is a program which takes a program written in ASSEMBLY
LANGUAGE, a form which the programmer can understand but which is
meaningless to the microprocessor, and converts it to MACHINE CODE
which the microprocessor can understand but which is difficult for the
programmer to work with.

ASSEMBLY CODE
See ASSEMBLY LANGUAGE

ASSEMBLY LANGUAGE

This is a program written out in a form the programmer can understand
but which means nothing directly to the MICROPROCESSOR until run
through an ASSEMBLER. Any large MACHINE CODE program will be
written via ASSEMBLY LANGUAGE (see ASSEMBLER).

BINARY

Base 2. Used by almost all computers. Each digit can have only two
possible values — @ and 1 (electrically on and off etc.). By making the
possible value of the digit worth more depending on its position as we
do in decimal etc.

145
=1x100 + 4x1Q + 5x1
binary becomes etc.
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1011
=1x8+0x4+1x2+1x1 =11 decimal

BIT

One BINARY digit, which can only take the value of a one or a zero.
When strung together it can be used to form a larger number (see
BINARY, see BYTE).

BUFFER

An area of memory set aside for temporary storage of data. Usually used
in relation to input/output functions.

BYTE

The basic unit of the computer's MEMORY. One MEMORY LOCATION
can hold 1 BYTE of information. Each BYTE is made up of 8 BITS and
can store a number between @ and 255. This number may represent a
character, a numeric value, or part of a microprocessor instruction. Can
be strung together like BITS to form larger numbers (see BINARY).

CHARACTER

Generally any symbol which can be put on the screen by pressing a key
on the keyboard. Any symbol (alphanumeric) you can write (thatis not a
drawing or a picture) is a CHARACTER. NOTE: for an exception see
GRAPHICS CHARACTERS.

CHARACTER SET
The set of all CHARACTERS which can be printed on the TEXT screen.
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DECIMAL

Base 10. Our normal everyday way of counting is called the decimal
number system.

DISASSEMBLER

A program which takes a MACHINE CODE program and prints it out in
ASSEMBLY LANGUAGE so the programmer can read it (see
ASSEMBLER).

DUMP

A memory DUMP is a display of the contents of memory in a numerical or
character form (not as ASSEMBLY CODE instructions).

GRAPHICS

In GRAPHICS mode you can display anything on the screen that you
can display using the resolution of the dots the computer puts out (the
size of a full stop).

GRAPHICS CHARACTER

Part of the CHARACTER SET is made up of CHARACTERS which are
only shapes and hold no symbolic meaning. These are GRAPHICS
CHARACTERS.

HEXADECIMAL

Base 16 (sometimes called HEX). Base 16 is used in dealing with
machine code because it is an easy way of dealing with BINARY
numbers, which very soon become cumbersome. A BYTE is divided into
two sections of four binary BITS, each capable of storing a number from

155



@ — 15. The number is represented by a HEX digit@— 9, A—F. Thus a
byte can be displayed by using two HEX digits. A $ sign is usually used
to signify a HEX number.

INTERRUPT

An interrupt is an electronic signal sent to the microprocessor, by a
peripheral or a chip within the computer, to notify it of something
happening in the outside world.

MACHINE CODE

Sometimes called MACHINE LANGUAGE, it is the way of describing a
program that can be directly run by the MICROPROCESSOR. A
MACHINE CODE program is made up of a string of numbers which may
be put into the computer by the programmer in HEX, or assembled
using an ASSEMBLER from a program written in ASSEMBLY CODE.

MACHINE LANGUAGE
See MACHINE CODE.

MEMORY

Boxes at pigeonholes within the computer which are used to hold
numbers, machine language instructions and characters. Eachbox can
hold only 1 BYTE of memory atatime. The C64 has 64K (65536) bytes of
memory.

MEMORY ADDRESS

Each memory box has a number from @10 65535 whichis used to refer to
it from among the 65536 within the computer. A number used for this
purpose is called an address.
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MEMORY LOCATION
An easier way of saying memory at address.

MICROPROCESSOR

The central processing and control unit of the computer. It can be
compared to the human brain (as long as you realise that the brain is of
comparatively immense power with huge memory and enormously
complex programs). The microprocessor controls all movement of data,
all decisions and all calculations within the computer.

TEXT

In TEXT mode you can only display CHARACTERS which are in the
CHARACTER SET on the screen (see GRAPHICS).

VECTOR

Is the name given to bytes in RAM which store the address of a ROM
routine. These bytes are used so that the process of the operating
system or basic calling ROM input/output routines may be accessed by
the user. The progammer will set these RAM bytes to point to his own
program to handle input/output in his own way.

ZERO PAGE
Another name for the first 256 bytes of memory from $0 to $255.
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Index

Absolute addressing . . . 9, 10, 21
Accumulator . . . 7

Addition . . . 34

Addition two byte . . . 36
Addresses . . . 4

Addressing modes . . . 8

AND .. .69
Animation . . . 40
ASL... 73

Assembler . . . 25
Assembly language . . . 11,187

BCC...45
BCD...64
BCS...45
BEQ ... 44
Binary . .. 17
Bits . .. 69, 72
BMI. .. 67

BNE ... 44
Boolean operations . . . 69
BPL v+ 67
Branches . . . 43
BVC.. . 67
BVS...67

Calling aprogram . . . 4
Carryflag . . . 33,63

CLC...34
CLD...64
CLI...64
Clock . .. 84
CMP ... 41,44

Comparisons . . . 43

Converting hexadecimal to decimal . . .

Counting . . . 47

Debugging . . . 25
DEC...48
Decimalflag . . . 64
Disassembler . .. 25

EOR... 71
Flags . .. 33,63

Glossary . .. 153
Graphics memory . . . 58

Hexadecimal . . . 17-23

Immediate addressing . . . 9
INC...48

Index registers . . . 49-55

Indexed addressing . . . 51
Indexed indirect addressing . . . 60
Indirect addressing . . . 60

Indirect indexed addressing . . . 59
Instruction set . . . 94

Interrupts . . . 83

Interrupt flag . . . 64

22

JMP ... 41
JSR...80
Jump conditional . . . 43

Kernal . .. 87
Kernal routines . . . 88

LDA .. .8, 49
Logical operations . . . 69
Looping . .. 41,47

LSR...73
Memory address . . . 4
Memory map . . . 109-126

Mnemonics . . . 6
Moving memory . . . 50

Negative flag . . . 65

ORA ... 71
Overflowflag . . . 67
Peek...5
PHA .. .82
PLA .. .82
Poke .. .5

Printing a message . . . 13
Processor status code register . . . 63
Program counter . . . 79

Registers . . . 7
Register to register transfers . . . 60
Relative addressing . . . 43

Return...6

ROL.. . . 74
Rotating bits . . . 73
ROR...75
RTS...6
SBC...37

Screen display code . . . 12, 149
Screen memory . .. 11
Searching memory . . . 52

SEC...35
SED .. .64
SEl... 64
STA ... 9,10
Stack . . . 81

Status register . . . 63
Subroutines . . . 4,5, 80
Subtraction . . . 36

SYS.. .4

Tables ... 95

Tables — zero pages . . . 68

TEDMON . . . 25-31

TED Register chipmap . .. 127-129

TED Register chip description . . . 130-136

X-registers . . . 49
Y-registers . . . 49

Zeroflag . .. 47,63
Zero page addressing . . . 9, 22
Zero page indexed addressing . . . 54
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